1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa"

Transcript

1 a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak izves pomoću zavrtnjeva klase čvrstoće 5.6. Kategorija spoja je A. Osnovni materijal: S35. Radionički c rtež da u razmeri: 1:5 M Ed 1000kNm V Ed 300kN 1. Dimenzionisanje poprečnog preseka nosača Pretpostavlja se poprečni presek HEB 600 h b f t f 600mm A 70cm 300mm I y cm 4 30mm I z 13530cm 4 t w 15.5mm i y I y A 5.166cm r 7mm I z h w h t f 540mm i z A 7.079cm W y.el 5701cm 3 W z.el 90cm 3 p min 10mm ϕ max 7mm W y.pl 645cm 3 W z.pl 1391cm 3 p max 10mm Osnovni materijal S35 35MPa f u 360MPa Parcijalni koeficijen sigurnos γ M3 1.5 Klasifikacija poprečnog preseka b f t w Nožice r 3.84 t f h t f r ε 7 t w ε 35MPa 1 9ε 9 Nožica je klas Rebro je klas Nosivost poprečnog preseka van mesta montažnog nastavka Poprečni presek je klas Savijanje: M y.rd W y.pl Smicanje: A V.z A b f kNm t f t w rt f cm M Ed 0.66 M y.rd A V.z 3 V z.pl.rd Usvaja sa presek HEB kN V Ed V z.pl.rd Nije potrebna kontrola interakvnog dejstva momenta savijanja i transverzalne sile

2 . Dimenzionisanje montažnog nastavka nosača Na nožicama se pretpostavljaju zavrtnjevi maksimalnog mogućeg prečnika za da profil: M Na rebru je potrebno odredi opmalni prečnik zavrtnja u zavisnos od debljine limova! t s.min 1..opt - debljina najtanjeg lima u vezi u [cm]. Ovde je to debljina podvezice! 5t s.min Usvajaju se zavrtnjevi na rebru: M Preraspodela presečnih sila na elemente poprečnog preseka A f I y.f b f t f 9000mm A w A A f 9000mm h t f A f mm 4 I y.w I y I y.f mm 4 I y.f I y.w M f.ed M Ed 855kNm M I w.ed M Ed y I y 145kNm V w.ed V Ed 300kN - celokupnu smičuću silu prihvata rebro M f.ed 145kN N h fc.ed. Kontrola nosivos oslabljenog preseka na mestu montažnog nastavka Neto presek zategnute nožice.f 30mm n 1.f n c.f 4 - prečnik rupa na nožici - broj zavrtnjeva u jednom redu - broj zavrtnjeva u cik-cak rasporedu A f.net min b f t f n c.f t f.f t f i 1 0.9A f.net f u kN < A f s 4p 115kN p 45mm s 80mm b f t f n 1.f t f.f - poprečno rastojanje zavrtnjeva u cik-cak rasporedu - podužno rastojanje zavrtnjeva u cik-cak rasporedu 700mm Rupe u zategnutoj nožici ne mogu se zanemari! A f.red 0.9A f.net f u 7941mm ali < A f b f t f 9000mm A f.red t f.red b f 6.5mm Neto presek rebra (u zoni zatezanja).w mm - prečnik rupa na rebru n w.t 3 - broj zavrtnjeva u zategnutoj zoni rebra A w.t.net 0.5A w n w.t.w t w 3477mm 0.9A w.t.net f u 901.kN < 0.9 A w.t.net A f.net f u 0.5A w 767.5kN > kN 0.5A w A f.net 749.5kN Rupe u zategnutom delu rebra mogu se zanemari!

3 Momenat nosivos oslabljenog preseka Zanemaruje se pomeranje težišta preseka i neutralne ose, usled slabljenja rupama za spojna sredstva, pri proračunu geometrijskih karakteristika oslabljenog preseka! h w t f.red h w t f h w W pl.red A f.red A f t w cm 3 4 M u.net.rd W pl.red kNm M Ed M u.net.rd.3 Proračun broja zavrtnjeva na nožicama profila d 7mm.f 30mm A b d π mm A 4 s 459mm b 300MPa f ub 500MPa Nosivost pojedinačnog zavrtnja na smicanje m 1 α v 0.6 F 1.v.Rd m α v f ub A s kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Nožica: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina nožice 60mm e 45mm p 1 160mm p 10mm t f 30mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 k 1 α b f u dt f F 1.b.f.Rd Podvezice na nožicama: 388.8kN Ovde je, radi pojednostavljenja, pri određivanju nosivosti usvojeno da je nosivost svih zavrtnjeva jednaka minimalnoj, što je na strani sigurnosti! krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezice 60mm e 45mm p 1 160mm p 10mm t p.ft 30mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.p.Rd k 1 α b f u d t p.ft 388.8kN F 1.b.Rd 388.8kN min F 1.b.f.Rd F 1.b.p.Rd Nosivost zavrtnjeva na nožicama u smičućem spoju kategorije A F 1.f.Rd kN min F 1.v.Rd F 1.b.Rd n f 1.9 F 1.f.Rd - potreban broj zavrtnjeva sa jedne strane montažnog nastavka

4 Redukcija nosivos kod dugačkih veza L j 480mm > 15d L j 15d β Lf d 405mm - razmak između krajnjih spojnih sredstava u vezi - koeficijent redukcije za dugačke veze F 1.f.Rd.red β Lf F 1.f.Rd 108.6kN n f 13.1 F 1.f.Rd.red - potreban broj zavrtnjeva uzimajući u obzir redukciju za dugačke veze Usvaja s4 M (u smaknutom "cik cak" rasporedu).4 Proračun broja zavrtnjeva na rebru profila d 0mm.w mm A b d π 314.mm A 4 s 45mm Nosivost pojedinačnog zavrtnja na smicanje m α v 0.6 F 1.v.Rd m α v f ub A s 117.6kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Rebro: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina rebra 105mm e 40mm p 1 65mm p 65mm t w 15.5mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.w.Rd k 1 α b f u Podvezice na rebru: dt w 159.8kN krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezica 45mm e 40mm p 1 65mm p 65mm t p.w 1mm p e k 1 min α b min F 1.b.p.Rd k 1 α b f u dt p.w 9.6kN f ub p 1 1 f u 3d d F 1.b.Rd 159.8kN min F 1.b.w.Rd F 1.b.p.Rd Nosivost zavrtnjeva na rebru u smičućem spoju kategorije A F 1.w.Rd 117.6kN min F 1.v.Rd F 1.b.Rd

5 Rezultujuća sila u najopterećenijem zavrtnju usled dejstva smičuće sile i momenta na rebru Pretpostavlja se veza na rebru prema crtežu u prilogu! n 1 7 n 3 n n 1 n 1 h max b max 390mm 130mm h max 3 > b max e w 105mm - rastojanje najudaljenijih zavrtnjeva u pravcu dejstva sile (visina veze) - rastojanje najudaljenijih zavrtnjeva upravno na pravcu dejstva sile (širina veze) Prema pretpostavljenom rasporedu veza je visoka (h / b > )! Proračun sila u zavrtnjevima usled dejstva momenta na rebru se vrši prema ekvatorijalnom momentu inercije! - ekscentricitet veze prema pretpostavljenom rasporedu F V V w.ed n 14.9kN - sila u zavrtnjevima usled smicanja 6 F M.max M w.ed V w.ed e w n n 1 n 1 1 p 1 Rezultujuća sila u najopterećenijem zavrtnju 97kN - sila u najopterećenijem zavrtnju usled momenata savijanja F w.max.ed F V F M.max 98.0kN < F 1.w.Rd 117.6kN.5 Kontrola nosivos podvezica Usvaja se: 1 M Zategnuta nožica (jednostrana podvezica) b p.ft 300mm t p.ft 30mm A p.ft b p.ft t p.ft 9000mm A p.ft.net b p.ft n 1.f.f t p.ft 700mm N p.ft.net.rd min 0.9A p.ft.net f u Prisnuta nožica (jednostrana podvezica) A p.ft b p.fc b p.ft 300mm t p.fc 5mm A p.fc b p.fc t p.fc 7500mm kN N p.ft.net.rd - na pritisnutoj nožici se može usvojiti tanja podvezica jer nema slabljenja rupama! N p.fc.rd A p.fc 176.5kN N fc.ed N p.fc.rd Rebro (obostrane podvezice) h p.w 480mm t p.w 1mm - pretpostavlja se da su podvezice na rebru klase 3 A p.w h p.w t p.w 1150mm h p.w tp.w W p.w 6 A p.w 3 V w.ed V p.w.rd kn 0.19 V p.w.rd 91600mm 3 M p.w.rd W p.w kNcm M w.ed V w.ed e w M p.w.rd

6

7 b. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 00 kn MEd = 500 knm. Za nosač usvoji odgovarajući IPE valjani profil. Nastavak izves pomoću zavrtnjeva klase čvrstoće 8.8. Kategorija spoja je C. Osnovni materijal: S35. Radionički crtež da u razmeri: 1:5 M Ed 450kNm V Ed 00kN 1. Dimenzionisanje poprečnog preseka nosača Pretpostavlja se poprečni presek IPE 500 h b f t f 500mm A 116cm 00mm I y 4800cm 4 16mm I z 14cm 4 t w 10.mm i y I y A 0.384cm r 1mm I z h w h t f 468mm i z A 4.97cm W y.el 198cm 3 W z.el 14.cm 3 p 130mm ϕ max 4mm W y.pl 194cm 3 W z.pl 355.9cm 3 Osnovni materijal S35 35MPa f u 360MPa Parcijalni koeficijen sigurnos γ M3 1.5 Klasifikacija poprečnog preseka b f t w Nožice r t f h t f r ε 7 t w ε 35MPa 1 9ε 9 Nožica je klas Rebro je klas Nosivost poprečnog preseka van mesta montažnog nastavka Poprečni presek je klas Savijanje: M y.rd W y.pl Smicanje: A V.z A b f 515.6kNm t f t w rt f 60.35cm M Ed M y.rd A V.z 3 V z.pl.rd Usvaja sa presek IPE kN V Ed 0.44 V z.pl.rd Nije potrebna kontrola interakvnog dejstva momenta savijanja i transverzalne sile

8 . Dimenzionisanje montažnog nastavka nosača Na nožicama se pretpostavljaju zavrtnjevi maksimalnog mogućeg prečnika za da profil: M Na rebru je potrebno odredi opmalni prečnik zavrtnja u zavisnos od debljine limova! t s.min debljina najtanjeg lima u vezi u [cm]. Ovde je to debljina podvezice!.opt 5t s.min Usvajaju se zavrtnjevi na rebru: M Preraspodela presečnih sila na elemente poprečnog preseka A f b f t f 300mm A w A A f 500mm I y.f h t f A f mm 4 I y.w I y I y.f mm 4 I y.f I y.w M f.ed M Ed kNm M I w.ed M Ed y I y kNm V w.ed V Ed 00kN - celokupnu smičuću silu prihvata rebro M f.ed 699.9kN N h fc.ed. Kontrola nosivos oslabljenog preseka na mestu montažnog nastavka Neto presek zategnute nožice.f 4mm - prečnik rupa na nožici n 1.f - broj zavrtnjeva u jednom redu A f.net b f t f n 1.f t f.f 43mm 0.9A f.net f u kN < A f 75kN Rupe u zategnutoj nožici ne mogu se zanemari! A f.red f u 0.9A f.net 68mm ali < A γ f b f t f 300mm M t f.red A f.red b f 13.41mm Neto presek rebra (u zoni zatezanja).w 18mm - prečnik rupa na rebru n w.t 4 - broj zavrtnjeva u zategnutoj zoni rebra A w.t.net 0.5A w n w.t.w t w mm 0.9A w.t.net f u 483.6kN < 0.9 A w.t.net A f.net f u 0.5A w kN < A w.net h w t w n w.t.w t w 4039.mm 611kN 0.5A w A f.net Rupe u zategnutom delu rebra ne mogu se zanemari! 118.5kN

9 f u A w.red 0.9A w.net 4455mm ali < A γ w 500mm M t w.red A w.red h w 9.5mm Momenat nosivos oslabljenog preseka Zanemaruje se pomeranje težišta preseka i neutralne ose, usled slabljenja rupama za spojna sredstva, pri proračunu geometrijskih karakteristika oslabljenog preseka! h w t f.red h w t f h w W pl.red A f.red A f t w.red cm 3 4 M u.net.rd W pl.red 456.kNm M Ed M u.net.rd.3 Proračun broja zavrtnjeva na nožicama profila d mm.f 4mm A b d π 380.1mm A 4 s 303mm b 640MPa f ub 800MPa Nosivost pojedinačnog zavrtnja na proklizavanje k s 1 m μ 0.5 F p.c 0.7f ub A s kN F 1.s.Rd k s mμ F γ p.c M kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Nožica: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina nožice 50mm e 35mm p 1 70mm p 130mm t f 16mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 k 1 α b f u dt f F 1.b.f.Rd kN Spoljašnje podvezice na nožicama: Ovde je, radi pojednostavljenja, pri određivanju nosivosti usvojeno da je nosivost svih zavrtnjeva jednaka minimalnoj, što je na strani sigurnosti! krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezice 50mm e 35mm p 1 70mm p 130mm t p.ft 1mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.ps.Rd k 1 α b f u dt p.ft 15.84kN 0.694

10 Unotrašnje podvezice na nožicama: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje p nije od interesa na unutrešnjoj podvezici! 50mm e 35mm p 1 70mm e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.pu.Rd k 1 α b f u dt p.ft 15.84kN 167.8kN F 1.b.Rd min F 1.b.f.Rd min F 1.b.ps.Rd F 1.b.pu.Rd Nosivost zavrtnjeva na nožicama u smičućem spoju kategorije C F 1.f.Rd 135.7kN min F 1.s.Rd F 1.b.Rd n f 5. F 1.f.Rd - potreban broj zavrtnjeva sa jedne strane montažnog nastavka Usvaja se 6 M (sa punom silom prednaprezanja).4 Proračun broja zavrtnjeva na rebru profila d 16mm.w 18mm A b d π 01.1mm A 4 s 157mm Nosivost pojedinačnog zavrtnja na proklizavanje k s 1 m μ 0.5 F p.c 0.7f ub A s 87.9kN F 1.s.Rd k s mμ F γ p.c M3 70.3kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Rebro: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina rebra 75mm e 35mm p 1 50mm p 50mm t w 10.mm p e k 1 min α b min F 1.b.w.Rd k 1 α b f u dt w 69.5kN f ub p 1 1 f u 3d d Podvezice na rebru: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezica 35mm e 35mm p 1 50mm p 50mm t p.w 10mm p e k 1 min α b min f ub p 1 1 f u 3d d

11 F 1.b.p.Rd k 1 α b f u dt p.w 130.7kN F 1.b.Rd 69.5kN min F 1.b.w.Rd F 1.b.p.Rd Nosivost zavrtnjeva na rebru u smičućem spoju kategorije C F 1.w.Rd 69.54kN min F 1.s.Rd F 1.b.Rd Rezultujuća sila u najopterećenijem zavrtnju usled dejstva smičuće sile i momenta na rebru Pretpostavlja se veza na rebru prema crtežu u prilogu! n 1 8 n 3 n n 1 n 4 h max b max 350mm 150mm h max.333 > b max e w 85mm - rastojanje najudaljenijih zavrtnjeva u pravcu dejstva sile (visina veze) - rastojanje najudaljenijih zavrtnjeva upravno na pravcu dejstva sile (širina veze) Prema pretpostavljenom rasporedu veza je visoka (h / b > )! Proračun sila u zavrtnjevima usled dejstva momenta na rebru se vrši prema ekvatorijalnom momentu inercije! - ekscentricitet veze prema pretpostavljenom rasporedu F V V w.ed n 8.33kN - sila u zavrtnjevima usled smicanja 6 F M.max M w.ed V w.ed e w n n 1 n 1 1 p 1 Rezultujuća sila u najopterećenijem zavrtnju 65kN F w.max.ed F V F M.max 65.57kN < F 1.w.Rd 69.54kN.5 Kontrola nosivos podvezica Zategnuta nožica (obostrane podvezice) b ps.ft 00mm b pu.ft 70mm t p.ft 1mm A p.ft b ps.ft b pu.ft t p.ft 4080mm A p.ft.net b ps.ft b pu.ft n 1.f.f t p.ft 98mm N p.ft.net.rd min 0.9A p.ft.net f u Prisnuta nožica (obostrane podvezice) A p.ft kN b ps.fc b ps.ft 00mm b pu.fc b pu.ft 70mm t p.fc 10mm A p.fc b ps.fc b pu.fc t p.fc 3400mm - sila u najopterećenijem zavrtnju usled momenata savijanja Usvaja se: 4 M (sa punom silom prednaprezanja) 0.9 N p.ft.net.rd - na pritisnutoj nožici se može usvojiti tanja podvezica jer nema slabljenja rupama! N p.fc.rd A p.fc 799kN N fc.ed N p.fc.rd

12 Zbog ne tako velike razlike u debljinama podvezica na prisnutoj i zategnutoj nožici, usvajaju se iste debljine podvezica u obe zone! t p.fc t p.ft 1mm Rebro (obostrane podvezice) h p.w 40mm t p.w 10mm - pretpostavlja se da su podvezice na rebru klase 3 A p.w h p.w t p.w 8400mm h p.w tp.w W p.w 6 A p.w 3 V w.ed V p.w.rd kn V p.w.rd mm 3 M p.w.rd W p.w 13818kNcm M w.ed V w.ed e w M p.w.rd

13

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

SILE U PRESEKU GREDNOG NOSAČA

SILE U PRESEKU GREDNOG NOSAČA SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

ROŽNJAČE. Rožnjače

ROŽNJAČE. Rožnjače 1 ROŽNJAČE 2 Rožnjače Opšte 3 Rožnjače primaju i prenose opterećenje sa krovne površine na glavne nosače. Leže u krovnoj ravni i pružaju se paralelno sa podužnom osom hale. Raspon l: od 4,0 do 18,0 m (uobičajeno

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

FUNDIRANJE (TEMELJENJE)

FUNDIRANJE (TEMELJENJE) 1/11/013 FUNDIRANJE 1 FUNDIRANJE (TEMELJENJE) 1. Projektovanje temelja se vrši prema graničnom stanju konstrukcije i tla ispod ojekta sa osvrtom na ekonomski faktor u pogledu utroška materijala, oima radova

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

11. ZUPČASTI PRENOSNICI

11. ZUPČASTI PRENOSNICI . ZUČASTI RENOSNICI.. CILINDRIČNI ZUČANICI SA RAVIM ZUBIMA (CZZ) Zadatak... (Skica CZZ) otrebno je skicirati cilindrični cilindrični zupčanik sa pravim zupcima, obeležiti njegove dimenzije i navesti podatke

Διαβάστε περισσότερα

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ : BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja. Osnovni pojmovi

Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja. Osnovni pojmovi Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja Osnovni pojmovi Kruto telo Rastojanje ma koje tačke je stalno, ne menja se, telo se ne deformiše predmet

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση 9 ποκατάσταση συνέχειας καμπτόμενης δοκού χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Zgradarstvo : Mostogradnja: Specijalne (inženjerske) konstrukcije: Prednosti čeličnih konstrukcija Nedostaci čeličnih konstrukcija

Zgradarstvo : Mostogradnja: Specijalne (inženjerske) konstrukcije: Prednosti čeličnih konstrukcija Nedostaci čeličnih konstrukcija 1. Primena celicnih konstrukcija u gradjevinarstvu Zgradarstvo : sportske dvorane izložbene hale, višespratne zgrade, industrijske hale, krovovi stadiona, hangari... Mostogradnja: drumski mostovi, železnički

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1 PRIMER 1 Simetrična okvirna konstrukcija temelja teške opreme sastoji se od armiranobetonske platforme - roštilja greda, zglobno oslonjene na četri ugaona konzolna stuba. Za uticaje gravitacionih opterećenja,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Srednja mašinska škola Mašinski elementi Nastavnik: Sima Pastor 3525$&8138=12*3$5$ n1 = 1450min 1. zadato. zadato. usvojeno, od 1 do 5

Srednja mašinska škola Mašinski elementi Nastavnik: Sima Pastor 3525$&8138=12*3$5$ n1 = 1450min 1. zadato. zadato. usvojeno, od 1 do 5 525$&882*$5$ Polazni podaci ulazne vrednosti_ne menjati velicine usvojene_mogu se menjati A Nominalna snaga P 5kW zadato savet _ ne menjati A2 Broj obrtaja pogon. masine n 450min zadato azurirati obavezno

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2 PRIMER 2 Da bi se ilustrovali problemi i postupak analize složenijih okvirnih konstrukcija prema YU81, izabran je primer simetrične sedmoetažne okvirne konstrukcije, sa nejednakim rasponima greda. U uvodnom

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 1 Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Άσκηση 1 Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

8. GREDA OPTEREĆENA PODUŽNIM SILAMA

8. GREDA OPTEREĆENA PODUŽNIM SILAMA O V8 V9 V0 me i preime: ne br: 5..05. 8. GRED OPTEREĆEN PODUŽN SL Slika 8. N + (8.5) 8. KSJLNO NPREZNJE GREDE N (8.6) ε E γ γ N E γ, ε 0 ε ν E N ν E (8.8) Nl Δ l (a N const i const) (8.) E N( ) ( ) (8.)

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260 ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 7 Σύνδεση με κοχλίες τύπου D και E. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Άσκηση 7 Σύνδεση με κοχλίες τύπου D και E. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση 7 ύνδεση με κοχλίες τύπου D και E χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE

BETONSKE KONSTRUKCIJE 1 BETONSKE KONSTRUKCIJE RAMOVSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Ramovske konstrukcije 1.1. Podela 1.2. Statički sistemi i statički proračun 1.3. Proračun

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

SANACIJE, REKONSTRUKCIJE I ODRŽAVANJE BETONSKIH KONSTRUKCIJA U VISOKOGRADNJI

SANACIJE, REKONSTRUKCIJE I ODRŽAVANJE BETONSKIH KONSTRUKCIJA U VISOKOGRADNJI GRAĐEVINSKI FAKULTET UNIVERZITETA U BEOGRADU Odsek za konstrukcije Katedra za materijale i konstrukcije (MIK) IV godina studija (28+14) VIII semester (2+1) SANACIJE, REKONSTRUKCIJE I ODRŽAVANJE BETONSKIH

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες

Διαβάστε περισσότερα

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α.

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 Έργο Υπολογισμός συνδέσεων ροπής COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Σύνδεση_Έδραση_Ορ0_Κ3_MTC.tss - Σελίδα 2/11 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

Ρόλος συνδέσεων στις μεταλλικές κατασκευές

Ρόλος συνδέσεων στις μεταλλικές κατασκευές Ρόλος συνδέσεων στις μεταλλικές κατασκευές Σύνδεση μελών κατασκευής μεταξύ τους Ασφαλής μεταφορά εντατικών μεγεθών από μέλος σε μέλος Απαιτήσεις: Ασφάλεια Κατασκευασιμότητα Συνέπεια με υπολογιστικό προσομοίωμα

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 Napomene: Pitanja služe kao priprema za izradu testova iz Otpornosti Materijala I, koji se polažu parcijalno i integralno. Testovi su koncipirani kao

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 4 Δικτύωμα πεζογέφυρας Αποκατάσταση συνέχειας εφελκυόμενου κάτω πέλματος με κοχλίες Α, Β, C

Σιδηρές Κατασκευές ΙΙ Άσκηση 4 Δικτύωμα πεζογέφυρας Αποκατάσταση συνέχειας εφελκυόμενου κάτω πέλματος με κοχλίες Α, Β, C ιδηρές ατασκευές Άσκηση Δικτύωμα πεζογέφυρας ποκατάσταση συνέχειας εφελκυόμενου κάτω πέλματος με κοχλίες, Β, C χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Sl. 3/1. Statički sistemi grednih nosača

Sl. 3/1. Statički sistemi grednih nosača 3. LINIJSKI ELEMENTI 3.1. GREDNI NOSAČI 3.1.1. KARAKTERISTIKE, PRIMENA I SISTEMI Grednim nosačima smatramo one linijske elemente koji su pretežno opterećeni na savijanje silama. Javljaju se sastavnim delom

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d Proračun štapova na zatezanje i pritisak Osnova za proračun je zadovojenje nejednačine, max d gde je max maksimum apsoutne vrednosti normanog napona štapa a d je dozvojeni normani napon Ovakva nejednakost

Διαβάστε περισσότερα

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON Gredni nosač može biti spoljnim silama napregnut na razne načine, pa tako postoji aksijalno naprezanje, čisto savijanje, savijanje silama, torzija,

Διαβάστε περισσότερα

OTPORNOST MATERIJALA. Geometrijske karakteristike ravnih površina

OTPORNOST MATERIJALA. Geometrijske karakteristike ravnih površina OTPORNOST MTERJL Geometrijske karakteristike ravnih površina GEOMETRJSKE KRKTERSTKE RVNH POVRŠN POVRŠN POPREČNOG PRESEK STTČK MOMENT POPREČNOG PRESEK MOMENT NERJE POPREČNOG PRESEK GEOMETRJSKE KRKTERSTKE

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 7: Σύνδεση με κοχλίες τύπου D και E Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

FAKULTET STROJARSTVA I BRODOGRADNJE

FAKULTET STROJARSTVA I BRODOGRADNJE SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Ivica Matanović Zagreb, 010. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Voditelj rada: Prof. dr. sc.

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Διάλεξη 3 Κοχλιωτές συνδέσεις. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Διάλεξη 3 Κοχλιωτές συνδέσεις. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη 3 οχλιωτές συνδέσεις χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 2 Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος

Σιδηρές Κατασκευές Ι Άσκηση 2 Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος ιδηρές ατασκευές Άσκηση Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Solar 3000 TF / Solar 4000 TF

Solar 3000 TF / Solar 4000 TF 6720616592.00-1.SD Ορθοστάτης για επίπεδους συλλέκτες Solar 3000 TF / Solar 4000 TF GR Οδηγίες συναρμολόγησης για τον ειδικό 2 Περιεχόμενα GR Περιεχόμενα 1 Επεξήγηση συμβόλων και υποδείξεις ασφαλείας 3

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα