Tipski fasadni stubovi u podužnim zidovima hale

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tipski fasadni stubovi u podužnim zidovima hale"

Transcript

1 Tipski fasadni stubovi u podužnim zidovima hale Univerzitet u Beogradu

2 Tipski fasadni stub u podužnom zidu Fasadni stub u poduz nom zidu je staticǩog sistema kontinualnog nosacǎ na dva polja cǐji su rasponi: L=4,5 m (donji deo stuba ispod GIS ) i L=3,5 m (gornji deo stuba). Horizontalni oslonci stuba su: AB temelj (+0,00), spreg za bocňe udare (+4,50) i poduz ni krovni spreg (+8,00). Dispozicionim res enjem objekta predviđeno je oslanjanje vencǎnice (za vertikalno opterecénje na krovu) osim na glavne krovne nosacě i na fasadne stubove u poduz nim zidovima. Zbog toga su fasadni stubovi u poduz nim zidovima na vrhu opterecéni odgovarajucíme reaktivnim opterecénjem vencǎnica. Osim pojedinačnih kontola nosivosti preseka i nosivosti elementa, pri dimenzionisanju stuba je postavljen uslov da maksimalna vitkosti stuba u relevantnim ravnima ne prekorači vrednost λdop=00. Poprečni presek Vrućevaljani proil: IPE 00 Dimenzije h 00mm b f 00mm 8.5mm t w 5.6mm r mm h w h 83.0 mm Geometrijske karakteristike G.4 kg A mm m I y mm 4 I z mm 4 I t mm 4 W ely mm 3 W elz mm 3 I w mm 6 W ply mm 3 W plz mm 3 i y I y I z 8.6 mm i A z A.4 mm Rasponi stuba: L 4.5m L 3.5m Osnovni čelični materijal S35JRG 35MPa E 000 kn cm G 800 kn cm λ E π 93.9 ε 35MPa.0 Parcijalni koeicijenti sigurnosti.0 γ M.0 γ M.5

3 Klasiikacija poprecňog preseka Noz ice: klasa 3 Rebro: b f t w 4 otherwise r 4. b f t w r b f t w r b f t w r 4ε 0ε 9ε kN M yed 3.64kN m c w h r 59.0 mm α t w c w σ M yed 78.9 MPa σ A W ely A M yed 6.5 MPa W ely ψ σ 0.8 σ h r 8.4 t w klasa 3 h r 6ε ( ψ) t w h r 456 t w h r 369 t w ε 3 α ε 3 α ψ.0 4 otherwise Poprecňi presek je klase 3

4 ULS - Kontrola nosivosti preseka Kombinacija opterećenja:.35g.50w 0.75S Presek nad srednjim osloncem.o 4.69kN M yed.o 3.64kN m V zed.o 4.78kN Presek u polju.p 3.06kN M yed.p 6.3kN m V zed.p 0.5kN Pritisak N crd A kn.o N crd Savijanje M yrd W ply Smicanje 5.8 kn m M yed.o 0.63 M yrd A Vz A b f t w r 4.0 cm V zplrd A Vz 3 Savijanje i smicanje 90. kn Interakcija "NE" V zed.o 0.5 V zplrd V zed.o V zplrd "NE" "DA" otherwise Nije potrebna kontrola nosivosti preseka na inteaktivno dejstvo savijanja i smicanja! Savijanje i aksijalna sila "NE".o 0.5 N plrd.o 0.5 h w t w "DA" otherwise "NE" Nije potrebna kontrola nosivosti preseka na inteaktivno dejstvo savijanja i aksijalne sile! Nosivost poprečnog preseka u merodavnom preseku je zadovoljena! 4

5 Kontrola nosivosti elementa na leksiono i torziono izvijanje Duz ina izvijanja fasadnog stuba u ravni upravnoj na osu y-y, Lcry, određena je poloz ajem elemenata koji lez e u ravni upravnoj na osu y-y i u toj ravni, na mestu spoja sa fasadnim stubom, sprecǎvaju njegovo pomeranje. Ova ravan je poprecňa ravan objekta, a elementi za stabilizaciju su oslonci stuba: temelj, spreg za bocňe udare i poduz ni krovni spreg. Duz ina izvijanja fasadnog stuba u ravni upravnoj na osu z-z, Lcrz, određena je poloz ajem elemenata koji lez e u ravni upravnoj na osu z-z i u toj ravni, na mestu spoja sa fasadnim stubom, sprecǎvaju njegovo pomeranje. Ova ravan je ravan poduz nog zida, a elementi za stabilizaciju su horizontalni elementi vertikalnih spregova u poduz nom zidu (lez e u c vorovima spregova): temelj, spoljasnji pojas sprega za bocňe udare i spoljas nji pojas poduz nog krovnog sprega. Razmak tacǎka bocňog pridrz avanja Lt, pritisnute spoljas nje i pritisnute unutras nje noz ice stuba, za slucǎj delovanja pritiskujucég i sis ucég dejstva vetra, respektivno, (dijagram momenata savijanja menja znak), određen je poloz ajem horizontalnih elemenata vertikalnih spregova u poduz nom zidu: temelj, spoljas nji pojas sprega za bocňe udare i spoljas nji pojas poduz nog krovnog sprega. Naime, dispozicionim res enjem hale, predviđeno je da ravni vertikalnih spregova u poduz nim zidovima budu u osi fasadnih stubova. Zbog toga, detalj veze fasadnog stuba i spoljas njih pojaseva spregova (za bocňe udare i poduz nog krovnog sprega) mora biti staticǩi i konstruktivno oblikovan tako da se ostvare zahtevani granicňi uslovi. U slucǎjevima kada su fasadne rigle istovremeno i horizontalni elementi vertikalnih spregova u poduz nim zidovima (ravan sprega je u ravni spoljas nje noz ice stubova), iste fasadne rigle obezbeđuju bocňu stabilizaciju spoljas nje pritisnute noz ice. Da bi se obezbedila stabilizacija unutras nje pritisnute noz ice (dijagram momenata savijanja menja znak u zavisnosti od smera dejstva vetra) potrebno je konstruktivnom merama ostvariti vezu unutras nje noz ice sa vertikalnim spregom, postavljajucí trapezasta vertikalna ukrucénja na rebro stuba ili kosnike. Ukoliko to nije mogucé, razmak tacǎka bocňog pridrz avanja unutras nje noz ice određen je poloz ajem oslonaca stuba: temelja, sprega za bocňe udare i poduz nog krovnog sprega! L cry L 4.5m L crz L 4.5m L t L 4.5m Fleksiono izvijanje αy 0. αz 0.34 λ dop 00 Ncry π I y E L cry kn λ y 54.5 i L cry y vitkost "DA" λ y λ dop "NE" otherwise "DA" λ ny λ y λ Φ y 0.5 αy λ ny 0. λ ny 0.7 χ y Φ y Φ y λ ny Ncrz π E I z L crz 45.7 kn λ z L crz 0.3 i z vitkost "DA" λ z λ dop "NE" otherwise "NE" Prihvata se prekoracěnje vitkosti u iznosu manjem od 3%! 5

6 λ nz λ z.44 λ Φ z 0.5 αz λ nz 0. λ nz 3.8 χ z Φ z Φ z λ nz 0.85 N byrd χ y A 60.0 kn N bzrd χ z A 3.9 kn min χ y χ z A N b.f.rd 3.9 kn.o 0.99 N b.f.rd Torziono izvijanje y 0 0 z 0 0 i 0 i y i z y 0 z mm π E I w f N crt G I t y kn λ nz.t A N i 0 L t crt αz 0.34 Φ z.t 0.5 αz λ nz.t 0. λ nz.t χ z.t Φ z.t Φ z.t λ nz.t 0.70 N b.t.rd χ z.t A kn.o N b.t.rd Kontrola nosivosti elementa na bočno-torziono izvijanje C.509 C 0.0 C3 0 k z k w h s h b f z j 0 z a 0 z s 0 z g z a z s M cr C π E k z L t I z k z Iw k z L t 0.5 G I t k w I z π C z g C3 z j C z g C3 z j 80 E I z M cr 80.0 kn m 6

7 Metoda za vrucé valjane proile β 0.75 λ LT0 0.4 α LT 0.34 λ LT W ply 0.8 M cr Φ LT 0.5 α LT λ LT λ LT0 β λ LT 0.8 χ LT Φ LT Φ LT β λ LT 0.8 k c 0.9 f 0.5 k c λ LT χ LTmod χ LT f 0.9 M brd χ LTmod W ply γ M 44. kn m M yed.o M brd Kontrola nosivosti elementa na kombinovano naprezanje Proracǔn prema Prilogu B α s M yed.p ψ 0 M yed.o Cmy α s CmLT Cmy N k yy min Cmy Ed λ ny 0. Cmy 0.8 N Rk N Rk χ y γ χ y M γ M k zy max k zy λ nz ( CmLT 0.5) min 0.6 λ nz N Rk χ z γ M 0. λ nz CmLT 0.5 N Rk χ z γ M 0. ( CmLT 0.5) N Rk χ z γ M λ nz 0.4 7

8 .o M yed.o k N yy 0.88 byrd M brd.o M yed.o k N zy bzrd M brd Nosivost elementa na kombinovano naprezanje je zadovoljena! SLS - Kontrola ugiba L w max.65mm w dop 00.5 mm Deformacije "DA" w max w dop "DA" "NE" otherwise Maksimalni ugib fasadnog stuba je manji od dopuštenog! 8

9 MY; Cases: 0 (ULS) Component 90/4378 FZ; Cases: 0 (ULS) Component 90/4378 FX; Cases: 0 (ULS) Component 90/4378 Tipski fasadni stub u podužnom zidu - MY, FZ, FX,35G+,50Wpop+0,75S Univerzitet u Beogradu 9

10 Sile u preseku anvelopa uticaja Bar/Point (m)/case FX (kn) FZ (kn) MY (knm) Definition Case name 34/origin (49)/ULS/304 35,8>> 0,57-0,34 *.35 + * * * *.05 ULS+ 34/end (50)/ULS/933-7,33<< -4,55-0,00 * * * *0.90 ULS- 34/auto x=4,50 (+)/ULS/90 3,5 4,78>> -3,60 *.35 + * * * *.05 ULS+ 34/auto x=4,50 (+)/ULS/997 4,58 -,3<< 8,65 * * * * *.05 ULS- 34/auto x=,60 (-)/ULS/985 0,54 4,3 0,9>> * * * * *.05 ULS+ 34/auto x=4,50 (+)/ULS/34 6,75 0,63-4,3<< *.35 + * * * *.05 ULS- Maksimalna deformacija stuba za kombinaciju opterećenja: G+Wpop Bar/Case UX (mm) UY (mm) UZ (mm) U (mm) Definition 34/3 (C) -0,03>> -0,4 -,65,66 (+5+9)*.00 34/3 (C) -0,03<< -0,4 -,65,66 (+5+9)*.00 34/3 (C) -0,03-0,4>> -,65,66 (+5+9)*.00 34/3 (C) -0,03-0,4<< -,65,66 (+5+9)*.00 34/3 (C) -0,03-0,4 -,65>>,66 (+5+9)*.00 34/3 (C) -0,03-0,4 -,65<<,66 (+5+9)*.00 34/3 (C) -0,03-0,4 -,65,66>> (+5+9)*.00 34/3 (C) -0,03-0,4 -,65,66<< (+5+9)*.00 0

11 Tipski fasadni stubovi u okviru vertikalnih spregova u podužnim zidovima hale Univerzitet u Beogradu

12 Fasadni stub u sastavu vertikalnog sprega podužnom zidu Osim pojedinačnih kontola nosivosti preseka i nosivosti elementa, pri dimenzionisanju stuba je postavljen uslov da maksimalna vitkosti stuba u relevantnim ravnima ne prekorači vrednost λdop=00. Poprečni presek Vrućevaljani proil: HEA 60 Dimenzije h 5mm b f 60mm 9mm t w 6mm r 5mm h w h 34.0 mm Geometrijske karakteristike G 30.4 kg A mm m I y mm 4 W ely mm 3 W ply mm 3 i y I y A 65.7 mm I z mm 4 I t mm 4 W elz mm 3 W plz mm 3 i z I z A 39.8 mm I w mm 6 Rasponi stuba: L 4.5m L 3.5m Osnovni čelični materijal S35JRG 35MPa E 000 kn cm G 800 kn cm λ E π 93.9 ε 35MPa.0 Parcijalni koeicijenti sigurnosti.0 γ M.0 γ M.5

13 Klasiikacija poprecňog preseka Noz ice: klasa 3 b f t w r 6.9 b f t w r b f t w r b f t w r 4ε 0ε 9ε otherwise Rebro: 35.4kN M yed 4.79kN m c w h r 04.0 mm α t w c w σ M yed 8.4 MPa σ A W ely A M yed W ely 38.8 MPa Rebro preseka je u pritisku! h r 7.3 t w klasa 3 h r t w h r t w h r t w 4ε 38ε 33ε.0 4 otherwise Poprecňi presek je klase 3

14 ULS - Kontrola nosivosti preseka Kombinacija opterećenja:.35g 0.9W 0.75S.5T Presek nad srednjim osloncem.o 8.55kN M yed.o 0.94kN m V zed.o 4.39kN Presek u polju.p 35.4kN M yed.p 4.79kN m V zed.p 3.0kN Pritisak N crd A 9.8 kn.p 0.58 N crd Savijanje M yrd W ply Smicanje 57.6 kn m A Vz A b f t w r 3. cm V zplrd A Vz 3 Savijanje i smicanje 79.6 kn M yed.p M yrd V zed.p 0.07 V zplrd Interakcija "NE" V zed.p 0.5 V zplrd "NE" "DA" otherwise Nije potrebna kontrola nosivosti preseka na inteaktivno dejstvo savijanja i smicanja! Savijanje i aksijalna sila "NE".p 0.5 N plrd.p 0.5 h w t w "DA" otherwise "DA" n 0.3 a min0.5 N plrd A b f A 0.3 ( n) M NyRd minm plyrd M plyrd ( 0.5 n) 49. kn m M yed.p M NyRd Nosivost poprečnog preseka u merodavnom preseku je zadovoljena! 4

15 Kontrola nosivosti elementa na leksiono i torziono izvijanje L cry L 4.5m L crz L 4.5m L t L 4.5m Fleksiono izvijanje αy 0.34 αz 0.49 λ dop 00 Ncry π I y E L cry kn λ y 68.5 i L cry y vitkost "DA" λ y λ dop "NE" otherwise "DA" λ ny λ y λ Φ y 0.5 αy λ ny 0. λ ny 0.9 χ y Φ y Φ y λ ny Ncrz π I z L crz E 630. kn λ z 3.0 i L crz z vitkost "DA" λ z λ dop "NE" otherwise "DA" λ nz λ z.03 λ Φ z 0.5 αz λ nz 0. λ nz.469 χ z Φ z Φ z λ nz 0.43 N byrd χ y A χ z A kn N γ bzrd M kn min χ y χ z A N b.f.rd 394. kn.p N b.f.rd Torziono izvijanje y 0 0 z 0 0 i 0 i y i z y 0 z mm π E I w N crt G I t. 0 3 kn λ nz.t A 0.64 N i 0 L t crt 5

16 αz 0.34 Φ z.t 0.5 αz λ nz.t 0. λ nz.t χ z.t A χ z.t 0.86 N b.t.rd γ Φ z.t Φ z.t λ M0 nz.t kn.o N b.t.rd Kontrola nosivosti elementa na bočno-torziono izvijanje C.5 C 0.0 C3 0 k z k w h s h b f z j 0 z a 0 z s 0 z g z a z s M cr M cr C π E k z L t 04.4 kn m I z k z Iw k z L t 0.5 G I t k w I z π C z g C3 z j C z g C3 z j 0 E I z Metoda za vrucé valjane proile β 0.75 λ LT0 0.4 α LT 0.34 λ LT W ply 0.7 M cr Φ LT 0.5 α LT λ LT λ LT0 β λ LT 0.8 χ LT Φ LT Φ LT β λ LT 0.8 k c 0.9 f 0.5 k c λ LT χ LTmod M brd χ LT f 0.9 χ LTmod W ply γ M 5. kn m M yed.p M brd 6

17 Kontrola nosivosti elementa na kombinovano naprezanje Proracǔn prema Prilogu B α h M yed.o 0.96 ψ 0 M yed.p Cmy α h CmLT Cmy N k yy min Cmy Ed λ ny 0. Cmy 0.8 N Rk N Rk χ y γ χ y M γ M k zy max k zy min 0.6 λ nz 0. λ nz ( CmLT 0.5) N Rk χ z γ M 0. λ nz CmLT 0.5 N Rk χ z γ M 0. ( CmLT 0.5).08 N Rk χ z γ M λ nz 0.4.p M yed.p k N yy byrd M brd.p M yed.p k N zy bzrd M brd Proracǔn prema Prilogu A M cr0 π E I z L t I w I z L t G π E It I z 90.8 kn m λ 0 W ply M cr0 δ x 4.84mm 35.4kN M yed 4.79kN m C my0 π I y δ x N E Ed.00 Ncry L MyEd 4 p 0. C 0.86 Ncrz N crt 7

18 "Uticaj torz. def. se može zanemariti" λ 0 p "Uticaj torz. def. se ne može zanemariti" "Uticaj torz. def. se ne može zanemariti" otherwise ε y M yed A W ely I t a LT I y ε y a LT C my C my0 C my0.063 ε y a LT a LT C mlt maxc my Ncrz N crt.498 Ncry μ y w N y min Ed χ y Ncry W ply.5 W ely.4 Ncrz μ z w N z min Ed χ z Ncrz W plz.5 W elz.500 n pl N Rk 0.58 γ M.03 λ nmax max λ ny λ nz b LT 0 C yy max w y.6 C w my λ nmax y.6 C w my λ nmax y n pl b LT W ely W ply 0.9 C yy λ 0 M yed c LT 0a LT C 5 λ nz my χ LT M plyrd d LT 0 8

19 C zy max w y 4 5 Cmy λ nmax d LT 0.6 w y n pl w y w z W ely W ply 0.75 C zy 0.75 k yy C my C mlt μ y Ncry.908 C yy k zy C my C mlt μ z Ncry w y C zy w z.p M yed.p k N yy 0.55 byrd M brd.p M yed.p k N zy bzrd M brd Nosivost elementa na kombinovano naprezanje je zadovoljena! SLS - Kontrola ugiba w max L 4.84mm w dop 00.5 mm Deformacije "DA" w max w dop "DA" "NE" otherwise Maksimalni ugib fasadnog stuba je manji od dopuštenog! 9

20 MY; Cases: 0 (ULS) Component 40/4378 FZ; Cases: 0 (ULS) Component 40/4378 Tipski fasadni stub u podužnom zidu - MY, FZ, FX, U,35G+0,90Wpop+0,75S+,50T Univerzitet u Beogradu 0

21 FX; Cases: 0 (ULS) Component 40/4378 Exact deformation(s); Cases: 3 (SLS) Component 08/89 Univerzitet u Beogradu

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Bočno-torziono izvijanje. Metalne konstrukcije 1 P7-1

Bočno-torziono izvijanje. Metalne konstrukcije 1 P7-1 Bočno-torziono izvijanje etalne konstrukcije 1 P7-1 etalne konstrukcije 1 P7- etalne konstrukcije 1 P7-3 Teorijske osnove Problem je prvi analizirao Timošenko. Linearno elastična teorija bočno-torzionog

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak

Διαβάστε περισσότερα

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7.

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7. ODSEK ZA KONSTRUKCIJE 28.01.2015. grupa A g=50 kn/m p=60 kn/m 60 45 15 75 MB 35, RA 400/500 7.5 m 5 m 25 1.1 Odrediti potrebnu površinu armature u karakterističnim presecima (preseci na mestima maksimalnih

Διαβάστε περισσότερα

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA GRA EVINSKI FAKULTET UBEOGRADU PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA 1 12.06.2013. p=10 kn/m 2 p=8kn/m 2 p=10 kn/m 2 25 W=±60 kn 16 POS 1 80 60 25 25 POS 1 60 POS 3 60 POS 4 POS 2 POS 3 POS 4 POS

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

CENTRIČNO PRITISNUTI ELEMENTI

CENTRIČNO PRITISNUTI ELEMENTI 3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Analyse af skrå bjælke som UPE200

Analyse af skrå bjælke som UPE200 Analyse af skrå bjælke som UPE Project: Opgave i stål. Skrå bjælke som UPE Description: Snitkræfter, forskydningscentrum, samling Customer: LC FEDesign. StruSoft Designed: LC Date: 9 Page: / 4 Documentation

Διαβάστε περισσότερα

SILE U PRESEKU GREDNOG NOSAČA

SILE U PRESEKU GREDNOG NOSAČA SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga

Διαβάστε περισσότερα

ROŽNJAČE. Rožnjače

ROŽNJAČE. Rožnjače 1 ROŽNJAČE 2 Rožnjače Opšte 3 Rožnjače primaju i prenose opterećenje sa krovne površine na glavne nosače. Leže u krovnoj ravni i pružaju se paralelno sa podužnom osom hale. Raspon l: od 4,0 do 18,0 m (uobičajeno

Διαβάστε περισσότερα

Određivanje statičke šeme glavnog nosača

Određivanje statičke šeme glavnog nosača 1 PRORAČUN GLAVNIH NOSAČA Određivanje statičke šeme glavnog nosača Konstrukcijska i statička šema za jednobrodnu halu Konstrukcijska i statička šema za dvobrodnu halu 3 Metode globalne analize materijalna

Διαβάστε περισσότερα

Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA

Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA Dr Veliborka Bogdanović, red.prof. Dr Dragan Kostić, v.prof. Konstruktivni sklop - Noseći sistem objekta Struktura sastavljena od jednostavnih nosećih elemenata

Διαβάστε περισσότερα

METALNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1. Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.

METALNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1. Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja. 3/7/013 Označavanjeavanje čelika i osnove proračuna METLNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1 1 Označavanje čelika Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni

Διαβάστε περισσότερα

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Univerzitet u Beogradu 20. januar Elektrotehnički fakultet

Univerzitet u Beogradu 20. januar Elektrotehnički fakultet Univerzitet u eograu. januar 1. Elektrotehnički fakultet EHNIK 1. Telekomunikacioni kabl je potrebno zategnuti između ve vertikalne konzole (stuba) koje su ubetonirane u sreišta krovova ve susene zgrae,

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A TEORIJA BETONSKIH KONSTRUKCIJA 25.12.2012. grupa A 1. 1.1 Dimenzionisati prema momentima savijanja (Mu) karakteristične preseke nosača prikazanog na skici 1. Prilikom dimenzionisanja obezbediti graničnu

Διαβάστε περισσότερα

Σχεδιασµός µε τον Ευρωκώδικα 3

Σχεδιασµός µε τον Ευρωκώδικα 3 Σχεδιασµός µε τον Ευρωκώδικα 3 11 Μαΐου 2006 1 Γενικά Σε αυτό το κεφάλαιο περιγράφεται ο αλγόριθµος που χρησηµοποιεί το Steel για τον σχεδιασµό των µεταλλικών κατασκευών σύµφωνα µε τον Ευρωκώδικα 3. Το

Διαβάστε περισσότερα

Ευστάθεια μελών μεταλλικών κατασκευών

Ευστάθεια μελών μεταλλικών κατασκευών Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

UVOD U GRADITELJSTVO 6. NOSIVI ELEMENTI GRAĐEVINA. Prof. dr. sc. NEDIM SULJIĆ, dipl.ing.građ. Sadržaj poglavlja: -općenito o nosivim konstrukcijama

UVOD U GRADITELJSTVO 6. NOSIVI ELEMENTI GRAĐEVINA. Prof. dr. sc. NEDIM SULJIĆ, dipl.ing.građ. Sadržaj poglavlja: -općenito o nosivim konstrukcijama UVOD U GRADITELJSTVO 6. NOSIVI ELEMENTI GRAĐEVINA Sadržaj poglavlja: -općenito o nosivim konstrukcijama -odnos stanja naprezanja u nosivim elementima -linijski nosivi elementi (prosta greda; kontinualna

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE

BETONSKE KONSTRUKCIJE 1 BETONSKE KONSTRUKCIJE RAMOVSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Ramovske konstrukcije 1.1. Podela 1.2. Statički sistemi i statički proračun 1.3. Proračun

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

FUNDIRANJE (TEMELJENJE)

FUNDIRANJE (TEMELJENJE) 1/11/013 FUNDIRANJE 1 FUNDIRANJE (TEMELJENJE) 1. Projektovanje temelja se vrši prema graničnom stanju konstrukcije i tla ispod ojekta sa osvrtom na ekonomski faktor u pogledu utroška materijala, oima radova

Διαβάστε περισσότερα

METALNE KONSTRUKCIJE II

METALNE KONSTRUKCIJE II METALNE KONSTRUKCIJE II 1 Predmet br. teme Dodatne napomene objašnjenja uputstva NASLOV PODNASLOV PODNASLOV Osnovni sadržaj. Važniji pojmovi i sadržaji su štampani kao bold. Legenda dodatnih grafičkih

Διαβάστε περισσότερα

PROJEKTOVANJE NOSAČA KRANSKIH STAZA PREMA EVROKODU

PROJEKTOVANJE NOSAČA KRANSKIH STAZA PREMA EVROKODU Prof. dr Zlatko Marković PROJEKTOVANJE NOSAČA KRANSKIH STAZA PREMA EVROKODU Novi Sad 8. 4. 2016. Nosači kranskih staza u Evrokodu 2 Problematika nosača kranskih staza je u okviru Evrokoda obrađena u dva

Διαβάστε περισσότερα

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje Osnovne vrste napreanja: ksijalno napreanje Smicanje Uvijanje Savijanje Ivijanje 1 SVIJNJE GREDE SI Greda je opterećena na desnom kraju silom paralelno jednoj od glavnih centralnih osa inercije (y osi).

Διαβάστε περισσότερα

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI 1/11/013 FUNDIRANJE TEEJI SACI 1. CENTRIČNO OPTEREĆEN TEEJ SAAC. EKSCENTRIČNO OPTEREĆEN TEEJ SAAC 1 Temelj samac ekscentrično oterećen rostor 1 1/11/013 Dimenzionisanje A temelja samca 3 Određivaje visine

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Zgradarstvo : Mostogradnja: Specijalne (inženjerske) konstrukcije: Prednosti čeličnih konstrukcija Nedostaci čeličnih konstrukcija

Zgradarstvo : Mostogradnja: Specijalne (inženjerske) konstrukcije: Prednosti čeličnih konstrukcija Nedostaci čeličnih konstrukcija 1. Primena celicnih konstrukcija u gradjevinarstvu Zgradarstvo : sportske dvorane izložbene hale, višespratne zgrade, industrijske hale, krovovi stadiona, hangari... Mostogradnja: drumski mostovi, železnički

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος)

Σιδηρές Κατασκευές Ι Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) ιδηρές ατασκευές Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujna 2015. Mario Aračić SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

P z. =1.1MN/m _ =0.68MNm/m. k b =460.0MN/m 3 z. Dispozicija opterećenja grupe šipova preko krute naglavnice

P z. =1.1MN/m _ =0.68MNm/m. k b =460.0MN/m 3 z. Dispozicija opterećenja grupe šipova preko krute naglavnice BROJNI PRIMER - 9 Na slici 9.1 je orečni resek trakastog temelja obalnog zida. Temelj zida je kruta naglavnica na šiovima. Oterećenje otornog zida je redukovano u težište naglavnice. Podužno rastojanje

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ Διάμετρος διατομής υλικά: f (N/mm 2 ) 6 Χάλυβας 2 235 Σκυρόδεμα 2 2 Διατομή Χάλυβα: 12 Χάλυβας Ο/Σ 3 section 355,6x5, συντελεστές ασφαλείας: D (mm) 355,6 γ a = 1, t (mm) 5, γ c = 1,5 A a (cm 2 ) 55,1 γ

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna

Διαβάστε περισσότερα

Folder: _EC3 Bolted connections

Folder: _EC3 Bolted connections Folder: _EC3 Bolted connections Euro-Code 3 Bolted connections Bolted angilar connection: Dimensions of connection: Plate thickness d = 15,00 mm Bolt spacing e = 35,00 mm Spacing of bolts e o = 30,00 mm

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1 PRIMER 1 Simetrična okvirna konstrukcija temelja teške opreme sastoji se od armiranobetonske platforme - roštilja greda, zglobno oslonjene na četri ugaona konzolna stuba. Za uticaje gravitacionih opterećenja,

Διαβάστε περισσότερα

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ : BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Autor: Ivan Volarić, struč. spec. ing. aedif. Zagreb, Siječanj 2017. TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNOG ZADATKA Projektni zadatak prema kojem je

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

Austrotherm AMK element ispune za meduspratne konstrukcije

Austrotherm AMK element ispune za meduspratne konstrukcije Austrotherm AMK element ispune za meduspratne konstrukcije standardne dimenzije punioca l/b/h = 50cm/40cm/16cm male težine i lako ugradiv idealan kod nadogradnje objekata To nikoga ne ostavlja hladnim!

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

OTPORNOST MATERIJALA industrijsko inženjerstvo. Dimenzionisanje lakih vratila opterećenih na uvijanje. Sizing light shafts loaded in twist

OTPORNOST MATERIJALA industrijsko inženjerstvo. Dimenzionisanje lakih vratila opterećenih na uvijanje. Sizing light shafts loaded in twist OTPORNOST MATERIJALA industrijsko inženjerstvo decembar, 2012. Dimenzionisanje lakih vratila opterećenih na uvijanje Sizing light shafts loaded in twist Milan Georgiev, student Visoke tehničke škole strukovnih

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja. Osnovni pojmovi

Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja. Osnovni pojmovi Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja Osnovni pojmovi Kruto telo Rastojanje ma koje tačke je stalno, ne menja se, telo se ne deformiše predmet

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑ ΣΤΗΡΙΞΗΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΠΑΝΕΛ ΣΕ ΒΙΟΜΗΧΑΝΙΚΗ ΣΤΕΓΗ

ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑ ΣΤΗΡΙΞΗΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΠΑΝΕΛ ΣΕ ΒΙΟΜΗΧΑΝΙΚΗ ΣΤΕΓΗ 2012-AF30 ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑ ΣΤΗΡΙΞΗΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΠΑΝΕΛ ΣΕ ΒΙΟΜΗΧΑΝΙΚΗ ΣΤΕΓΗ ΔΕΛΑΒΑΡΙΔΗΣ Ο.Ε. ΠΕΡΙΕΧΟΜΕΝΑ 1. ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ. 2. ΦΟΡΤΙΣΕΙΣ (ΔΡΑΣΕΙΣ ΚΑΙ ΣΥΝΔΥΑΣΜΟΙ). 3. ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ

Διαβάστε περισσότερα

PROJEKT SANACIJE ČELIČNE KONSTRUKCIJE MOSTA GAZELA U BEOGRADU

PROJEKT SANACIJE ČELIČNE KONSTRUKCIJE MOSTA GAZELA U BEOGRADU Aleksandar Bojović Delfin Inženjering d.o.o.,beograd Novak Velović Mostprojekt a.d.,beograd PROJEKT SANACIJE ČELIČNE KONSTRUKCIJE MOSTA GAZELA U BEOGRADU 1 Sadržaj 1 Uvod 2 Projekat sanacije Projekt sanacije

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Rešetkasti nosači. Osnove metalnih konstrukcija 1

Rešetkasti nosači. Osnove metalnih konstrukcija 1 Rešetkasti nosači Osnove metalnih konstrukcija 1 Osnovne karakteristike Sastoje se od međusobno povezanih aksijalno opterećenih štapova; Moment savijanja prenosi se naprezanem pojasnih štapova, a uticaj

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2 PRIMER 2 Da bi se ilustrovali problemi i postupak analize složenijih okvirnih konstrukcija prema YU81, izabran je primer simetrične sedmoetažne okvirne konstrukcije, sa nejednakim rasponima greda. U uvodnom

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα