1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa"

Transcript

1 a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak izves pomoću zavrtnjeva klase čvrstoće 5.6. Kategorija spoja je A. Osnovni materijal: S35. Radionički c rtež da u razmeri: 1:5 M Ed 1000kNm V Ed 300kN 1. Dimenzionisanje poprečnog preseka nosača Pretpostavlja se poprečni presek HEB 600 h b f t f 600mm A 70cm 300mm I y cm 4 30mm I z 13530cm 4 t w 15.5mm i y I y A 5.166cm r 7mm I z h w h t f 540mm i z A 7.079cm W y.el 5701cm 3 W z.el 90cm 3 p min 10mm ϕ max 7mm W y.pl 645cm 3 W z.pl 1391cm 3 p max 10mm Osnovni materijal S35 35MPa f u 360MPa Parcijalni koeficijen sigurnos γ M3 1.5 Klasifikacija poprečnog preseka b f t w Nožice r 3.84 t f h t f r ε 7 t w ε 35MPa 1 9ε 9 Nožica je klas Rebro je klas Nosivost poprečnog preseka van mesta montažnog nastavka Poprečni presek je klas Savijanje: M y.rd W y.pl Smicanje: A V.z A b f kNm t f t w rt f cm M Ed 0.66 M y.rd A V.z 3 V z.pl.rd Usvaja sa presek HEB kN V Ed V z.pl.rd Nije potrebna kontrola interakvnog dejstva momenta savijanja i transverzalne sile

2 . Dimenzionisanje montažnog nastavka nosača Na nožicama se pretpostavljaju zavrtnjevi maksimalnog mogućeg prečnika za da profil: M Na rebru je potrebno odredi opmalni prečnik zavrtnja u zavisnos od debljine limova! t s.min 1..opt - debljina najtanjeg lima u vezi u [cm]. Ovde je to debljina podvezice! 5t s.min Usvajaju se zavrtnjevi na rebru: M Preraspodela presečnih sila na elemente poprečnog preseka A f I y.f b f t f 9000mm A w A A f 9000mm h t f A f mm 4 I y.w I y I y.f mm 4 I y.f I y.w M f.ed M Ed 855kNm M I w.ed M Ed y I y 145kNm V w.ed V Ed 300kN - celokupnu smičuću silu prihvata rebro M f.ed 145kN N h fc.ed. Kontrola nosivos oslabljenog preseka na mestu montažnog nastavka Neto presek zategnute nožice.f 30mm n 1.f n c.f 4 - prečnik rupa na nožici - broj zavrtnjeva u jednom redu - broj zavrtnjeva u cik-cak rasporedu A f.net min b f t f n c.f t f.f t f i 1 0.9A f.net f u kN < A f s 4p 115kN p 45mm s 80mm b f t f n 1.f t f.f - poprečno rastojanje zavrtnjeva u cik-cak rasporedu - podužno rastojanje zavrtnjeva u cik-cak rasporedu 700mm Rupe u zategnutoj nožici ne mogu se zanemari! A f.red 0.9A f.net f u 7941mm ali < A f b f t f 9000mm A f.red t f.red b f 6.5mm Neto presek rebra (u zoni zatezanja).w mm - prečnik rupa na rebru n w.t 3 - broj zavrtnjeva u zategnutoj zoni rebra A w.t.net 0.5A w n w.t.w t w 3477mm 0.9A w.t.net f u 901.kN < 0.9 A w.t.net A f.net f u 0.5A w 767.5kN > kN 0.5A w A f.net 749.5kN Rupe u zategnutom delu rebra mogu se zanemari!

3 Momenat nosivos oslabljenog preseka Zanemaruje se pomeranje težišta preseka i neutralne ose, usled slabljenja rupama za spojna sredstva, pri proračunu geometrijskih karakteristika oslabljenog preseka! h w t f.red h w t f h w W pl.red A f.red A f t w cm 3 4 M u.net.rd W pl.red kNm M Ed M u.net.rd.3 Proračun broja zavrtnjeva na nožicama profila d 7mm.f 30mm A b d π mm A 4 s 459mm b 300MPa f ub 500MPa Nosivost pojedinačnog zavrtnja na smicanje m 1 α v 0.6 F 1.v.Rd m α v f ub A s kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Nožica: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina nožice 60mm e 45mm p 1 160mm p 10mm t f 30mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 k 1 α b f u dt f F 1.b.f.Rd Podvezice na nožicama: 388.8kN Ovde je, radi pojednostavljenja, pri određivanju nosivosti usvojeno da je nosivost svih zavrtnjeva jednaka minimalnoj, što je na strani sigurnosti! krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezice 60mm e 45mm p 1 160mm p 10mm t p.ft 30mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.p.Rd k 1 α b f u d t p.ft 388.8kN F 1.b.Rd 388.8kN min F 1.b.f.Rd F 1.b.p.Rd Nosivost zavrtnjeva na nožicama u smičućem spoju kategorije A F 1.f.Rd kN min F 1.v.Rd F 1.b.Rd n f 1.9 F 1.f.Rd - potreban broj zavrtnjeva sa jedne strane montažnog nastavka

4 Redukcija nosivos kod dugačkih veza L j 480mm > 15d L j 15d β Lf d 405mm - razmak između krajnjih spojnih sredstava u vezi - koeficijent redukcije za dugačke veze F 1.f.Rd.red β Lf F 1.f.Rd 108.6kN n f 13.1 F 1.f.Rd.red - potreban broj zavrtnjeva uzimajući u obzir redukciju za dugačke veze Usvaja s4 M (u smaknutom "cik cak" rasporedu).4 Proračun broja zavrtnjeva na rebru profila d 0mm.w mm A b d π 314.mm A 4 s 45mm Nosivost pojedinačnog zavrtnja na smicanje m α v 0.6 F 1.v.Rd m α v f ub A s 117.6kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Rebro: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina rebra 105mm e 40mm p 1 65mm p 65mm t w 15.5mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.w.Rd k 1 α b f u Podvezice na rebru: dt w 159.8kN krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezica 45mm e 40mm p 1 65mm p 65mm t p.w 1mm p e k 1 min α b min F 1.b.p.Rd k 1 α b f u dt p.w 9.6kN f ub p 1 1 f u 3d d F 1.b.Rd 159.8kN min F 1.b.w.Rd F 1.b.p.Rd Nosivost zavrtnjeva na rebru u smičućem spoju kategorije A F 1.w.Rd 117.6kN min F 1.v.Rd F 1.b.Rd

5 Rezultujuća sila u najopterećenijem zavrtnju usled dejstva smičuće sile i momenta na rebru Pretpostavlja se veza na rebru prema crtežu u prilogu! n 1 7 n 3 n n 1 n 1 h max b max 390mm 130mm h max 3 > b max e w 105mm - rastojanje najudaljenijih zavrtnjeva u pravcu dejstva sile (visina veze) - rastojanje najudaljenijih zavrtnjeva upravno na pravcu dejstva sile (širina veze) Prema pretpostavljenom rasporedu veza je visoka (h / b > )! Proračun sila u zavrtnjevima usled dejstva momenta na rebru se vrši prema ekvatorijalnom momentu inercije! - ekscentricitet veze prema pretpostavljenom rasporedu F V V w.ed n 14.9kN - sila u zavrtnjevima usled smicanja 6 F M.max M w.ed V w.ed e w n n 1 n 1 1 p 1 Rezultujuća sila u najopterećenijem zavrtnju 97kN - sila u najopterećenijem zavrtnju usled momenata savijanja F w.max.ed F V F M.max 98.0kN < F 1.w.Rd 117.6kN.5 Kontrola nosivos podvezica Usvaja se: 1 M Zategnuta nožica (jednostrana podvezica) b p.ft 300mm t p.ft 30mm A p.ft b p.ft t p.ft 9000mm A p.ft.net b p.ft n 1.f.f t p.ft 700mm N p.ft.net.rd min 0.9A p.ft.net f u Prisnuta nožica (jednostrana podvezica) A p.ft b p.fc b p.ft 300mm t p.fc 5mm A p.fc b p.fc t p.fc 7500mm kN N p.ft.net.rd - na pritisnutoj nožici se može usvojiti tanja podvezica jer nema slabljenja rupama! N p.fc.rd A p.fc 176.5kN N fc.ed N p.fc.rd Rebro (obostrane podvezice) h p.w 480mm t p.w 1mm - pretpostavlja se da su podvezice na rebru klase 3 A p.w h p.w t p.w 1150mm h p.w tp.w W p.w 6 A p.w 3 V w.ed V p.w.rd kn 0.19 V p.w.rd 91600mm 3 M p.w.rd W p.w kNcm M w.ed V w.ed e w M p.w.rd

6

7 b. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 00 kn MEd = 500 knm. Za nosač usvoji odgovarajući IPE valjani profil. Nastavak izves pomoću zavrtnjeva klase čvrstoće 8.8. Kategorija spoja je C. Osnovni materijal: S35. Radionički crtež da u razmeri: 1:5 M Ed 450kNm V Ed 00kN 1. Dimenzionisanje poprečnog preseka nosača Pretpostavlja se poprečni presek IPE 500 h b f t f 500mm A 116cm 00mm I y 4800cm 4 16mm I z 14cm 4 t w 10.mm i y I y A 0.384cm r 1mm I z h w h t f 468mm i z A 4.97cm W y.el 198cm 3 W z.el 14.cm 3 p 130mm ϕ max 4mm W y.pl 194cm 3 W z.pl 355.9cm 3 Osnovni materijal S35 35MPa f u 360MPa Parcijalni koeficijen sigurnos γ M3 1.5 Klasifikacija poprečnog preseka b f t w Nožice r t f h t f r ε 7 t w ε 35MPa 1 9ε 9 Nožica je klas Rebro je klas Nosivost poprečnog preseka van mesta montažnog nastavka Poprečni presek je klas Savijanje: M y.rd W y.pl Smicanje: A V.z A b f 515.6kNm t f t w rt f 60.35cm M Ed M y.rd A V.z 3 V z.pl.rd Usvaja sa presek IPE kN V Ed 0.44 V z.pl.rd Nije potrebna kontrola interakvnog dejstva momenta savijanja i transverzalne sile

8 . Dimenzionisanje montažnog nastavka nosača Na nožicama se pretpostavljaju zavrtnjevi maksimalnog mogućeg prečnika za da profil: M Na rebru je potrebno odredi opmalni prečnik zavrtnja u zavisnos od debljine limova! t s.min debljina najtanjeg lima u vezi u [cm]. Ovde je to debljina podvezice!.opt 5t s.min Usvajaju se zavrtnjevi na rebru: M Preraspodela presečnih sila na elemente poprečnog preseka A f b f t f 300mm A w A A f 500mm I y.f h t f A f mm 4 I y.w I y I y.f mm 4 I y.f I y.w M f.ed M Ed kNm M I w.ed M Ed y I y kNm V w.ed V Ed 00kN - celokupnu smičuću silu prihvata rebro M f.ed 699.9kN N h fc.ed. Kontrola nosivos oslabljenog preseka na mestu montažnog nastavka Neto presek zategnute nožice.f 4mm - prečnik rupa na nožici n 1.f - broj zavrtnjeva u jednom redu A f.net b f t f n 1.f t f.f 43mm 0.9A f.net f u kN < A f 75kN Rupe u zategnutoj nožici ne mogu se zanemari! A f.red f u 0.9A f.net 68mm ali < A γ f b f t f 300mm M t f.red A f.red b f 13.41mm Neto presek rebra (u zoni zatezanja).w 18mm - prečnik rupa na rebru n w.t 4 - broj zavrtnjeva u zategnutoj zoni rebra A w.t.net 0.5A w n w.t.w t w mm 0.9A w.t.net f u 483.6kN < 0.9 A w.t.net A f.net f u 0.5A w kN < A w.net h w t w n w.t.w t w 4039.mm 611kN 0.5A w A f.net Rupe u zategnutom delu rebra ne mogu se zanemari! 118.5kN

9 f u A w.red 0.9A w.net 4455mm ali < A γ w 500mm M t w.red A w.red h w 9.5mm Momenat nosivos oslabljenog preseka Zanemaruje se pomeranje težišta preseka i neutralne ose, usled slabljenja rupama za spojna sredstva, pri proračunu geometrijskih karakteristika oslabljenog preseka! h w t f.red h w t f h w W pl.red A f.red A f t w.red cm 3 4 M u.net.rd W pl.red 456.kNm M Ed M u.net.rd.3 Proračun broja zavrtnjeva na nožicama profila d mm.f 4mm A b d π 380.1mm A 4 s 303mm b 640MPa f ub 800MPa Nosivost pojedinačnog zavrtnja na proklizavanje k s 1 m μ 0.5 F p.c 0.7f ub A s kN F 1.s.Rd k s mμ F γ p.c M kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Nožica: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina nožice 50mm e 35mm p 1 70mm p 130mm t f 16mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 k 1 α b f u dt f F 1.b.f.Rd kN Spoljašnje podvezice na nožicama: Ovde je, radi pojednostavljenja, pri određivanju nosivosti usvojeno da je nosivost svih zavrtnjeva jednaka minimalnoj, što je na strani sigurnosti! krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezice 50mm e 35mm p 1 70mm p 130mm t p.ft 1mm p e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.ps.Rd k 1 α b f u dt p.ft 15.84kN 0.694

10 Unotrašnje podvezice na nožicama: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje p nije od interesa na unutrešnjoj podvezici! 50mm e 35mm p 1 70mm e f k 1 min ub p α b min 1 f u 3d 0 4 3d 0 F 1.b.pu.Rd k 1 α b f u dt p.ft 15.84kN 167.8kN F 1.b.Rd min F 1.b.f.Rd min F 1.b.ps.Rd F 1.b.pu.Rd Nosivost zavrtnjeva na nožicama u smičućem spoju kategorije C F 1.f.Rd 135.7kN min F 1.s.Rd F 1.b.Rd n f 5. F 1.f.Rd - potreban broj zavrtnjeva sa jedne strane montažnog nastavka Usvaja se 6 M (sa punom silom prednaprezanja).4 Proračun broja zavrtnjeva na rebru profila d 16mm.w 18mm A b d π 01.1mm A 4 s 157mm Nosivost pojedinačnog zavrtnja na proklizavanje k s 1 m μ 0.5 F p.c 0.7f ub A s 87.9kN F 1.s.Rd k s mμ F γ p.c M3 70.3kN Nosivost pojedinačnih zavrtnjeva na prisak po omotaču rupe Rebro: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina rebra 75mm e 35mm p 1 50mm p 50mm t w 10.mm p e k 1 min α b min F 1.b.w.Rd k 1 α b f u dt w 69.5kN f ub p 1 1 f u 3d d Podvezice na rebru: krajnje rastojanje ivično rastojanje međurastojanje međurastojanje debljina podvezica 35mm e 35mm p 1 50mm p 50mm t p.w 10mm p e k 1 min α b min f ub p 1 1 f u 3d d

11 F 1.b.p.Rd k 1 α b f u dt p.w 130.7kN F 1.b.Rd 69.5kN min F 1.b.w.Rd F 1.b.p.Rd Nosivost zavrtnjeva na rebru u smičućem spoju kategorije C F 1.w.Rd 69.54kN min F 1.s.Rd F 1.b.Rd Rezultujuća sila u najopterećenijem zavrtnju usled dejstva smičuće sile i momenta na rebru Pretpostavlja se veza na rebru prema crtežu u prilogu! n 1 8 n 3 n n 1 n 4 h max b max 350mm 150mm h max.333 > b max e w 85mm - rastojanje najudaljenijih zavrtnjeva u pravcu dejstva sile (visina veze) - rastojanje najudaljenijih zavrtnjeva upravno na pravcu dejstva sile (širina veze) Prema pretpostavljenom rasporedu veza je visoka (h / b > )! Proračun sila u zavrtnjevima usled dejstva momenta na rebru se vrši prema ekvatorijalnom momentu inercije! - ekscentricitet veze prema pretpostavljenom rasporedu F V V w.ed n 8.33kN - sila u zavrtnjevima usled smicanja 6 F M.max M w.ed V w.ed e w n n 1 n 1 1 p 1 Rezultujuća sila u najopterećenijem zavrtnju 65kN F w.max.ed F V F M.max 65.57kN < F 1.w.Rd 69.54kN.5 Kontrola nosivos podvezica Zategnuta nožica (obostrane podvezice) b ps.ft 00mm b pu.ft 70mm t p.ft 1mm A p.ft b ps.ft b pu.ft t p.ft 4080mm A p.ft.net b ps.ft b pu.ft n 1.f.f t p.ft 98mm N p.ft.net.rd min 0.9A p.ft.net f u Prisnuta nožica (obostrane podvezice) A p.ft kN b ps.fc b ps.ft 00mm b pu.fc b pu.ft 70mm t p.fc 10mm A p.fc b ps.fc b pu.fc t p.fc 3400mm - sila u najopterećenijem zavrtnju usled momenata savijanja Usvaja se: 4 M (sa punom silom prednaprezanja) 0.9 N p.ft.net.rd - na pritisnutoj nožici se može usvojiti tanja podvezica jer nema slabljenja rupama! N p.fc.rd A p.fc 799kN N fc.ed N p.fc.rd

12 Zbog ne tako velike razlike u debljinama podvezica na prisnutoj i zategnutoj nožici, usvajaju se iste debljine podvezica u obe zone! t p.fc t p.ft 1mm Rebro (obostrane podvezice) h p.w 40mm t p.w 10mm - pretpostavlja se da su podvezice na rebru klase 3 A p.w h p.w t p.w 8400mm h p.w tp.w W p.w 6 A p.w 3 V w.ed V p.w.rd kn V p.w.rd mm 3 M p.w.rd W p.w 13818kNcm M w.ed V w.ed e w M p.w.rd

13

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

FUNDIRANJE (TEMELJENJE)

FUNDIRANJE (TEMELJENJE) 1/11/013 FUNDIRANJE 1 FUNDIRANJE (TEMELJENJE) 1. Projektovanje temelja se vrši prema graničnom stanju konstrukcije i tla ispod ojekta sa osvrtom na ekonomski faktor u pogledu utroška materijala, oima radova

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση 9 ποκατάσταση συνέχειας καμπτόμενης δοκού χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260 ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 Έργο Υπολογισμός συνδέσεων ροπής COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Σύνδεση_Έδραση_Ορ0_Κ3_MTC.tss - Σελίδα 2/11 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Ρόλος συνδέσεων στις μεταλλικές κατασκευές

Ρόλος συνδέσεων στις μεταλλικές κατασκευές Ρόλος συνδέσεων στις μεταλλικές κατασκευές Σύνδεση μελών κατασκευής μεταξύ τους Ασφαλής μεταφορά εντατικών μεγεθών από μέλος σε μέλος Απαιτήσεις: Ασφάλεια Κατασκευασιμότητα Συνέπεια με υπολογιστικό προσομοίωμα

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 4 Δικτύωμα πεζογέφυρας Αποκατάσταση συνέχειας εφελκυόμενου κάτω πέλματος με κοχλίες Α, Β, C

Σιδηρές Κατασκευές ΙΙ Άσκηση 4 Δικτύωμα πεζογέφυρας Αποκατάσταση συνέχειας εφελκυόμενου κάτω πέλματος με κοχλίες Α, Β, C ιδηρές ατασκευές Άσκηση Δικτύωμα πεζογέφυρας ποκατάσταση συνέχειας εφελκυόμενου κάτω πέλματος με κοχλίες, Β, C χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

ЈЕДНОСТЕПЕНИ РЕДУКТОР

ЈЕДНОСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ЈЕДНОСТЕПЕНИ РЕДУКТОР Милош Мајсторовић 9 4 4 40 0 4 0 0 9 0 0 0 4 4 St.iz. Izmene Datum Ime Datum bradio 0.09.04 Milos dobrio Masa: Jednostepeni reduktor znaka: JR.00.00

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

Solar 3000 TF / Solar 4000 TF

Solar 3000 TF / Solar 4000 TF 6720616592.00-1.SD Ορθοστάτης για επίπεδους συλλέκτες Solar 3000 TF / Solar 4000 TF GR Οδηγίες συναρμολόγησης για τον ειδικό 2 Περιεχόμενα GR Περιεχόμενα 1 Επεξήγηση συμβόλων και υποδείξεις ασφαλείας 3

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja...

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja... 1 1 S A D R Ž A J 1.0 OPIS SISTEMA 1.1 Opšti podaci... 2 1.2 Čelik za prednaprezanje... 2 1.3 Kotve i kablovi... 2 1.4 Oprema... 3 1.5 Gubici sile prednaprezanja... 3 1.5.1 Uvlačenje klina... 4 1.5.2 Elastično

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez

Διαβάστε περισσότερα

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία :.09.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Μεταλλικές κατασκευές

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA d.o.o Radnicka bb 32240 LU ČANI SRBIJA TR: 205-68352-90; MB: 17533606; PIB: 103195754; E-mail:

Διαβάστε περισσότερα

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA KONOP ZA ŠKOTE RACE - materijal jezgra dyneema na 16 struka, izvana poliester na 32 struka - za dizanje i spuštanje jedara, otporan na habanje, mala rastezljivost CRVENO/ PlAVO/ TF30 05000 TF33 05000 5

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 13: Αντισεισμικός σχεδιασμός στεγάστρου με οριζόντιους και κατακόρυφους συνδέσμους δυσκαμψίας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr. Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S.

1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr. Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 2: Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 2: Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση : Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM STROPNI PROGRAM TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi Proizvodi Tehničke

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR KGV Šutalo d.o.o. Vukovarska 14 34308 Jakšić, Hrvatska +385 34 257 734 info@kgv-sutalo.hr OIB VAT ID: HR06692893248 grijač za bojler 1 1/4 ravni / water heating element 1 1/4 straight RTS12 1200W/230V

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών Τ.Ε.Ι. ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΣΚΗΣΕΙΣ ΣΤΤΙΚΗΣ I ιαγράμματα M, Q, N Ισοστατικών οκών Κόκκινος Τριαντ., Ph.D. εκέμβριος 2010 σκήσεις Στατικής I 1 Άσκηση 1 60 N/m 180

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος... 9. Κεφάλαιο 1 Εισαγωγή... 13. Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος... 9. Κεφάλαιο 1 Εισαγωγή... 13. Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Novine koje oduševljavaju profesionalce

Novine koje oduševljavaju profesionalce Priručnik Novine koje oduševljavaju profesionalce Injekcioni malter FIS VT 300 T Čvrsti injekcioni malter za ankerisanje u nenapukli beton, sada u novoj veličini patrone. Anker visokih performansi FH II

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

uscita aria uscita acqua acqua uscita ingresso acqua ingresso ingresso aria

uscita aria uscita acqua acqua uscita ingresso acqua ingresso ingresso aria Τεχνικό εγχειρίδιο 2x1 για συστήµατα κλιµατισµού GR Μονάδες 2x1 ΠΕΡΙΕΧΟΜΕΝΑ 3. Η ιδέα 4. Κατασκευαστικά χαρακτηριστικά 5. Τεχνικά χαρακτηριστικά 5. ιαστάσεις 6. Λειτουργία ψύξης 2σωλήνιο σύστηµα 7. Λειτουργία

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η Πλάκες 1 ο μάθημα εργαστηρίου 1 Άσκηση 1 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Δομή - Βασικές Αρχές Ιούνιος 2009 Περιεχόμενα παρουσίασης Μέρη Ευρωκώδικα 3 Βασικές έννοιες o o o o o o o o Μηχανική συμπεριφορά δομικού χάλυβα Ποιότητες δομικού χάλυβα Σύγκριση χάλυβα με άλλα δομικά υλικά

Διαβάστε περισσότερα

13SYMV

13SYMV «..», 5.7.2013, : 1 ι ιω,!ιι &!ι "ι, "# # 16 ι ωι #ι # $,. ω ι!ι,!,. ι%" &ι, ' ι, "# (! 40,! «%"» ι!) #* : 1. + (+/,--/77443/2012/10.08.2010 # ι! ι.//',-+/,--/77444/4667/2062/03.08.2012 # ι ω!ωι!. 2. +.

Διαβάστε περισσότερα

PRILOG 1 PRAVILNIK BAB 87

PRILOG 1 PRAVILNIK BAB 87 PRILOG 1 PRAVILNIK BAB 87 PRILOG 1.1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON I OPŠTE ODREDBE 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Folder: _EC3 Bolted connections

Folder: _EC3 Bolted connections Folder: _EC3 Bolted connections Euro-Code 3 Bolted connections Bolted angilar connection: Dimensions of connection: Plate thickness d = 15,00 mm Bolt spacing e = 35,00 mm Spacing of bolts e o = 30,00 mm

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

Η ιπταμένη τέφρα ως υλικό υποβάσεων οδοστρωμάτων

Η ιπταμένη τέφρα ως υλικό υποβάσεων οδοστρωμάτων Πρακτικά 2ου Πανελληνίου Συνεδρίου για την Αξιοποίηση των Βιομηχανικών Παραπροϊόντων στη Δόμηση, ΕΒΙΠΑΡ, Αιανή Κοζάνης, 1-3 Ιουνίου 2009 Η ιπταμένη τέφρα ως υλικό υποβάσεων οδοστρωμάτων Ι. Παπαγιάννη,

Διαβάστε περισσότερα

Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι. Βάγιας Γ. Ιωαννίδης Χ. Γαντές Ι. Μαλλής Ξ. Λιγνός Ι. Βασιλοπούλου Α. Σπηλιόπουλος

Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι. Βάγιας Γ. Ιωαννίδης Χ. Γαντές Ι. Μαλλής Ξ. Λιγνός Ι. Βασιλοπούλου Α. Σπηλιόπουλος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι. Βάιας Γ. Ιωαννίδης Χ. Γαντές Διάρκεια ώρες και

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору:

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору: СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ ПЛАНЕТАРНИ РЕДУКТОР Подаци о редуктору: Број зубаца погонског зупчаника Z = 20 Број зубаца гоњеног зупчаника Z2 = 40 Нагиб бока зупца β = 0 Померање профила х = 0 Преносни

Διαβάστε περισσότερα

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch)

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch) A B C D E F G STOLICE Naziv Visina (inch) Širina (inch) Dubina (inch) AQ1000002 SKIPPER SKLOPIVA STOLICA BIJELA SA BIJELIM JASTUKOM 18 20 17 A AQ1000025 SKIPPER SKLOPIVA STOLICA,BIJELA SA BIJELO PLAVIM

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07

Διαβάστε περισσότερα

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ. Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΡΙΩΡΟΦΟΥ ΚΤΗΡΙΟΥ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΚΑΙ ΜΕΤΑΛΛΙΚΟ

ΜΕΛΕΤΗ ΤΡΙΩΡΟΦΟΥ ΚΤΗΡΙΟΥ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΚΑΙ ΜΕΤΑΛΛΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΝ Πτυχιακή διατριβή ΜΕΛΕΤΗ ΤΡΙΩΡΟΦΟΥ ΚΤΗΡΙΟΥ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΚΑΙ ΜΕΤΑΛΛ ΛΙΚΟ Σιαθάς Γεώργιος Λεμεσός 2014 1 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 4: Δικτύωμα πεζογέφυρας Αποκατάσταση συνέχειας εφελκυόμενου κάτω πέλαμτος με κοχλίες Α, Β, C Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από Τ.Ε.Ι. Τμήμα Κατασκευές ΣΕΡΡΩΝ Πολιτικών Οπλισμένου Δομικών Σκυροδέματος Έργων ΥΠΟΛΟΓΙΣΜΟΣ Ι Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.(σχήμα 4.1) και από Β προκύπτει d1cnom+øw+øl/

Διαβάστε περισσότερα

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Περιεχόμενα Πρόλογος... 7 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση... 9 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση ανέμου... 7 3

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

Construction. Κονίαμα ενός συστατικού για επισκευή και ενίσχυση σε τοιχοποιίες φέρουσες και πληρώσεως EN 998-1 EN 998-2 EN 1504-3. Περιγραφή Προϊόντος

Construction. Κονίαμα ενός συστατικού για επισκευή και ενίσχυση σε τοιχοποιίες φέρουσες και πληρώσεως EN 998-1 EN 998-2 EN 1504-3. Περιγραφή Προϊόντος Construction Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 18/06/2015 (v2) Κωδικός: 08.05.020 Αριθμός Ταυτοποίησης: 010302040010000080 EN 998-1 EN 998-2 EN 1504-3 13 0546 Κονίαμα ενός συστατικού για επισκευή και ενίσχυση

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Vežba br. 5. Čelična užad za potrebe rudarstva

Vežba br. 5. Čelična užad za potrebe rudarstva Vežba br. 5 Čelična užad za potrebe rudarstva Osobine užadi relativno mala masa po dužnom metru, velika nosivost i gipkost, omogućuju rad sa velikim brzinama jer rade mirno i bešumno, kod preopterećenja

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα