BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar"

Transcript

1 BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15

2 Sadržaj Primena dijagrama interakcije M-N 1 Primena dijagrama interakcije M-N 2

3 Sadržaj Primena dijagrama interakcije M-N 1 Primena dijagrama interakcije M-N 2

4 Mali ekscentricitet sile pritiska Dijagrami interakcije najviše se koriste za ekscentrični pritisak u oblasti malog ekscentriciteta, ali mogu da se prošire praktično na čitavu oblast naprezanja M u i N u, odnosno M u i Z u Interakcioni dijagrami pokrivaju svih pet naponsko-deformacijskih oblasti, pa mogu, načelno, da se koriste za dimenzionisanje i drugačije opterećenih preseka Za usvojeni oblik i dimenzije poprečnog preseka, raspored i količinu armature i mehaničke karakteristike betona i čelika, bira se stanje graničnih dilatacija u preseku Sa poznatim rasporedom dilatacija, potpuno je određen i raspored napona pritisaka u betonu, kao i veličina napona u zategnutoj i pritisnutoj armaturi

5 Mali ekscentricitet sile pritiska Iz uslova ravnoteže normalnih sila i momenata savijanja za težište betonskog preseka, jednoznačno se određuju granični momenti M u i odgovarajuća granična normalna sila N u koji dovode presek u stanje granične nosivosti pri odabranim dilatacijama u betonu i armaturi Ponavljajući postupak za konačan broj različitih stanja graničnih dilatacija, dobija se niz tačaka koje odgovaraju usvojenom koeficijentu (procentu) armiranja Variranjem količine armature u preseku, dobija se familija krivih linija u funkciji mehaničkog koeficijenta armiranja kao parametra

6 Dijagram interakcije M-N (a) za pojedinačan presek (b) familija krivih u bezdimenzionalnoj formi za sva naponska stanja preseka

7 Mali ekscentricitet sile pritiska Da bi se uopštila i proširila upotreba dijagrama interakcije, oni se prikazuju u sistemu bezimenzionalnih koordinata m u n u Bezdimenzionalne koordinate su bezdimenzionalni granični momenat savijanja M u m u = b d 2 f B kao i bezdimanzionalna granična normalna sila n u = N u b d f B

8 Mali ekscentricitet sile pritiska Tako konstruisani dijagrami interakcije mogu da se koriste za proizvoljan odnos strana b/d pravougaonog preseka, kao i za bilo koju marku betona Dijagrami interakcije konstruišu se za izabran oblik poprečnog preseka, za usvojen kvalitet armature (GA ili RA), za usvojen način armiranja: odnos donje i gornje armature, kao i položaj armature definisan odnosom a/d (odnos položaja težišta armature i visine preseka), a parametarski zavisno od niza vrednosti mehaničkog koeficijenta armiranja

9

10

11

12

13

14

15

16

17

18

19 - koso savijanje

20 - kružni presek

21 Sadržaj Primena dijagrama interakcije M-N 1 Primena dijagrama interakcije M-N 2

22 Odrediti potrebnu površinu armature za stub zadatog pravougaonog oblika b/d = 40/850 cm, sa usvojenim kvalitetom materijala MB 40, RA 400/500 na koji deluju tri kombinacije sila u preseku usled stalnog i povremenog opterećenja. Dati su podaci: - kombinacija (a)... N g = kn, M p = ±826.3 knm - kombinacija (b)... N g = kn, M p = ±637.7 knm - kombinacija (c)... N g = kn, M p = ±238.9 knm MB 40 f B = 25.5 MP a = 2.55 kn/cm 2 RA 400/500 σ v = 400 MP a = 40.0 kn/cm 2

23 : kombinacija (a) Posmatra se kombinacija (a): N g = kn, M p = ±826.3 knm Pretpostavlja se ε a1 > 3 (zatezanje) γ u,g = 1.6 γ u,p = 1.8 Granični uticaji M u i N u M u = = knm N u = = kn

24 : kombinacija (a) Bezdimenzionalni granični uticaji n u i m u : n u = N u = b d f B = m u = M u b d 2 = f B = Pretpostavlja se a 1 = a 2 = a = 6.5 cm Bezdimenzionalan koeficijent položaja armature a/d = 6.5/85 =

25 Dijagram interakcije M-N: kombinacija (a)

26 Dijagram interakcije M-N: kombinacija (a)

27 : kombinacija (a) Posmatra se i dalje kombinacija (a), ali sa povoljnim dejstvom stalnog opterećenja Granični uticaji M u i N u M u = = knm N u = = kn Bezdimenzionalni granični uticaji n u i m u : N u n u = = b d f B = m u = M u b d 2 = f B = 0.202

28 Dijagram interakcije M-N: kombinacija (a)

29 : kombinacija (b) Posmatra se kombinacija (b): N g = kn, M p = ±637.7 knm Pretpostavlja se ε a1 < 0 (pritisak) γ u,g = 1.9 γ u,p = 2.1 Granični uticaji M u i N u M u = = knm N u = = kn

30 : kombinacija (b) Bezdimenzionalni granični uticaji n u i m u : N u n u = = b d f B = m u = M u b d 2 = f B = Koristi se isti dijagram interakcije

31 Dijagram interakcije M-N: kombinacija (b)

32 Dijagram interakcije M-N: kombinacija (b)

33 Dijagram interakcije M-N: kombinacija (b)

34 : kombinacija (b) Granični uticaji M u i N u M u = = knm N u = = kn Bezdimenzionalni granični uticaji n u i m u : n u = N u = b d f B = m u = M u b d 2 = f B = 0.178

35 Dijagram interakcije M-N: kombinacija (b)

36 : kombinacija (c) Posmatra se kombinacija (c): N g = kn, M p = ±238.9 knm Pretpostavlja se ε a1 < 0 (pritisak) γ u,g = 1.9 γ u,p = 2.1 Granični uticaji M u i N u M u = = knm N u = = kn

37 : kombinacija (c) Bezdimenzionalni granični uticaji n u i m u : N u n u = = b d f B = m u = M u b d 2 = f B = Koristi se isti dijagram interakcije

38 Dijagram interakcije M-N: kombinacija (c)

39 : sve kombinacije Rekapitulacija dobijenih mehaničkih koeficijenata armiranja: 1 Kombinacija (a)... µ 0.32 (nepovoljno dejstvo g) 2 Kombinacija (b)... µ Kombinacija (c)... µ 0.23 Potrebna ukupna količina armature: A a = µ b d f B = = cm2 σ v 40 Armatura gore i dole (simetrično A a1 = A a2 = Aa 2 ): A a1,2 = cm 2 usvojeno: ± 7RΦ25 (±34.37 cm 2 )

40 Konačno usvojena armatura

41 Primer iz prakse

42 Primena dijagrama interakcije M-N Primer iz prakse Stanko Brčić Betonske konstrukcije 1

43 Primena dijagrama interakcije M-N Primer iz prakse Stanko Brčić Betonske konstrukcije 1

44 Primer iz prakse - Response-2000

45 Primer iz prakse - Response-2000

46 Primer iz prakse - Response-2000 Geometric Properties Gross Conc. Trans (n=9.12) Area (mm 2 ) x Inertia (mm 4 ) x M y t (mm) y b (mm) Av = 50 mm 2 per 150 mm S t (mm 3 ) x M S b (mm 3 ) x Crack Spacing 2 x dist db /ρ Loading (N,M,V + dn,dm,dv) 0.0, 0.0, , 1.0, M Concrete fc' = 20.5 MPa a = 19 mm ft = 1.51 MPa (auto) ε c ' = 1.86 mm/m Rebar fu = 600 MPa Long, f y = 400 Trans, f y = 240 ε s = mm/m All dimensions in millimetres Clear cover to transverse reinforcement = 40 mm "Megatrend" - Postojece stanje S. Brcic Stub 40/40

47 Primer iz prakse - Response-2000 Cross Section Longitudinal Strain top bot Longitudinal Concrete Stress top N+M M: 217 knm N: kn bot

48 Primer iz prakse - Response-2000 M-N Interaction Axial Force (kn) Legend Cracking Crush on bottom Crush on Top Moment (knm)

49 Primer iz prakse - Response-2000 Control : M-N N+M M: 217 knm N: kn

50 Sadržaj Primena dijagrama interakcije M-N 1 Primena dijagrama interakcije M-N 2

51 Vitkost štapova i kriterijumi Pritisnuti elementi pri određenim uslovima mogu da izgube stabilnost svoje ravnotežne konfiguracije Mera osetljivosti štapa na moguće izvijanje je njegova vitkost: λ i = l i i min i min = I min /A b gde je - l i... dužina izvijanja pritisnutog elementa - i min... minimalni radijus inercije poprečnog preseka elementa u odnosu na osu oko koje se vrši izvijanje - I min... momenat inercije bruto preseka u odnosu na osu oko koje se vrši izvijanje - A b... površina bruto poprečnog preseka betona

52 Vitkost štapova i kriterijumi U zavisnosti od vitkosti štapa Propisi BAB 87 definišu sledeće načine proračuna centrično pritisnutih stubova: 1 λ i < proračun se vrši bez uticaja izvijanja (kratki stubovi) 2 25 λ i stubovi se tretiraju kao umereno vitki i koristi se približan proračun 3 75 < λ i stubovi se tretiraju kao izrazito vitki i koriste se tačniji postupci proračuna 4 λ i > ova vitkost nije dozvoljena, osim u prolaznim fazama kod montažnih sistema, kada je vitkost ograničena na λ max = 200

53 Vitkost štapova i kriterijumi Dužina izvjanja l i je dužina zamenjujuće proste grede koja ima istu krtičnu silu izvijanja kao i posmatrani štap (sa datim graničnim uslovima) Dužina izvjanja je rastojanje između prevojnih tačaka (tačaka infleksije) u deformisanoj konfiguraciji posle izvijanja Izvijanje štapa usled date kritične sile (u smislu bifurkacione stabilnosti) je postojanje bliske ravnotežne konfiguracije (u odnosu na osnovni ravnotežni položaj) pri datoj kritičnoj sili

54 Ojlerovi slučajevi izvijanja

55 Vitkost štapova i kriterijumi Dužina izvjanja l i izražava se u obliku l i = k l gde je - l... stvarna dužina posmatranog pritisnutog elementa (sistemna dužina) u posmatranoj ravni izvijanja - k... bezdimenzionalni koeficijent dužine izvijanja (odražava granične uslove na krajevima i stepen pomerljivosti sistema) - l i... dužina izvijanja posmatranog pritsnutog elementa

56 Sistemi sa nepomerljivim čvorovima

57 Sistemi sa pomerljivim čvorovima

58 Proračun bez uticaja izvijanja Pritisnuti AB elementi se računaju bez uticaja izvijanja ukoliko je ispunjen barem jedan od uslova: 1 kod centrično pritisnutin elemenata ako je vitkost λ i < 25 2 kod ekscentrično pritisnutih elemenata ako je vitkost λ i M 1 M 2 - gde su M 1 i M 2 momenti savijanja na krajevima štapa po teoriji I reda, pri čemu je M 2 > M 1

59 Proračun bez uticaja izvijanja 3 kod ekscentrično pritisnutih elemenata kada je e 1 d 3.5 ako je λ i 75 gde je - e 1 = M/N... ekscentricitet normalne sile po teoriji I reda - d... visina preseka u pravcu ekscentriciteta 4 kod ekscentrično pritisnutih elemenata kada je e 1 d 3.5 λ i 75 ako je λ i > 75 U oba ova slučaja dominantni su efekti I reda

60 Umereno vitki pritisnuti elementi 25 < λ i 75 Ako nije zadovoljen ni jedan od navedenih uslova, mora da se proveri stabilnost pritisnutog elementa na izvijanje Za umereno vitke elemente: 25 < λ i 75 dozvoljava se približno uzimanje u obzir efekata teorije II reda Približan postupak, u skaldu sa PBAB 87, je postupak dopunske ekscentričnosti normalne sile

61 Umereno vitki elementi - dopunski ekscentricitet

62 Umereno vitki pritisnuti elementi 25 < λ i 75 Dopunska ekscentričnost normalne sile data je sa e = e 0 + e 1 + e ϕ + e 2 (1) gde je: - e 0... ekscentricitet usled netačnosti pri izvođenju - e 1... ekscentricitet usled uticaja Teorije I reda - e ϕ... ekscentricitet usled tečenja betona - e 2... ekscentricitet usled uticaja Teorije II reda

63 Umereno vitki pritisnuti elementi 25 < λ i 75 Pravilnik BAB 87 propisuje ekscentricitet usled netačnosti pri izvođenju e 0 zbog realno mogućih netačnosti tokom izvođenja Ova dodatna ekscentričnost N sile e 0 treba da se uzima u obzir i kod približnih proračuna 25 < λ i 75 i kod tačnijih proračuna λ i > 75 Ekscentričnost e 0 usled netačnosti pri izvođenju usvaja se u obliku 2 cm e 0 = l i 10 cm 300

64 Umereno vitki pritisnuti elementi 25 < λ i 75 Escentricitet normalne sile usled uticaja Teorije I reda e 1 jednak je e 1 = M N gde su M i N uticaji izračunati za stanje upotrebljivosti - usled ukupnog eksploatacionog opterećenja Za sisteme sa nepomerljivim čvorovima, pri linearnoj raspodeli momenata savijanja po dužini štapa (odn. stuba!), ekscentricitet e 1 može (dovoljno tačno) da se odredi iz relacije e 1 = 1 N (0.65 M M 1 ) gde su M 1 i M 2 momenti savijanja na krajevima stuba sračunati za stanje upotrebljivosti, pri čemu je M 2 > M 1

65 Umereno vitki pritisnuti elementi 25 < λ i 75 Za sistem sa pomerljivim čvorovima treba da se unapred definiše oblik izvijanja Zatim, za merodavne kombinacije opterećenja, u srednjoj trećini dužine izvijanja odredi se ekscentricitet e 1 Ekscentricitet usled tečenja betona e ϕ može da se zanemari ako je ispunjen barem jedan od sledećih uslova: λ i 50 ili e 1 d 2 ili N I g 0.2 N I q (2) gde su - N I g... normalna sila usled stalnog opterećenja - N I q... normalna sila usled ukupnog eksploatacionog opterećenja (obe sile po Teoriji I reda)

66 Umereno vitki pritisnuti elementi 25 < λ i 75 U slučju kada nisu ispunjeni uslovi (2), mora da se uzme u obzir tečnje betona preko dodatne ekvivalentne ekscentričnosti e ϕ : e ϕ = (e 1g + e 0 ) (e α E 1 α E ϕ 1) (3) gde su - e 1g... ekscentricitet normalne sile od stalnog opterećenja N I g - e 0... ekscentricitet usled netačnosti pri izvođenju - e... osnova prirodnog logaritma (e = ) - α E... bezdimenzionalni koeficijent odnosa normalnih sila α E = N I g N E gde je N E = π 2 Eb I ib l 2 i

67 Umereno vitki pritisnuti elementi 25 < λ i 75 U izrazu za Ojlerovu silu N E koristi se idealizovan momenat inercije betonskog preseka I ib = I b + E a E b I a Takođe, u izrazu (3) sa ϕ je označen koeficijent tečenja betona Kada je određena ekscentričnost usled uticaja Teorije I reda e 1 onda se uticaj Teorije II reda određuje u zavisnosti od e 1, vitkosti štapa λ i, kao i visine preseka d u ravni izvijanja

68 Umereno vitki pritisnuti elementi 25 < λ i 75 Ekscentričnost usled uticaja Teorije II reda e 2 određuje se prema izrazima: e 2 = d λ i e 1 za 0 e d d 0.30 e 2 = d λ i e 2 = d λ i za 0.3 e 1 d 2.5 (3.5 e 1 d ) za 2.5 e 1 d 3.5

69 Izrazito vitki pritisnuti elementi 75 < λ i 140 U slučaju izrazito vitkih elemenata 75 < λ i 140 proračun mora da se vrši primenom tačnijih postupaka Tačniji postupci podrazumevaju proračun po Teoriji II reda U primeni komercijalnih računarskih programa ukupna matrica krutosti sistema data je kao zbir linearne i geometrijske matrice krutosti Problem određivanja kritičnog opterećenja svodi se na rešavanje problema svojstvenih vrednosti matrica

70 Sadržaj Primena dijagrama interakcije M-N 1 Primena dijagrama interakcije M-N 2

71 - primer 1 Centrično pritisnut stub - različito oslanjanje Dimenzionisati stub zadatog konstantnog preseka b/d = 35/35cm i visine l = 4.6m ako je opterećen normalnim silama pritiska usled stalnog i povremenog opterećenja N g = 300 kn N p = 500 kn Usvojiti beton MB 25 i glatku armaturu GA 240/360 Posmatrati dve mogućnosti graničnih uslova (a) obostrano uklješen stub (b) obostrano zglobno oslonjen stub

72 - primer 1 Centrično pritisnut stub - obostrano uklještenje Karakteristike materijala MB 25 f B = MP a = kn/cm 2 GA 240/360 σ v = 240 MP a = 24.0 kn/cm 2 Geometrijske karakteristike preseka b = 35cm d = 35cm A b = = 1225 cm 2 Ib i b = = 10.1 cm A b I b = b d3 12 = cm4

73 - primer 1 Centrično pritisnut stub - obostrano uklještenje Obostrano uklješten stub - dužina izvijanja: l i = l 2 = = 2.3 m = 230 cm Vitkost štapa λ i = l i = 230 = < 25 i min 10.1 Kako je λ < 25, to je u pitanju kratak stub (ne uzima se u obzir uticaj izvijanja)

74 - primer 1 Centrično pritisnut stub - obostrano uklještenje Granična normalna sila N u = 1.9 N g N p = = 1620 kn Minimalan geometrijski procenat armiranja za cetrično pritisnut stub je µ min = 0.6% Minimalan mehanički procenat armiranja µ min = µ min σv 24 = 0.6 f B = 8.35% Potrebna površina betonskog preseka A b,pot = N u f B (1 + µ) = 1620 = cm ( )

75 - primer 1 Centrično pritisnut stub - obostrano uklještenje Potrebna stranica kvadratnog preseka b pot = A b,pot = cm 2 Za zadate dimenzije b/d=35/35cm, stvarna površina preseka je A b,stv = 1225 cm 2 Potrebna površina armature - za potrebnu površinu preseka A a,min = µ min A b,pot = = 5.20 cm 2 - za stvarnu (veću) površinu preseka i µ min = 0.3% A a,min = µ min A b,stv = = 3.68 cm 2

76 - primer 1 Centrično pritisnut stub - obostrano uklještenje Usvojeno 4Φ14 (6.16 cm 2 )

77 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Obostrano zglobna veza - dužina izvijanja: Vitkost štapa λ i = l i = l = 4.6 m = 460 cm l i = 460 = > 25 i min 10.1 Kako je 25 λ < 75, to je u pitanju umereno vitak stub (uzima se u obzir uticaj izvijanja)

78 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Ekscentricitet stuba (približna teorija uticaja izvijana) je e = e 0 + e 1 + e ϕ + e 2 Ekscentricitet ose stuba usled netačnosti pri izvođenju e 0 = l 300 = 460 = 1.53 cm 300 Kako je 2 cm < e 0 < 10 cm to je usvojeno e 0 = 2cm Ekscentricitet po Teoriji I reda e 1 = M q N q = 0 jer je M q = M g + M p = 0

79 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Ekscentricitet usled tečenja betona je e ϕ = 0, jer je λ i = < 50 Ekscentricitet usled Teorije II reda, imajući u vidu da je e 1 /d = 0 iznosi e 2 = d λi Prema tome, ukupni ekscentricitet je e 1 = 2.27 cm d e = e 0 + e 1 + e ϕ + e 2 = = 4.27 cm

80 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Pretpostavlja se da je dilatacija u zategnutoj armaturi (zbog momenta savijanja) manja od ε a1 > 3 Granični uticaji su N u = 1.6 N g N p = 1380 kn M u = N u e = = knm Računaju se bezdimenzionalni granični uticaji n u = N u 1380 = b d f B = 0.65 M u m u = b d 2 = f B = 0.08

81 Dijagram interakcije za pravougaoni presek i GA

82 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Usvajajući simetrično armiranje A a1 = A a2, kao i položaj armature a/d = 0.10, iz dijagrama interakcije (za GA 240/360) očitavaju se vrednosti: ε a1 = 0.5 ε b2 = 3.5 µ = 0 Pretpostavka da je ε a1 > 3 nije opravdana, pa se povećavaju koeficijenti sigurnosti na vrednosti za koje je ε a1 < 0 i granični uticaji su N u = 1.9 N g N p = 1620 kn M u = N u e = knm

83 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Bezdimenzionalni granični uticaji su n u = N u b d f B = 0.77 m u = Iz dijagrama interakcije očitavaju se vrednosti M u b d 2 f B = 0.09 ε a1 < 0 ε b2 = 3.5 µ = 0.04

84 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Potrebna površina armature A a,pot = µ b d f B σ v = 3.52 cm 2 Minimalna površina armature (minimalan geometrijski koeficijent armiranja µ = 0.6%) Usvojeno 4Φ16 (8.04 cm 2 ) A a,min = = 7.35 cm 2

85 - primer 1 Centrično pritisnut stub - obostrano zglobna veza Usvojeno 4Φ16 (8.04 cm 2 )

86 - primer 2 Ekscentrično pritisnut stub Dimenzionisati stub zadatog konstantnog preseka b/d = 35/35cm i visine l = 5.0m koji je na kraju A uklješten, a na drugom kraju B zglobno oslonjen Štap je opterećen normalnim silama pritiska i momentima savijanja u uklještenju: - stalno opterećenje... N g = kn M g,a = 50 knm - korisno opterećenje... N p = 90.0 kn M p,a = 40 knm Usvojiti beton MB 30 i rebrastu armaturu RA 400/500 Smatrati da je u pitanju sistem sa nepomerljivim čvorovima

87 - primer 2 Ekscentrično pritisnut stub Karakteristike materijala MB 30 f B = 20.5 MP a = 2.05 kn/cm 2 GA 400/500 σ v = 400 MP a = 40.0 kn/cm 2 Geometrijske karakteristike preseka b = 35cm d = 35cm A b = = 1225 cm 2 Ib i b = = 10.1 cm A b I b = b d3 12 = cm4

88 - primer 2 Ekscentrično pritisnut stub Dužina štapa je l = 5.0m, pa, imajući u vidu granične uslove (2. Ojlerov slučaj), dužina izvijanja iznosi l i = l 2 = 3.54 m = 354 cm Sa ovim, vitkost štapa je jednaka λ i = l i = 354 i min 10.1 = Kako je 25 λ i 75, stub spada u kategoriju umereno vitkih stubova

89 - primer 2 Ekscentrično pritisnut stub Provera kriterijuma kada se ne uzima u obzir izvijanje (bez obzira na vitkost) - eksploatacioni uticaji po Teoriji I reda M I q = M g + M p = = 90 knm N I q = N g + N p = = kn - ekscentricitet po Teoriji I reda e 1 = M I q N I q = = cm - relativni ekscentricitet e 1 /d e 1 d = = 1.27 <

90 - primer 2 Ekscentrično pritisnut stub Kako je e 1 /d < 3.5, uticaji II reda moraju da se uzmu u obzir, pa se određuje dopunska ekscentričnost e = e 0 + e 1 + e ϕ + e 2 Ekscentricitet usled imperfekcije ose stuba: e 0 = l 300 = = 1.67 cm < 2 cm usvojeno: e 0 = 2 cm Ekscentricitet po Teoriji I reda: e 1 = M I q N I q = cm Ekscentricitet usled tečenja betona: e ϕ = 0 jer je λ i < 50

91 - primer 2 Ekscentrično pritisnut stub Ekscentricitet po Teoriji II reda (za 0.3 < e 1 /d < 2.5): e 2 = d λi = 2.19 cm Ukupni ekscentricitet je: e = e 0 + e 1 + e ϕ + e 2 = = cm Granični uticaji - presek uklještenja A N u,a = 1.6 N g N p = 342 kn M u,a = 1.6 M g M p = 152 knm

92 - primer 2 Ekscentrično pritisnut stub Granični uticaji - presek u sredini polja AB N u,ab = 1.6 N g N p = 342 kn M u,ab = N u,ab e = = knm Merodavan je presek u sredini raspona Pretpostavlja se rastojanje težišta zategnute armature a a1 = 5cm, pa je statička visina preseka h = d a a1 = 30cm

93 - primer 2 Ekscentrično pritisnut stub Granični momenat za zategnutu armaturu ( ) d M au = M u + N u 2 a 1 = Dobija se M au = knm Bezdimenzionalni koeficijent k: k = h = Mau b f B Iz tabela za dimenzionisanje očitava se = ε a1 = 3.45 ε b2 = 3.5 µ = % (35/2 5) 100

94 - primer 2 Ekscentrično pritisnut stub Potrebna površina armature data je sa A a,pot = µ b d f B σ v N u σ v A a,pot = 8.39 cm 2 Pošto je u pitanju stub kod koga je uticaj normalne sile veliki, presk može i da se simetrično armira Bezdimenzionalni granični uticaji n u = N u b d f B = 0.14 m u = N u b d 2 f B = 0.19

95 - primer 2 Ekscentrično pritisnut stub Iz odgovarajućeg dijagrama interakcije (RA 400/500, simetrično armiranje A a1 = A a2, sa rasporedom a/d = 0.10), očitavaju se vrednosti (obostrani lom): ε a1 = 10 ε b2 = 3.5 µ = 0.33 Potrebna površina armature A a = µ b d f B σ v = cm 2 A a1 = A a2 = A a 2 = cm2 Usvojeno: 2 4RΦ19 A a,stv = = cm 2

96 - primer 2 Ekscentrično pritisnut stub Usvojeno 2 4RΦ19 (22.68 cm 2 )

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

CENTRIČNO PRITISNUTI ELEMENTI

CENTRIČNO PRITISNUTI ELEMENTI 3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A TEORIJA BETONSKIH KONSTRUKCIJA 25.12.2012. grupa A 1. 1.1 Dimenzionisati prema momentima savijanja (Mu) karakteristične preseke nosača prikazanog na skici 1. Prilikom dimenzionisanja obezbediti graničnu

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7.

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7. ODSEK ZA KONSTRUKCIJE 28.01.2015. grupa A g=50 kn/m p=60 kn/m 60 45 15 75 MB 35, RA 400/500 7.5 m 5 m 25 1.1 Odrediti potrebnu površinu armature u karakterističnim presecima (preseci na mestima maksimalnih

Διαβάστε περισσότερα

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

SILE U PRESEKU GREDNOG NOSAČA

SILE U PRESEKU GREDNOG NOSAČA SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Određivanje statičke šeme glavnog nosača

Određivanje statičke šeme glavnog nosača 1 PRORAČUN GLAVNIH NOSAČA Određivanje statičke šeme glavnog nosača Konstrukcijska i statička šema za jednobrodnu halu Konstrukcijska i statička šema za dvobrodnu halu 3 Metode globalne analize materijalna

Διαβάστε περισσότερα

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje Osnovne vrste napreanja: ksijalno napreanje Smicanje Uvijanje Savijanje Ivijanje 1 SVIJNJE GREDE SI Greda je opterećena na desnom kraju silom paralelno jednoj od glavnih centralnih osa inercije (y osi).

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

OTPORNOST MATERIJALA 2 Osnovne akademske studije, III semestar

OTPORNOST MATERIJALA 2 Osnovne akademske studije, III semestar OTPORNOST MATERIJALA 2 Osnovne akademske studije, III semestar Prof dr Stanko Br i email: stanko@np.ac.rs Departman za Tehni ke nauke Drºavni Univerzitet u Novom Pazaru 2015/16 Sadrºaj 1 Sloºeno naprezanje

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

METALNE KONSTRUKCIJE II

METALNE KONSTRUKCIJE II METALNE KONSTRUKCIJE II 1 Predmet br. teme Dodatne napomene objašnjenja uputstva NASLOV PODNASLOV PODNASLOV Osnovni sadržaj. Važniji pojmovi i sadržaji su štampani kao bold. Legenda dodatnih grafičkih

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE

BETONSKE KONSTRUKCIJE 1 BETONSKE KONSTRUKCIJE RAMOVSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Ramovske konstrukcije 1.1. Podela 1.2. Statički sistemi i statički proračun 1.3. Proračun

Διαβάστε περισσότερα

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA GRA EVINSKI FAKULTET UBEOGRADU PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA 1 12.06.2013. p=10 kn/m 2 p=8kn/m 2 p=10 kn/m 2 25 W=±60 kn 16 POS 1 80 60 25 25 POS 1 60 POS 3 60 POS 4 POS 2 POS 3 POS 4 POS

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2 PRIMER 2 Da bi se ilustrovali problemi i postupak analize složenijih okvirnih konstrukcija prema YU81, izabran je primer simetrične sedmoetažne okvirne konstrukcije, sa nejednakim rasponima greda. U uvodnom

Διαβάστε περισσότερα

FUNDIRANJE (TEMELJENJE)

FUNDIRANJE (TEMELJENJE) 1/11/013 FUNDIRANJE 1 FUNDIRANJE (TEMELJENJE) 1. Projektovanje temelja se vrši prema graničnom stanju konstrukcije i tla ispod ojekta sa osvrtom na ekonomski faktor u pogledu utroška materijala, oima radova

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1 PRIMER 1 Simetrična okvirna konstrukcija temelja teške opreme sastoji se od armiranobetonske platforme - roštilja greda, zglobno oslonjene na četri ugaona konzolna stuba. Za uticaje gravitacionih opterećenja,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d Proračun štapova na zatezanje i pritisak Osnova za proračun je zadovojenje nejednačine, max d gde je max maksimum apsoutne vrednosti normanog napona štapa a d je dozvojeni normani napon Ovakva nejednakost

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI 1/11/013 FUNDIRANJE TEEJI SACI 1. CENTRIČNO OPTEREĆEN TEEJ SAAC. EKSCENTRIČNO OPTEREĆEN TEEJ SAAC 1 Temelj samac ekscentrično oterećen rostor 1 1/11/013 Dimenzionisanje A temelja samca 3 Određivaje visine

Διαβάστε περισσότερα

Sl. 3/1. Statički sistemi grednih nosača

Sl. 3/1. Statički sistemi grednih nosača 3. LINIJSKI ELEMENTI 3.1. GREDNI NOSAČI 3.1.1. KARAKTERISTIKE, PRIMENA I SISTEMI Grednim nosačima smatramo one linijske elemente koji su pretežno opterećeni na savijanje silama. Javljaju se sastavnim delom

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni

Διαβάστε περισσότερα

Univerzitet u Beogradu 20. januar Elektrotehnički fakultet

Univerzitet u Beogradu 20. januar Elektrotehnički fakultet Univerzitet u eograu. januar 1. Elektrotehnički fakultet EHNIK 1. Telekomunikacioni kabl je potrebno zategnuti između ve vertikalne konzole (stuba) koje su ubetonirane u sreišta krovova ve susene zgrae,

Διαβάστε περισσότερα

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON Gredni nosač može biti spoljnim silama napregnut na razne načine, pa tako postoji aksijalno naprezanje, čisto savijanje, savijanje silama, torzija,

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 Napomene: Pitanja služe kao priprema za izradu testova iz Otpornosti Materijala I, koji se polažu parcijalno i integralno. Testovi su koncipirani kao

Διαβάστε περισσότερα

P z. =1.1MN/m _ =0.68MNm/m. k b =460.0MN/m 3 z. Dispozicija opterećenja grupe šipova preko krute naglavnice

P z. =1.1MN/m _ =0.68MNm/m. k b =460.0MN/m 3 z. Dispozicija opterećenja grupe šipova preko krute naglavnice BROJNI PRIMER - 9 Na slici 9.1 je orečni resek trakastog temelja obalnog zida. Temelj zida je kruta naglavnica na šiovima. Oterećenje otornog zida je redukovano u težište naglavnice. Podužno rastojanje

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

SANACIJE, REKONSTRUKCIJE I BETONSKIH KONSTRUKCIJA U VISOKOGRADNJI

SANACIJE, REKONSTRUKCIJE I BETONSKIH KONSTRUKCIJA U VISOKOGRADNJI GRAĐEVINSKI FAKULTET UNIVERZITETA U BEOGRADU Odsek za konstrukcije Katedra za materijale i konstrukcije (MIK) Master studije (28+28) I semester (2+2) Prof. dr Dušan Najdanović SANACIJE, REKONSTRUKCIJE

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

1 PRORAČUN PLOČE POS 1

1 PRORAČUN PLOČE POS 1 PLOČA OSLONJENA U JEDNOM PRAVCU P1/1 1 PRORAČUN PLOČE POS 1 Ploča dimenzija 6.0 7.m u osnovi oslonjena je na dve paralelne grede POS, koje su oslonjene na stubove POS S u uglovima ploče. Pored sopstvene

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα