Rešetkasti nosači. Osnove metalnih konstrukcija 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Rešetkasti nosači. Osnove metalnih konstrukcija 1"

Transcript

1 Rešetkasti nosači Osnove metalnih konstrukcija 1

2 Osnovne karakteristike Sastoje se od međusobno povezanih aksijalno opterećenih štapova; Moment savijanja prenosi se naprezanem pojasnih štapova, a uticaj transverzalnih sila preuzimaju štapovi ispune; Bolje iskorišćenje matrijala (konstantna raspodela napona) Manja težina u odnosu na pune nosače; Mogućnost premošćavanja velikih raspona; Transparentnst i mogućnost provođenja instalacija; Komplikovanija izrada u odnosu na pune nosače; Veća jedinična cena; Osnove metalnih konstrukcija 2

3 Primena rešetkastih nosača U zgradarstvu (rožnjače, krovni nosači, podni nosači i podvlake, kranski nosači većih raspona, spregovi i ukrućenja za prijem uticaja od vetra...) U mostogradnji (glavni nosači, poprečni nosači i ukrućenja, spregovi za prijem vetra spregovi za kočenje i bočne udare,...) Osnove metalnih konstrukcija 3

4 Rešetkasti krovni nosači Osnove metalnih konstrukcija

5 Rešetkasti nosači u industrijskim halama Osnove metalnih konstrukcija 5

6 Rešetkasti podni nosači i podvlake Osnove metalnih konstrukcija 6

7 Rešetkasta ukručenja kod visokih zgrada Osnove metalnih konstrukcija 7

8 Rešetkasti nsači kod železničkog mosta Osnove metalnih konstrukcija 8

9 Podele rešetkastih nosača Prema broju pojaseva Prema prostornom obliku Prema intenzitetu opterećenja Prema oblikovanju čvorova Osnove metalnih konstrukcija 9

10 Podela prema broju pojaseva Dvopojasni; Višepojasni (tropojasni, četvoropojasni,...) Osnove metalnih konstrukcija 10

11 Podela prema prostornom obliku Ravanski rešetkasti nosači; Prostorni rešetkasti nosači; linijski, površinski. Osnove metalnih konstrukcija 11

12 Podela prema intenzitetu opterećenja Laki rešetkasti nosači; Srednje teški rešetkasti nosači Teški rešetkasti nosači Osnove metalnih konstrukcija 12

13 Podela prema načinu oblikovanja čvorova Rešetkasti nosači bez čvornih limova; Reštkasti nosači sa čvornim limovima: u jednoj ravni (jednozidni rešetkasti nosači) u dve paralelne ravni (dvozidni rešetkasti nosači) Osnove metalnih konstrukcija 13

14 Osnovna pravila za konstruisanje 1. Opterećenje treba da deluje u čvorovima; 2. Dužina pritisnutih štapova treba da bude što manja; 3. Štapovi treba da budu pravi između čvorova;. Sistemne linije štapova treba da se seku u čvoru (centrisani štapovi) 5. Uglovi štapova ispune ne treba da budu isuviše oštri (ne manji od 30 0 ); 6. Montažni nastavci pojasnih štapova izvode se izvan čvorova (u neposrednoj blizini) na strani slabije opterećenog štapa); Osnove metalnih konstrukcija 1

15 Oblici rešetkastjh nosača Oblik rešetkastog nosača zavsi od oblika pojasnih štapova; Po svom obliku rešetkasti nosači mogu da budu: Rešetkasti nosači sa paralelnim pojasom; Rešetkasti nosači sa gornjim pojasom u nagibu (uglavnom prati nagib krovnih ravni) Rešetkasti nosači sa paraboličnim pojasom ili pojasevima; Osnove metalnih konstrukcija 15

16 Rešetkasti nosači sa paralelnim pojasevima Sistemna visina rešetkastih nosača (h) se kreće: od L/10 do L/15 za lake rešetkast nosače; od L/7 do L/9 za teške rešetkaste nosače; Za kontinualne nosače mogu se usvojiti manje visine. Rasponi (L) mogu biti: od 12 do 18 m za rožnjače i podne nosače, od 30 do 100 m pa i više (npr. u mostogradnji) Osnove metalnih konstrukcija 16

17 Oblici rešetkastih nosača sa paralelnim pojasevima Osnove metalnih konstrukcija 17

18 Oblici ispune kod spregova Osnove metalnih konstrukcija 18

19 Rešetkasti nosači sa paralelnim pojasevima i sekundarnom ispunom Osnove metalnih konstrukcija 19

20 Rešetkasti nosači sa gornjim pojasom u nagibu Uglavnom se kriste kao krovni nosači, a nagibi gornjeg pojasa prate nagib krovne ravni. Razlikuju se dva osnovna oblika: trougaoni rešetkasti nosači, trapezasti ili poligonalni rešetkasti nosači, Osnove metalnih konstrukcija 20

21 Trougaoni rešetkasti nosači Osnove metalnih konstrukcija 21

22 Trapezasti poligonalni rešetkasi nosači Osnove metalnih konstrukcija 22

23 Rešetkasti krovni nosači sa lanternom Osnove metalnih konstrukcija 23

24 Parabolični rešetkasti nosači Osnove metalnih konstrukcija 2

25 Oblici poprečnih preseka štapova Različiti oblici poprečnih preseka primenjuju se za: pojasne štapove štapove ispune zategnute štapove pritisnute štapove Izbor oblika poprečnih preseka je jako veliki Treba voditi računa da izbor oblika pojasnih štaova i štapova ispune bude u skladu sa predviđenim oblikovanjem čvornog lima! Osnove metalnih konstrukcija 25

26 Pojasni štapovi Štapovi ispune a) b) c) d) Uobičajeni oblici poprečnih preseka e) f) Osnove metalnih konstrukcija 26 Dvozidni rešetkasti nosači Jednozidni rešetkasti nosači Rešetkasti nosači bez čvornog lima

27 Višedelni štapovi a h / 6 h / 6 ili ili 10 mm 15 mm u zgradarstvu u mostogradnji Kod pritisnutih elemenata proračun se može sprovesti kao kod jednodelnih štapova, kada je rastojanje veznih limova manje ili jednako od 15i η, odnosno 70i η kod unakrsno postavljenih ugaonika Osnove metalnih konstrukcija 27

28 Povezivanje višedelnih štapova Osnove metalnih konstrukcija 28

29 Proračun rešetkatih nosača Prilikom proračuna uticaja u rešetkastim nosačima pretpostavlja se: da su veze u čvorovima idealo zglobne da sile deluju isključivo u čvorovima nosača da su štapovi između čvorova pravi i da su centrisani u čvoru Osnove metalnih konstrukcija 29

30 Primarna i sekundarna naprezanja kod rešetkastih nosača Osnove metalnih konstrukcija 30

31 Uticaj lokalnog savijanja pojasnih štapova Osnove metalnih konstrukcija 31

32 Osnove metalnih konstrukcija 32 Centrisanje pojasnih štapova = = n i sr a i n a 1 1 n n n n n O O e O R e O u = = +1 T T T T e a a a s 1 2 D R O u e D O n n n n+1 n+1

33 Centrisanje štapova ispune Osnove metalnih konstrukcija 33

34 Određivanje dužine izvijanja pritisnutih štapova Osnove metalnih konstrukcija 3

35 Montažni nastavci Sa podvezicama Sa čeonom pločom Osnove metalnih konstrukcija 35

36 Montažni nastavak donjeg zategnutog pojasa sa čeonom pločom i ukrućenjima x x x x Osnove metalnih konstrukcija 36

37 Nepravilno konstruisanje montažnog nastavka Osnove metalnih konstrukcija 37

38 Položaj montažnih nastavaka Osnove metalnih konstrukcija 38

39 Proračun i konstruisanje čvorova Proračun i oblikovanje detalja čvorova zavisi od: tipa rešetkastog nosača (sa čvornim limom ili bez njega), oblika poprečnih preseka pojasnih štapova i štapova ispune; broja čvornih limova (kod čvorova sa čvornim limom); vrste spojnih sredstava (zavrtnjevi ili zavarivanje); Osnove metalnih konstrukcija 39

40 Rešetkasti nosači sa čvornim limom Čvorni limovi se oblikuju tako da: imaju minimalne dimenzije i da im je oblik jednostavan za izradu (po mogućstvu da imaj dve paralelne ivice) Do loma čvornog lima može da dođe lokalno u zoni unošenja sila iz štapova ispune, ili globalno po čitavoj visini čvornog lima, na mestu teorijskog čvora Osnove metalnih konstrukcija 0

41 Lokalna naprezanja čvornih limova F F σ = = σ A t b eff dop b eff = b + 2 tg30 l v v F F σ = = σ A t neto dop ( b n d ) eff 0 Osnove metalnih konstrukcija 1

42 Naprezanja čvornog lima na mestu teorijskog čvora N = U n + Dn cosα 1 V = D n sinα 1 M = N e Osnove metalnih konstrukcija 2

43 Veza čvornog lima sa pojasnim štapovima Kada se pojasevi prekidaju u čvoru Kada se pojasni štap ne prekida u čvoru Osnove metalnih konstrukcija 3

44 Određivanje razultante štapova ispune u čvoru Približno: R max = 5 + ( ) 1,2 1, maxo n 1 maxo n Osnove metalnih konstrukcija

45 Određivanje rezultante štapova ispune Kada se težište veze čvornog lima sa pojasnim štapovima ne poklapa sa težištem pojasa, treba uzeti u obzir i moment ekscentriciteta! Osnove metalnih konstrukcija 5

46 Primer proračuna veze u čvoru rešetkastog nosača σ V n n II M F O = = A = w 2 M W w = F = 2 a l O a l O h / a l / 6 eff 2 2 ( n M + nf ) + V w, dop w, u = II σ D D n+ 1 n+ 1 V II = = σ w, dop Aw,2 a2 l 2 D D n n V II = = σ w, dop Aw, 1 2 a1 l1 D e D e n n n = = σ 2 w, dop Ww, 1 2 a1 l1 / w, u = n + VII σ w, dop Osnove metalnih konstrukcija 6 σ

47 Ekscentrično vezivanje štapova ispune M p =R e = R h/2 Kod jako oštrih uglova između pojasnih štapova i štapova ispune, ekscentričnim povezivanjem štapova ispune znatno se smanjuju dimenzije čvornih limova! Osnove metalnih konstrukcija 7

48 Ekscentriciteti kod vertikalnog sprega Osnove metalnih konstrukcija 8

49 Ekscentrična veza na osloncu kod trougaonih rešetkastih nosača Osnove metalnih konstrukcija 9

50 Oblikovanje čvorova kod dvozidnih rešetkastih nosača Osnove metalnih konstrukcija 50

51 Čvor mostovskog glavnog rešetkastog nosača Osnove metalnih konstrukcija 51

52 Pančevački most Osnove metalnih konstrukcija 52

53 Mala Rijeka Osnove metalnih konstrukcija 53

54 Akaši Kaikio Osnove metalnih konstrukcija 5

55 Rešetkasti nosači bez čvornog lima Laki rešetkasti nosači! Osnove metalnih konstrukcija 55

56 Veze bez čvornog lima kod srednje teških rešetkastih nosača Osnove metalnih konstrukcija 56

57 Rešetkasti nosači od šupljih profila Spadaju u rešetkaste nosače bez čvornog lima; Veze u čvorovima se ostvaruju direktim zavarivanjem; Prednosti u odnosu na klasične rešetkaste nosače: manja težina, jeftinija antikoroziona zaštita (manji odnos O/A) povoljniji aerodinamički oblik; velike mognićnosti konstrukterskog i arhitektonskog oblikovanja Izrađuju se od: šupljih profila kružnog poprečnog preseka; šupljih profila kvadratnog ili pravougaonog preseka Osnove metalnih konstrukcija 57

58 Rešetkasti nosači od šupljih profila kružnog poprečnog preseka d / t za Č0361 za Č0561 0,2 / d 0 1,0 d i Obrada krajeva kružnih profila Osnove metalnih konstrukcija 58

59 Redukcija poprečnog preseka Pojasni štapovi Štapovi ispune Osnove metalnih konstrukcija 59

60 Čvorovi sa razmakom i preklopom λ ov = p q 100 [%] g = max + 2 { t 1 t ;10 mm} Osnove metalnih konstrukcija 60

61 Primeri čvorova bez čvornog lima Osnove metalnih konstrukcija 61

62 Veze u čvoru sa čvornim limom Osnove metalnih konstrukcija 62

63 Rešetkasti nosači od šupljuh profila kvadratnog i pravougaonog poprečnog preseka Osnove metalnih konstrukcija 63

64 Potencijalni vidovi loma kod čvorova bez čvornog lima Osnove metalnih konstrukcija 6

65 Oblikovane čvora b i / b0 0, b 0 / t za Č0361 za Č0561 N 1,Rd = Osnove metalnih konstrukcija 65

66 Krovni rešetkasti nosač od šupljih hladno oblikovanih profila x L60/60/ /180/5 17x ,907 3 L60/60/ x /100/, /100/ , x x /180/ x x x x x Osnove metalnih konstrukcija 66

67 10 60 Detalji oslanjanja Oslanjanje na čelični stub Oslanjanje na AB gredu x ,907 3 L60/60/ Pos 110, /100/ Pos x x , Osnove metalnih konstrukcija 67

68 Radionički nastavci kod rešetkastih nosača od šupljih profila Osnove metalnih konstrukcija 68

69 Montažni nastavci pomoću podvezica Osnove metalnih konstrukcija 69

70 Veze montažnih štapova ispune (dijagonala) za čvorni lim Zatezanje Pritisak Osnove metalnih konstrukcija 70

71 Oblikovanje montažnih nastavak sa čeonom pločom Osnove metalnih konstrukcija 71

72 Montžni nastavci pomoću čeone ploče sa ukrućenjima 1 N t > Nw = Aw σ w, dop 2 2 = = N s h e 1 N t N t N = N t N w Presek 1-1: Presek 2-2: N s N / n = n = N s / Aw V // = N s / Aw n = Ns e / Ww Osnove metalnih konstrukcija 72

73 Prostorni rešetkasti nosači Predstavljaju svojevrsnu diskretizaciju površinskih nosača (ploča ili ljuski); Uglavnom se koriste kao krovni nosači (sportske dvorane, stadioni, izložbene hale); Sistemna visina se kreće od l/15 do l/25, a rasponi od 25 do 100 m; Po broju ravni u kojima leže pojasni štapovi dele se na: jednoslojne, dvoslojne i višeslojne; Osnove metalnih konstrukcija 73

74 Jednoslojne i dvoslojne prostorne rešetke Osnove metalnih konstrukcija 7

75 Dvostrani sistemi prostorne rešetke Osnove metalnih konstrukcija 75

76 Trosmerni sistemi rešetkastih nosača Osnove metalnih konstrukcija 76

77 Prednosti prostornih rešetkasti nosača mala težina; manja visina; velika krutost (male deformacije); mogućnost serijske (industrijske) proizvodnje; mogućnost preraspodele uticaja nakon eventualnog lokalnog gubitka nosivosti; veća otpornost na dejstvo požara; velike mogućnosti konstrukcijskog oblikovanja; laka i brza montaža; estetske prednosti; Osnove metalnih konstrukcija 77

78 Oblikovanje čvorova Mero Oktaplatte Triodetic Unistrut Nodus Osnove metalnih konstrukcija 78

79 Osnovni elementi sistema Mero 1 - šuplji profil; 2 - konusni završetak; 3 - zavrtanj; - navrtka; 5 - klin; 6 - kugla; 7 - otvor Osnove metalnih konstrukcija 79

80 Montaža prostorne rešetkaste konstrukcije Osnove metalnih konstrukcija 80

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

1 RАVANSKE REŠETKE (1.2)

1 RАVANSKE REŠETKE (1.2) 1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE Visoke građevine VISOKE GRAĐEVINE SADRŽAJ PREDAVANJA (1.dio) Uvodno Povijest i kronologija visokih građevina Nosivi elementi za osnovna opterećenja Mjere

Διαβάστε περισσότερα

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA KONOP ZA ŠKOTE RACE - materijal jezgra dyneema na 16 struka, izvana poliester na 32 struka - za dizanje i spuštanje jedara, otporan na habanje, mala rastezljivost CRVENO/ PlAVO/ TF30 05000 TF33 05000 5

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja...

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja... 1 1 S A D R Ž A J 1.0 OPIS SISTEMA 1.1 Opšti podaci... 2 1.2 Čelik za prednaprezanje... 2 1.3 Kotve i kablovi... 2 1.4 Oprema... 3 1.5 Gubici sile prednaprezanja... 3 1.5.1 Uvlačenje klina... 4 1.5.2 Elastično

Διαβάστε περισσότερα

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch)

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch) A B C D E F G STOLICE Naziv Visina (inch) Širina (inch) Dubina (inch) AQ1000002 SKIPPER SKLOPIVA STOLICA BIJELA SA BIJELIM JASTUKOM 18 20 17 A AQ1000025 SKIPPER SKLOPIVA STOLICA,BIJELA SA BIJELO PLAVIM

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

MOSTOVI SA KOSIM ZATEGAMA

MOSTOVI SA KOSIM ZATEGAMA MOSTOVI SA KOSIM ZATEGAMA U toku posljednjih tridesetak godina mostovi sa kosim zategama doživljavaju spektakularan razvoj u cijelom svijetu. Ekonomičnost ovih mostova ne leži samo u odličnom iskorištenju

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA d.o.o Radnicka bb 32240 LU ČANI SRBIJA TR: 205-68352-90; MB: 17533606; PIB: 103195754; E-mail:

Διαβάστε περισσότερα

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

10. BENZINSKI MOTOR (2)

10. BENZINSKI MOTOR (2) 11.2012. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak 10. BENZINSKI MOTOR (2) 1 Sustav ubrizgavanja goriva Danas Otto motori za cestovna vozila uglavnom stvaraju gorivu smjesu pomoću sustava za ubrizgavanje

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

TEHNOLOGIJA MAŠINOGRADNJE

TEHNOLOGIJA MAŠINOGRADNJE TEHNOLOGIJA MAŠINOGRADNJE DEO: TEHNOLOGIJA PLASTIČNOG DEFORMISANJA Doc. dr Mladomir Milutinović SAVIJANJE Savijanje je tehnološka metoda plastičnog deformisanja koja nalazi široku primenu u praksi, kako

Διαβάστε περισσότερα

SOLARNI KOLEKTOR KATALOG

SOLARNI KOLEKTOR KATALOG SOLARNI KOLEKTOR KATALOG Odlična učinkovitost Najbolje karakteristike Visoki kvalitet The Quality Chooses Quality Solartechnik Prüfung Forschung 1 SOLARNI KOLEKTORI SELEKTIVNI SOLARNI KOLEKTORI - ESK 2.5

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE

REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE Zadržano pravo na tehničke izmene Važi od januara 2007 www.rehau.com Građevinarstvo Automotivi Industija 2 REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE

Διαβάστε περισσότερα

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору:

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору: СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ ПЛАНЕТАРНИ РЕДУКТОР Подаци о редуктору: Број зубаца погонског зупчаника Z = 20 Број зубаца гоњеног зупчаника Z2 = 40 Нагиб бока зупца β = 0 Померање профила х = 0 Преносни

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR KGV Šutalo d.o.o. Vukovarska 14 34308 Jakšić, Hrvatska +385 34 257 734 info@kgv-sutalo.hr OIB VAT ID: HR06692893248 grijač za bojler 1 1/4 ravni / water heating element 1 1/4 straight RTS12 1200W/230V

Διαβάστε περισσότερα

METAL, INSTALACIJE, ODRŽAVANJE

METAL, INSTALACIJE, ODRŽAVANJE ANKERI I TIPLOVI METAL, INSTALACIJE, ODRŽAVANJE 01 Indeks 02 Elektro materijal 03 Grejanje i sanitar 04 Protivpožarni sistemi 05 DIN/ISO standardni delovi 06 Ankeri i tiplovi 07 Tehnička hemija 08 Obrada

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

unutrašnja opterećenja

unutrašnja opterećenja * Ravnoteža u deformabilnom tijelu Koncentrisana sila (idealizacija) Površinska sila Spoljašnja opterećenja: površinske i zapreminske sile Reakcije oslonaca Jednačine ravnoteže Linearna raspodjela opterećenja

Διαβάστε περισσότερα

KANCELARIJSKI, SANITARNI i HODNIČKI KONTEJNER

KANCELARIJSKI, SANITARNI i HODNIČKI KONTEJNER Tehnički opis za KANCELARIJSKI, SANITARNI i HODNIČKI KONTEJNER Sadržaj 1 Opšte informacije... 3 1.1 Dimenzije (mm) i težina (kg)... 3 1.2 Skraćenice... 4 1.3 Standardne verzije... 4 1.4 Termoizolacija...

Διαβάστε περισσότερα

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE 6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/14 SADRŽAJ: 6.1 Sigurnosni razmaci i sigurnosne visine

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM STROPNI PROGRAM TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi Proizvodi Tehničke

Διαβάστε περισσότερα

Tehnički opis UREDSKI, SANITARNI I SPOJNI KONTEJNER

Tehnički opis UREDSKI, SANITARNI I SPOJNI KONTEJNER Tehnički opis za UREDSKI, SANITARNI I SPOJNI KONTEJNER SADRŽAJ 1 Opće informacije... 3 1.1 Dimenzije (mm) i težina (kg):... 3 1.2 Kratice... 4 1.3 Standardne izvedbe... 4 1.4 Termoizolacija... 5 1.5 Nosivost...

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20.

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20. Piše: Mladen Petrović, 9A4ZZ GP antena EVA-DX 80 Ground plane antenna EVA-DX 80 Uobičajeno je da se vertikalne antene visine reda λ/4 i više, za donje opsege 40 m, 80 m i 160 m postavljaju neposredno iznad

Διαβάστε περισσότερα

PRILOG 1 PRAVILNIK BAB 87

PRILOG 1 PRAVILNIK BAB 87 PRILOG 1 PRAVILNIK BAB 87 PRILOG 1.1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON I OPŠTE ODREDBE 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

KANCELARIJSKI KONTEJNER i SANITARNI KONTEJNERI

KANCELARIJSKI KONTEJNER i SANITARNI KONTEJNERI Tehnički opis za KANCELARIJSKI KONTEJNER i SANITARNI KONTEJNERI Sadržaj 1 Opšte informacije... 2 1.1 Dimenzije (mm) i teţina (kg)... 2 1.2 Skraćenice... 3 1.3 Standardne verzije... 3 1.4 Termoizolacija...

Διαβάστε περισσότερα

8. ALATI ZA PREOBLIKOVANJE

8. ALATI ZA PREOBLIKOVANJE 8. ALATI ZA PREOBLIKOVANJE 8.1 Osnove preoblikovanja Preoblikovanje je promjena oblika čvrstog tijela postupcima trajne ili plastične deformacije bez odvajanja i promjene mase materijala (DIN 8850, 2.grupa).

Διαβάστε περισσότερα

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 Predavanje VI II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 dragan.pantic@elfak.ni.ac.rs ? Kalemovi Kalem je elektronska komponenta koja poseduje reaktivnu otpornost direktno proporcionalnu

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

Tehnologija bušenja II. 5. predavanje

Tehnologija bušenja II. 5. predavanje INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 5. predavanje 5. Horizontalno bušenje Tehnologija bušenja II Slide 1 of 40 Tehnologija horizontalnog bušenja 5. Horizontalno bušenje Tehnologija bušenja

Διαβάστε περισσότερα

Mehanika, kinematika i elastičnost

Mehanika, kinematika i elastičnost Mehanika, kinematika i elastičnost Marko Petković Sreda, 9. Mart 006. god. 1 Osnovne relacije 1. Drugi Njutnov zakon: m v t = F ; m a = F + mω R + m( v ω). Priraštaj impulsa sistema: p p 1 = F t (ako je

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα

5.5. ELEKTROLUČNO ZAVARIVANJE TOPLJIVOM ELEKTRODNOM ŽICOM U ZAŠTITI GASA MAG/MIG POSTUPAK

5.5. ELEKTROLUČNO ZAVARIVANJE TOPLJIVOM ELEKTRODNOM ŽICOM U ZAŠTITI GASA MAG/MIG POSTUPAK izvor: Sedmak, A., Šijački-Žeravčić, V., Milosavljević, A., Đorđević, V., Vukićević, M.: Mašinski materijali II deo, izdanje Mašinskog fakulteta Univerziteta u Beogradu, 2000 (uskoro ponovo u štampi) 5.5.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Masivni mostovi DJELOVANJA NA MOSTOVE

Masivni mostovi DJELOVANJA NA MOSTOVE Masivni mostovi DJELOVANJA NA MOSTOVE Povezanost europskih normi za proračun konstrukcija EN 1990 Općenito Osnove o Eurocodovima proračuna EN 1991 Djelovanja na konstrukcije Sigurnost, uporabljivost i

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Construction Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 04/02/2014 (v1) Κωδικός: 10.01.010 Αριθμός Ταυτοποίησης: 010204030010000144 EN 1504-4:2004 13 0099 2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Περιγραφή

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti-

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- Prenos toplote preko poda (temelja) koji je u kontaktu

Διαβάστε περισσότερα

Novine koje oduševljavaju profesionalce

Novine koje oduševljavaju profesionalce Priručnik Novine koje oduševljavaju profesionalce Injekcioni malter FIS VT 300 T Čvrsti injekcioni malter za ankerisanje u nenapukli beton, sada u novoj veličini patrone. Anker visokih performansi FH II

Διαβάστε περισσότερα

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti PLOČA - P 5 je zidni element I razreda namijenjen za oblaganja. Zbog male debljine, a velike površine, ploča je idealna za završne radove u interijerima građevina, prije svega kod oblaganja kupaonskih

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

UPUTSTVA ZA SPAJANJE SEKCIJA KLIMA UREĐAJA. Serija KU. Oznaka : UPS-KU-RO1-HR

UPUTSTVA ZA SPAJANJE SEKCIJA KLIMA UREĐAJA. Serija KU. Oznaka : UPS-KU-RO1-HR UPUTSTVA ZA SPAJANJE SEKCIJA KLIMA UREĐAJA Serija KU Oznaka : UPS-KU-RO1-HR HR SASTAVLJANJE SEKCIJA - Serija KU Prije sastavljanja sekcija uređaja u cjelinu, potrebno je : - sa svih sekcija ukloniti zaštitnu

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa)

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) PRELAZNI ELEMENTI d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) Prelazni elementi d-elementi Lantanoidi i aktinoidi II-b-grupa cinka U prelazne

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

Racionalne krive i površi u geometrijskom dizajnu

Racionalne krive i površi u geometrijskom dizajnu Racionalne krive i površi u geometrijskom dizajnu Tijana Šukilović Matematički fakultet, Univerzitet Beograd May 2, 2011, Beograd Sadržaj 1 Racionalne Bézier-ove krive Polinomijalne Bézier-ove krive Algoritam

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

Analiza elektroničkih sklopova pomoću računala korištenjem programa SPICE

Analiza elektroničkih sklopova pomoću računala korištenjem programa SPICE Analiza elektroničkih sklopova pomoću računala korištenjem programa SPICE Uvod Složenost analize elektroničkih sklopova uvjetovana je prvenstveno nelinearnošću karakteristika elektroničkih elemenata. Zbog

Διαβάστε περισσότερα

mreže u sustavima automatizacije

mreže u sustavima automatizacije Praktikum automatizacije Ak.g. 2015/2016 Izv. prof. dr. sc. Mario Vašak Predavanje 06 Komunikacijske mreže u sustavima automatizacije Praktikum automatizacije, ak.g. 2015/2016 -- Predavanje 06 1 Sažetak

Διαβάστε περισσότερα

RADIJALNI KLIZNI LEŽAJ

RADIJALNI KLIZNI LEŽAJ FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE ZAVOD ZA STROJARSTVO I BRODOGRADNJU KATEDRA ZA ELEMENTE STROJEVA Damir Jelaska RADIJALNI KLIZNI LEŽAJ (Proračun) Split, srpanj, 2003. O Z N A K E A H

Διαβάστε περισσότερα

KVALITETA OPSKRBE ELEKTRIČNOM ENERGIJOM. Prof.dr.sc. Tomislav Tomiša Zavod za visoki napon i energetiku FER Zagreb

KVALITETA OPSKRBE ELEKTRIČNOM ENERGIJOM. Prof.dr.sc. Tomislav Tomiša Zavod za visoki napon i energetiku FER Zagreb KVALITETA OPSKRBE ELEKTRIČNOM ENERGIJOM VI Prof.dr.sc. Tomislav Tomiša Zavod za visoki napon i energetiku FER Zagreb Gromobransko uzemljenje - uzemljenje gromobranskih hvataljki pogonsko + zaštitno + gromobransko

Διαβάστε περισσότερα

7. POLAGANJE I MONTAŽA KABELA

7. POLAGANJE I MONTAŽA KABELA 7. POLAGANJE I MONTAŽA KABELA Obzirom na svoju konstrukciju kabelski se vodovi mogu polagati podzemno, jer su samo oni zaštićeni od prodora vode kabelskim plaštem. Ti vodovi mogu se polagati u zemlju na

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Eφαρμογές Περιστροφική κίνηση Άσκηση 1 Η κυματοσυνάρτηση ψ(φ) για

Διαβάστε περισσότερα

Str. 454;139;91.

Str. 454;139;91. Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

Trapézové profily Lindab Coverline

Trapézové profily Lindab Coverline Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Marko Klinec. Zagreb, 2013.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Marko Klinec. Zagreb, 2013. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Marko Klinec Zagreb, 2013. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentor: Prof. dr. sc. Mladen Crneković,

Διαβάστε περισσότερα

ELEMENTI NIVELACIONOG PLANA Podužni nagibi Vertikalne krivine Poprečni nagibi Vitoperenje kolovoza

ELEMENTI NIVELACIONOG PLANA Podužni nagibi Vertikalne krivine Poprečni nagibi Vitoperenje kolovoza V Predavanje ELEMENTI NIVELACIONOG PLANA Podužni nagibi Vertikalne krivine Poprečni nagibi Vitoperenje kolovoza mrkatarina Mirković 1 Nivelacioni plan jedne saobraćajnice pretstavlja sintezni prikaz odnosa

Διαβάστε περισσότερα

Personalni računar II deo. MEMORIJE Operativna memorija Spoljašnje memorije Keš memorija

Personalni računar II deo. MEMORIJE Operativna memorija Spoljašnje memorije Keš memorija Personalni računar II deo MEMORIJE Operativna memorija Spoljašnje memorije Keš memorija Memorije Memorija služi za čuvanje programa i podataka. U personalnom računaru postoje tri vrste memorijskih jedinica:

Διαβάστε περισσότερα

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ 1 OSNOVE PRORAČUNA KONSTRUKCIJA... 2 2 DJELOVANJA NA KONSTRUKCIJE... 6 2.1 Klasifikacija djelovanja... 7 2.2 Vlastita težina... 8 2.3 Uporabna opterećenja

Διαβάστε περισσότερα

Sklopovlje (hardware)

Sklopovlje (hardware) Sklopovlje (hardware) Memorije računala 31.10.2012. predavač: Memorije računala Služe za pohranu podataka u binarnom obliku (0 i 1) Svako slovo, broj i znak ima svoj jedinstveni kôd dužine 8 bitova (0

Διαβάστε περισσότερα

TEHNIČKI PRIRUČNIK ZA CREP

TEHNIČKI PRIRUČNIK ZA CREP TEHNIČKI PRIRUČNIK ZA CREP Poštovani korisnici, Tehnički podaci su strukturirani kako bi pojednostavili rad i omogućili kvalitetniji odabir materijala. Priručnik je namenjen svim učesnicima u gradnji

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα