Τεχνικές αριστοποίησης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνικές αριστοποίησης"

Transcript

1 ΚΕΦΑΛΑΙΟ 9 Τεχνικές αριστοποίησης Εισαγωγή Τα µοντέλα αριστοποίησης, ευρέως γνωστά ως µοντέλα µαθηµατικού προγραµµατισµού, είναι αναµφίβολα η δηµοφιλέστερη τεχνική λήψης αποφάσεων στο χώρο της Επιχειρησιακής Έρευνας. Τα µοντέλα αριστοποίησης χρησιµοποιούνται κυρίως για την άριστη κατανοµή πόρων µεταξύ εναλλακτικών δραστηριοτήτων, κάτω από συνθήκες βεβαιότητας. ηλαδή, τα µοντέλα αριστοποίησης επικεντρώνονται στον εντοπισµό του άριστου προγράµµατος, µε το οποίο κατανέµονται κατά τον καλύτερο δυνατό τρόπο οι περιορισµένοι διαθέσιµοι πόροι ή µέσα µιας οικονοµικής µονάδας στις ανταγωνιστικές δραστηριότητές της, ώστε να ικανοποιούνται οι προκαθορισµένοι στόχοι της. Χαρακτηριστικά προβλήµατα απόφασης αυτής της µορφής είναι τα ακόλουθα: Η κατανοµή σε διάφορες παραγωγικές διαδικασίες του εργατικού δυναµικού, του τεχνολογικού εξοπλισµού και των πρώτων υλών. Η κατανοµή του κεφαλαίου σε διάφορα επενδυτικά σχέδια. Ο προγραµµατισµός της διακίνησης των προϊόντων µιας επιχείρησης προς τους πελάτες της. Η κατανοµή υδατικών πόρων σε διάφορες ανταγωνιστικές χρήσεις. Το επιδιωκόµενο αποτέλεσµα αυτών των αποφάσεων µπορεί να αφορά τη µεγιστοποίηση του συνολικού κέρδους από πωλήσεις, την ελαχιστοποίηση του συνολικού κόστους παραγωγής, την ελαχιστοποίηση των αρνητικών επιπτώσεων στο περιβάλλον, κ.λ.π. Το κεφάλαιο αυτό αποτελεί µια εισαγωγή στις τεχνικές αριστοποίησης. Εξετάζονται ορισµένα χαρακτηριστικά προβλήµατα αριστοποίησης,

2 198 Κεφάλαιο 9 παρουσιάζεται ο τρόπος χειρισµού τους στο περιβάλλον του Excel και δίνεται έµφαση στη χρήση του ισχυρού εργαλείου «Επίλυση» (Solver) που παρέχει το Excel για την ανεύρεση της άριστης λύσης. Θεωρητικές έννοιες Ένα µοντέλο αριστοποίησης αποτελείται από µια αντικειµενική συνάρτηση και από ένα σύνολο περιορισµών. Η αντικειµενική συνάρτηση εκφράζει το στόχο που επιχειρείται να µεγιστοποιηθεί ή να ελαχιστοποιηθεί και είναι µια σχέση µεταξύ µιας ή περισσοτέρων µεταβλητών που ονοµάζονται µεταβλητές απόφασης. Οι περιορισµοί (δυναµικότητας, διαθεσιµότητας πόρων, τεχνολογίας, κ.λ.π.) εκφράζουν τους περιορισµούς του περιβάλλοντος στο οποίο αναπτύσσεται η δραστηριότητα. Κάθε συνδυασµός τιµών που µπορούν να λάβουν οι µεταβλητές απόφασης ονοµάζεται λύση του προβλήµατος. Όταν οι τιµές αυτές ικανοποιούν τους περιορισµούς του προβλήµατος, η λύση ονοµάζεται εφικτή λύση. Ανάλογα µε τη µορφή της αντικειµενικής συνάρτησης και των περιορισµών, ο µαθηµατικός προγραµµατισµός διακρίνεται στις ακόλουθες κατηγορίες: Γραµµικός προγραµµατισµός, όπου τόσο η αντικειµενική συνάρτηση όσο και οι περιορισµοί είναι γραµµικές σχέσεις. Ακέραιος προγραµµατισµός, όπου οι µεταβλητές απόφασης µπορούν να πάρουν µόνο ακέραιες τιµές ή αναπαριστούν αποφάσεις «λογικής» και όχι φυσικά µεγέθη. Μη γραµµικός προγραµµατισµός, όπου κάποιες από τις συναρτήσεις του προβλήµατος (αντικειµενική συνάρτηση, περιορισµοί) είναι µη-γραµµικές. Παραδοσιακά, τα προβλήµατα αριστοποίησης παρουσιάζονται µε τη µορφή αλγεβρικών µοντέλων, όπου η αντικειµενική συνάρτηση και οι περιορισµοί διατυπώνονται ως αλγεβρικές εξισώσεις και ανισώσεις µεταξύ των µεταβλητών απόφασης. Ο χειρισµός προβληµάτων αριστοποίησης µε τη βοήθεια του Excel απαιτεί ένα διαφορετικό τρόπο διατύπωσης. Αντί της χρήσης µαθηµατικών συµβόλων για την αναπαράσταση των µεταβλητών απόφασης και αλγεβρικών σχέσεων για τον καθορισµό της αντικειµενικής συνάρτησης και των περιορισµών, ένα µοντέλο αριστοποίησης στο Excel στηρίζεται αποκλειστικά στη χρήση κελιών ενός υπολογιστικού φύλλου και κατάλληλων τύπων που εισάγονται σ αυτά. Για την επίλυση του µοντέλου και την ανεύρεση της βέλτιστης λύσης, το Excel διαθέτει ένα ισχυρό εργαλείο, το Solver.

3 Τεχνικές αριστοποίησης 199 Επίλυση προβληµάτων αριστοποίησης µε το Excel Εξετάζεται ένα απλό πρόβληµα παραγωγής και παρουσιάζεται ο τρόπος κατάστρωσης και επίλυσής του µε τη βοήθεια του Excel. Προβλήµατα του τύπου αυτού εµφανίζονται συχνά όταν µια σειρά πόρων (πρώτες ύλες, εργατικά, κλπ.) καταναλώνονται για την παραγωγή ενός αριθµού προϊόντων. Με την εφαρµογή µεθόδων αριστοποίησης είναι δυνατό να καθοριστεί ο βέλτιστος συνδυασµός πόρων που οδηγεί σε µεγιστοποίηση του κέρδους ή ελαχιστοποίηση του κόστους παραγωγής. Μία βιοτεχνία επίπλων κατασκευάζει τέσσερα είδη τραπεζιών. Κάθε τραπέζι απαιτεί έναν αριθµό ωρών λειτουργίας της µηχανής παραγωγής, έναν αριθµό ανθρωποωρών και έναν αριθµό µονάδων ξύλου. Στον πίνακα 9.1 παρουσιάζονται οι απαιτήσεις αυτές και το κέρδος (σε ) από την πώληση κάθε τραπεζιού. Για την επόµενη εβδοµάδα, η βιοτεχνία διαθέτει 400 ώρες λειτουργίας της µηχανής, 600 ανθρωποώρες και µονάδες ξύλου. Η αγορά θέτει ορισµένους περιορισµούς σχετικά µε το µέγιστο αριθµό τραπεζιών που µπορούν να πουληθούν. Συγκεκριµένα, είναι αδύνατο να πουληθούν πάνω από 100 τραπέζια τύπου 1, 200 τραπέζια τύπου 2, 50 τραπέζια τύπου 3 και 100 τραπέζια τύπου 4. Το πρόβληµα είναι η ανεύρεση του αριθµού των τραπεζιών κάθε τύπου που πρέπει να παραχθούν ώστε να µεγιστοποιηθεί το κέρδος της βιοτεχνίας. Πίνακας 9.1 Απαιτήσεις πόρων και µοναδιαία κόστη τραπεζιών. Τύπος Τραπεζιού Ώρες Μηχανής Ανθρωποώρες Μονάδες Ξύλου Μοναδιαίο Κέρδος Τραπέζι Τραπέζι Τραπέζι Τραπέζι Αλγεβρική διατύπωση Πριν παρουσιαστεί ο τρόπος επίλυσης του προβλήµατος µε το Excel, δίνεται η κλασική διατύπωσή του σε αλγεβρική µορφή. Αν µε x, 1 x και 2, x3 x 4 συµβολιστεί ο αριθµός των παραγόµενων τραπεζιών κάθε τύπου, το πρόβληµα διατυπώνεται ως ακολούθως:

4 200 Κεφάλαιο 9 Να µεγιστοποιηθεί η συνάρτηση: Υπό τους περιορισµούς: 50 x x2 + 36x3 + 25x 4 (9.1) 2x1 + x2 + 3x3 + 2x4 400 (ώρες µηχανής) (9.2) 4x1 + 2x2 + x3 + 2x x1 + 2x2 + x3 + 2x (ανθρωποώρες) (9.3) (µονάδες ξύλου) (9.4) x1 100 (πωλήσεις τραπεζιού 1) (9.5) x2 200 (πωλήσεις τραπεζιού 2) (9.6) x3 50 (πωλήσεις τραπεζιού 3) (9.7) x4 100 (πωλήσεις τραπεζιού 4) (9.8) x,x,x,x (µη-αρνητικοί περιορισµοί) (9.9) Η σχέση (9.1) αντιπροσωπεύει το συνολικό κέρδος από την πώληση των τραπεζιών και είναι η αντικειµενική συνάρτηση. Οι µεταβλητές x, 1 x 2, x3 και x 4 αποτελούν τις µεταβλητές απόφασης. Οι υπόλοιπες ανισότητες αντιπροσωπεύουν τους περιορισµούς του προβλήµατος. Στάδια επίλυσης Η επίλυση ενός προβλήµατος αριστοποίησης µε τη βοήθεια του Excel περιλαµβάνει τα ακόλουθα στάδια: 1. Κατάστρωση του µοντέλου. Αφορά στην εισαγωγή, µε κατάλληλο τρόπο, των δεδοµένων εισόδου του προβλήµατος, των δοκιµαστικών τιµών των µεταβλητών απόφασης και των τύπων που υπολογίζουν την τιµή της αντικειµενικής συνάρτησης και των περιορισµών. Η διευθέτηση των στοιχείων αυτών στο φύλλο εργασίας δεν είναι απαραίτητο να ακολουθεί τον τρόπο αλγεβρικής διατύπωσης του προβλήµατος. 2. Χρήση του Solver. Ορίζονται, το κελί που αντιπροσωπεύει την αντικειµενική συνάρτηση, τα κελιά που αντιπροσωπεύουν τις µεταβλητές σχεδιασµού και οι περιορισµοί του προβλήµατος. Ο

5 Τεχνικές αριστοποίησης 201 Σχήµα 9.1 Το µοντέλο του προβλήµατος παραγωγής τραπεζιών. Solver υπολογίζει τις βέλτιστες τιµές των µεταβλητών σχεδιασµού και τις αντικαθιστά στα αντίστοιχα κελιά. Το στάδιο αυτό είναι συνήθως απλό, προϋποθέτει όµως τη σωστή κατάστρωση του µοντέλου στο πρώτο στάδιο. Κατάστρωση του µοντέλου Στο σχήµα 9.1 παρουσιάζεται το µοντέλο του προβλήµατος διάθεσης πόρων που παρουσιάστηκε παραπάνω (αρχείο BLEND.XLS). Συνίσταται από τα ακόλουθα στοιχεία: εδοµένα εισόδου. Στην περιοχή Β5:Ε8 εισάγονται οι απαιτήσεις πόρων για κάθε τραπέζι και τα αντίστοιχα µοναδιαία κέρδη. Στην περιοχή Β14:Ε14 εισάγονται οι τιµές ζήτησης κάθε τραπεζιού. Τέλος, στα κελιά D18:D20 εισάγονται οι διαθέσιµες ποσότητες για κάθε πόρο. Επίπεδα παραγωγής. Στα κελιά Β12:Ε12 εισάγονται τυχαίες τιµές για τις µεταβλητές απόφασης (αριθµός παραγόµενων τραπεζιών κάθε τύπου). Μπορούν να χρησιµοποιηθούν οποιεσδήποτε τιµές, ακόµη και

6 202 Κεφάλαιο 9 αν δεν ικανοποιούνται οι περιορισµοί του προβλήµατος. Ο Solver θα υπολογίσει τις βέλτιστες τιµές. Χρήση πόρων. Στο κελί Β18 εισάγεται ο τύπος: =SUMPRODUCT(B5:E5;$B$12:$E$12) και αντιγράφεται προς τα κάτω µέχρι το κελί Β20. Ο παραπάνω τύπος υπολογίζει το συνολικό αριθµό ωρών λειτουργίας της µηχανής που απαιτείται για το τρέχον επίπεδο παραγωγής. Αντίστοιχα, οι τύποι στα κελιά Β19 και Β20 υπολογίζουν το συνολικό αριθµό ανθρωποωρών και µονάδων ξύλου. Κέρδη. Στο κελί Β24 εισάγεται ο τύπος =B8*B12 και αντιγράφεται προς τα δεξιά µέχρι το κελί Ε24. Οι τύποι αυτοί υπολογίζουν τα κέρδη για κάθε τύπο τραπεζιού. Επίσης, στο κελί F24 υπολογίζεται το συνολικό κέρδος, εισάγοντας τον τύπο: =SUM(B24:E24) Η τιµή που προκύπτει αντιπροσωπεύει την τιµή της αντικειµενικής συνάρτησης για το τρέχον επίπεδο παραγωγής. Μετά την κατάστρωση του µοντέλου είναι δυνατή (και χρήσιµη) η µεταβολή των τιµών των µεταβλητών απόφασης και η εξέταση των αλλαγών που επιφέρουν αυτές οι µεταβολές. Η πρακτική αυτή στοχεύει τόσο στην κατανόηση της συµπεριφοράς του µοντέλου όσο και στον έλεγχο της ορθότητάς του. Για παράδειγµα, µπορεί να επιχειρηθεί η ανεύρεση της βέλτιστης λύσης µε δοκιµή και σφάλµα. Για το λόγο αυτό, στα κελιά Β12:Ε12, που αντιστοιχούν στις µεταβλητές απόφασης, δίνονται αρχικές τιµές ίσες µε 0. Προφανώς, όταν η συνολική παραγωγή είναι µηδενική θα είναι µηδενικά και τα συνολικά κέρδη. Επειδή τα τραπέζια τύπου 1 επιφέρουν το µεγαλύτερο κέρδος ανά µονάδα, είναι λογικό να προτιµηθούν έναντι των υπολοίπων. Έτσι στο κελί Β12 εισάγεται η τιµή 100, όση είναι η µεγαλύτερη ποσότητα που µπορεί να παραχθεί. Από τις τιµές των κελιών Β18:Β20 προκύπτει ότι κανένας από τους πόρους δεν έχει ακόµη εξαντληθεί. Ο επόµενος τύπος τραπεζιού µε το µεγαλύτερο περιθώριο κέρδους είναι ο τύπος 3. Έτσι, στο κελί D12 εισάγεται η τιµή 50 (η µέγιστη δυνατή ποσότητα που µπορεί να παραχθεί). Οι διαθέσιµοι πόροι δεν έχουν ακόµη εξαντληθεί, εποµένως είναι δυνατή η παραγωγή µερικών τραπεζιών τύπου 4 (του επόµενου τύπου µε το µεγαλύτερο περιθώριο κέρδους). Τώρα όµως, ο µέγιστος αριθµός τραπεζιών που µπορεί να παραχθεί είναι 25, επειδή έτσι εξαντλούνται πλήρως οι

7 Τεχνικές αριστοποίησης 203 Σχήµα 9.2 Προσπάθεια επίτευξης βέλτιστης λύσης µε δοκιµή και σφάλµα. διαθέσιµες ώρες µηχανής. Η λύση αυτή παρουσιάζεται στο σχήµα 9.2, απ όπου φαίνεται ότι το συνολικό κέρδος είναι ίσο µε Το ερώτηµα που τίθεται είναι αν η παραπάνω λύση, η οποία προέκυψε µε δοκιµή, είναι η βέλτιστη. Όπως θα φανεί στη συνέχεια, η απάντηση είναι όχι. Ακόµη και σε ένα απλό πρόβληµα όπως το συγκεκριµένο, είναι δύσκολη η ανεύρεση της βέλτιστης λύσης διαισθητικά. Η αιτία για την αποτυχία της παραπάνω προσπάθειας βρίσκεται στο γεγονός ότι τα τραπέζια µε το µεγαλύτερο περιθώριο κέρδους µπορεί να καταναλώνουν µεγάλα ποσά πόρων τα οποία θα µπορούσαν να διατεθούν για την παραγωγή άλλων λιγότερων κερδοφόρων αλλά και µε λιγότερες απαιτήσεις πόρων τραπεζιών. Ο µόνος σίγουρος τρόπος ανεύρεσης της βέλτιστης λύσης είναι µε τη χρήση του Solver. Χρήση του Solver Ο Solver ενεργοποιείται από το µενού Tools και την επιλογή Solver. Το βασικό πλαίσιο διαλόγου του εργαλείου παρουσιάζεται στο σχήµα 9.3. Για

8 204 Κεφάλαιο 9 Σχήµα 9.3 Το πλαίσιο διαλόγου του Solver για το πρόβληµα παραγωγής τραπεζιών. την ανεύρεση της άριστης λύσης στο συγκεκριµένο πρόβληµα εισάγονται οι ακόλουθες πληροφορίες: Set Target Cell. Εισάγεται το κελί που αντιστοιχεί στην αντικειµενική συνάρτηση, η τιµή του οποίου πρόκειται να µεγιστοποιηθεί: F24 Equal To. Επιλέγεται το είδος της αριστοποίησης (µεγιστοποίηση ή ελαχιστοποίηση). Στο συγκεκριµένο παράδειγµα επιθυµείται η µεγιστοποίηση του κόστους και για το λόγο αυτό ενεργοποιείται η επιλογή Max. By Changing Cells. Εισάγονται τα κελιά που αντιστοιχούν στις µεταβλητές απόφασης: B12:E12 Subject to the Constraints. Εισάγονται οι περιορισµοί του προβλήµατος. Πατώντας το κουµπί Add εµφανίζεται ο διάλογος εισαγωγής περιορισµών, µε τη βοήθεια του οποίου καταστρώνονται οι περιορισµοί του προβλήµατος: B12:E12 <= B14:E14 B18:B20 <= D18:D20 Η πρώτη ανισότητα αντιστοιχεί στους περιορισµούς της ζήτησης (σχέσεις 9.5 έως 9.8) ενώ η δεύτερη στους περιορισµούς διάθεσης των πόρων (σχέσεις 9.2 έως 9.4). Στο σχήµα 9.4 παρουσιάζεται το πλαίσιο διαλόγου εισαγωγής των περιορισµών.

9 Τεχνικές αριστοποίησης 205 Σχήµα 9.4 Το πλαίσιο διαλόγου εισαγωγής περιορισµών. Options. Με το κουµπί αυτό εµφανίζεται ένα πλαίσιο διαλόγου µέσω του οποίου ορίζονται οι παράµετροι επίλυσης (σχήµα 9.5). Για το συγκεκριµένο πρόβληµα ενεργοποιούνται οι επιλογές Assume Linear Model και Assume Non-Negative. Με την πρώτη επιλογή πληροφορείται ο Solver ότι το πρόβληµα είναι γραµµικό (στην πράξη, το γεγονός αυτό έχει ως αποτέλεσµα τη χρήση του πολύ αποδοτικού αλγορίθµου simplex). Με τη δεύτερη επιλογή εξασφαλίζεται ότι τα κελιά που αντιστοιχούν στις µεταβλητές σχεδιασµού δεν θα πάρουν αρνητικές τιµές (περιορισµοί 9.9). Σχήµα 9.5 Το πλαίσιο διαλόγου των παραµέτρων του Solver. Μετά την εισαγωγή των απαραίτητων πληροφοριών και πατώντας το κουµπί Solve, ο Solver επιλύει το πρόβληµα εφαρµόζοντας µια επαναληπτική µαθηµατική διαδικασία και εµφανίζει το ακόλουθο µήνυµα:

10 206 Κεφάλαιο 9 Σχήµα 9.6 Το µήνυµα του εργαλείου Solver για την ανεύρεση της βέλτιστης λύσης. Ενεργοποιώντας την επιλογή Keep Solver Solution, τα κελιά που αντιστοιχούν στις µεταβλητές απόφασης παίρνουν τις βέλτιστες τιµές. Τα τελικά αποτελέσµατα παρουσιάζονται στο σχήµα 9.7. Σχήµα 9.7 Η τελική µορφή του φύλλου εργασίας µε τη βέλτιστη λύση του προβλήµατος παραγωγής τραπεζιών.

11 Τεχνικές αριστοποίησης 207 Το βέλτιστο πρόγραµµα αντιστοιχεί στην παραγωγή 100 τραπεζιών τύπου 1, 80 τραπεζιών τύπου 2, 40 τραπεζιών τύπου 3 και κανενός τραπεζιού τύπου 4. Το συνολικό κέρδος που αντιστοιχεί στο παραπάνω επίπεδο παραγωγής είναι ίσο µε Επίσης, για την παραγωγή των τραπεζιών καταναλώνονται όλες οι διαθέσιµες ώρες µηχανής και οι ανθρωποώρες. Όµως, απαιτούνται µόνο 800 µονάδες ξύλου από τις διαθέσιµες. Αριστοποίηση παραγωγής διυλιστηρίου Το παράδειγµα που εξετάζεται στη συνέχεια αποτελεί ένα σύνθετο πρόβληµα παραγωγής και αναφέρεται στην αριστοποίηση του προγράµµατος παραγωγής ενός διυλιστηρίου πετρελαίου. Ένα διυλιστήριο παράγει τρεις τύπους βενζίνης (Βενζίνη 1, Βενζίνη 2 και Βενζίνη 3). Για την παραγωγή κάθε τύπου βενζίνης χρησιµοποιείται ένα διαφορετικό µίγµα από τρεις τύπους αργού πετρελαίου (Αργό 1, Αργό 2 και Αργό 3). Στον πίνακα 9.2 δίνονται οι τιµές πώλησης κάθε βαρελιού βενζίνης ενώ στον πίνακα 9.3 το κόστος αγοράς, ο αριθµός οκτανίων και η περιεκτικότητα σε θείο κάθε τύπου αργού πετρελαίου. Οι τρεις τύποι βενζίνης που παράγονται διαφέρουν στον αριθµό οκτανίων και στην περιεκτικότητα σε θείο. Συγκεκριµένα, το µίγµα αργού πετρελαίου που χρησιµοποιείται για την παρασκευή βενζίνης τύπου 1 πρέπει να έχει µέση τιµή αριθµού οκτανίων τουλάχιστον ίση µε 10 και να περιέχει το πολύ 1% θείο. Το µίγµα αργού πετρελαίου που χρησιµοποιείται για την παρασκευή βενζίνης τύπου 2 πρέπει να έχει µέση τιµή αριθµού οκτανίων τουλάχιστον ίση µε 8 και να περιέχει το πολύ 2% θείο. Το µίγµα αργού πετρελαίου που χρησιµοποιείται για την παρασκευή βενζίνης τύπου 3 πρέπει να έχει µέση τιµή αριθµού οκτανίων τουλάχιστον ίση µε 6 και να περιέχει το πολύ 1% θείο. Η µετατροπή κάθε βαρελιού αργού πετρελαίου σε βενζίνη κοστίζει 4. Οι πελάτες του διυλιστηρίου είναι σε θέση να απορροφήσουν το πολύ βαρέλια βενζίνης τύπου 1, βαρέλια βενζίνης τύπου 2 και βαρέλια βενζίνης τύπου 3 την ηµέρα. Επίσης, το διυλιστήριο µπορεί να προµηθευτεί το πολύ βαρέλια την ηµέρα από κάθε είδος αργού πετρελαίου. Ζητείται το ηµερήσιο πρόγραµµα παραγωγής του διυλιστηρίου που µεγιστοποιεί τα συνολικά κέρδη.

12 208 Κεφάλαιο 9 Πίνακας 9.2 Τιµές πώλησης βενζίνης. Τύπος Βενζίνης Τιµή Βαρελιού Βενζίνη 1 62 Βενζίνη 2 53 Βενζίνη 3 44 Πίνακας 9.3 Κόστος και χαρακτηριστικά αργού πετρελαίου. Τύπος Αργού Κόστος Βαρελιού Αριθµός Οκτανίων Περιεχόµενο Θείο Αργό ,5% Αργό ,0% Αργό ,0% Λύση Το βέλτιστο πρόγραµµα παραγωγής βενζίνης είναι αυτό που µεγιστοποιεί τα καθαρά κέρδη υπό τους περιορισµούς της ζήτησης σε βενζίνη, της διαθεσιµότητας σε αργό και της ποιότητας του µίγµατος αργού σε αριθµό οκτανίων και περιεχόµενο θείο. Οι µεταβλητές απόφασης του προβλήµατος είναι ο αριθµός των βαρελιών κάθε τύπου αργού πετρελαίου που χρησιµοποιούνται για την παραγωγή κάθε τύπου βενζίνης. Κατά συνέπεια, ο συνολικός αριθµός των µεταβλητών απόφασης είναι εννιά. Θεωρείται ότι η ποιότητα (αριθµός οκτανίων και περιεκτικότητα σε θείο) ενός µίγµατος αργού πετρελαίου είναι γραµµική συνάρτηση της ποιότητας των τύπων αργού που χρησιµοποιούνται (γραµµική συνάρτηση ανάµιξης). Το µοντέλο του προβλήµατος βρίσκεται στο αρχείο REFINERY.XLS και παρουσιάζεται στο σχήµα 9.8. Στηρίζεται στα ακόλουθα στοιχεία: εδοµένα εισόδου. Στην περιοχή Β5:D7 εισάγονται τα στοιχεία που αφορούν στους τρεις τύπους αργού πετρελαίου, σύµφωνα µε τον πίνακα 9.3. Στην περιοχή Β10:D10 εισάγονται οι τιµές πώλησης κάθε τύπου βενζίνης σύµφωνα µε τον πίνακα 9.2. Στο κελί Β12 εισάγεται το µοναδιαίο κόστος µετατροπής του αργού σε βενζίνη. Στις περιοχές B27:D27 και G22:G24 εισάγονται τα επίπεδα ζήτησης βενζίνης και διαθεσιµότητας αργού πετρελαίου αντίστοιχα. Τέλος, στις περιοχές

13 Τεχνικές αριστοποίησης 209 Σχήµα 9.8 Το µοντέλο του προβλήµατος παραγωγής διυλιστηρίου. B33:D33 και B37:D37 εισάγονται οι περιορισµοί που αφορούν στον αριθµό οκτανίων και στην περιεκτικότητα σε θείο του µίγµατος αργού που χρησιµοποιείται για την παραγωγή κάθε τύπου βενζίνης. Επίπεδα παραγωγής. Στην περιοχή B22:D24 εισάγονται οι µεταβλητές απόφασης, δηλαδή ο αριθµός των βαρελιών από κάθε

14 210 Κεφάλαιο 9 τύπο αργού που χρησιµοποιούνται για την παραγωγή κάθε τύπου βενζίνης. Αρχικά στα κελιά αυτά εισάγονται κάποιες τυχαίες τιµές. Μοναδιαία κέρδη. Στην περιοχή B16:D18 υπολογίζονται τα καθαρά κέρδη που αντιστοιχούν στη µετατροπή ενός βαρελιού από κάθε τύπο αργού πετρελαίου για την παραγωγή ενός βαρελιού κάθε τύπου βενζίνης. Το µέγεθος αυτό είναι συνάρτηση του κόστους κάθε βαρελιού αργού πετρελαίου, της αξίας κάθε βαρελιού βενζίνης και του κόστους µετατροπής. Στο κελί Β16 εισάγεται ο τύπος: =B$10-$B5-$B$12 και αντιγράφεται µέχρι το κελί D18. Κατανάλωση αργού πετρελαίου. Στην περιοχή Ε22:Ε24 υπολογίζονται οι συνολικές καταναλισκόµενες ποσότητες από κάθε τύπο αργού πετρελαίου. Στο κελί Ε22 εισάγεται ο τύπος: =SUM(B22:D22) και αντιγράφεται µέχρι το κελί Ε24. Παραγωγή βενζίνης. Στην περιοχή B25:D25 υπολογίζονται οι συνολικές παραγόµενες ποσότητες από κάθε τύπο βενζίνης. Στο κελί Β25 εισάγεται ο τύπος: =SUM(B22:B24) και αντιγράφεται µέχρι το κελί D25. Αριθµός οκτανίων. Στην περιοχή B31:D31 υπολογίζονται οι αριθµοί οκτανίων των τριών µιγµάτων αργού πετρελαίου που χρησιµοποιούνται για την παραγωγή κάθε τύπου βενζίνης. Στο κελί Β31 εισάγεται ο τύπος: =SUMPRODUCT(B22:B24;$C$5:$C$7)/B25 και αντιγράφεται µέχρι το κελί D31. Περιεκτικότητα σε θείο. Στην περιοχή B35:D35 υπολογίζονται οι περιεκτικότητες σε θείο των τριών µιγµάτων αργού πετρελαίου που χρησιµοποιούνται για την παραγωγή κάθε τύπου βενζίνης. Στο κελί Β35 εισάγεται ο τύπος: =SUMPRODUCT(B22:B24;$D$5:$D$7)/B25 και αντιγράφεται µέχρι το κελί D35. Συνολικά κέρδη. Υπολογίζονται στο κελί Β40 µε τον τύπο: =SUMPRODUCT(B22:D24;B16:D18)

15 Τεχνικές αριστοποίησης 211 Σχήµα 9.9 Το πλαίσιο διαλόγου του Solver για το πρόβληµα αριστοποίησης της παραγωγής του διυλιστηρίου. Η αριστοποίηση της παραγωγής επιτυγχάνεται ενεργοποιώντας το Solver και εισάγοντας τα στοιχεία που φαίνονται στο σχήµα 9.9. Τα αποτελέσµατα είναι αυτά που παρουσιάζονται στο σχήµα 9.8. Συγκεκριµένα, για την παραγωγή βαρελιών βενζίνης τύπου 1 χρησιµοποιείται ένα µίγµα βαρελιών αργού τύπου 1, 167 βαρελιών αργού τύπου 2 και 500 βαρελιών αργού τύπου 3. Επίσης, για την παραγωγή βαρελιών βενζίνης τύπου 2 χρησιµοποιείται ένα µίγµα 800 βαρελιών αργού τύπου 1 και βαρελιών αργού τύπου 3. Τέλος, για την παραγωγή βαρελιών βενζίνης τύπου 3 χρησιµοποιείται ένα µίγµα 667 βαρελιών αργού τύπου 1 και 333 βαρελιών αργού τύπου 2. Τα συνολικά ηµερήσια κέρδη για το διυλιστήριο ανέρχονται σε Επιλογή επενδυτικού σχεδίου Μια ιδιαίτερα σηµαντική κατηγορία προβληµάτων αριστοποίησης είναι αυτά στα οποία οι µεταβλητές απόφασης µπορούν να πάρουν µόνο ακέραιες τιµές και είναι γνωστά ως προβλήµατα ακέραιου προγραµµατισµού. Μια ειδική περίπτωση προβληµάτων ακέραιου προγραµµατισµού είναι τα προβλήµατα στα οποία η απόφαση µπορεί να είναι µόνο της µορφής «ΝΑΙ» ή «ΟΧΙ». Για την αντιµετώπιση τέτοιων προβληµάτων ορίζεται για κάθε απόφαση µια λογική µεταβλητή που µπορεί να πάρει µόνο τις τιµές 0 (αν η απόφαση είναι «ΝΑΙ») ή 1 (αν η απόφαση είναι «ΟΧΙ»). Στη συνέχεια παρουσιάζεται ένα τυπικό παράδειγµα αυτής της µορφής. Μια εταιρεία ενδιαφέρεται να επενδύσει σε τέσσερις επιχειρηµατικές δραστηριότητες. Στον πίνακα 9.4 παρουσιάζονται οι ετήσιες χρηµατοροές

16 212 Κεφάλαιο 9 (σε χιλιάδες ) και τα διαθέσιµα κεφάλαια για τα επόµενα τέσσερα χρόνια. Αν το επιτόκιο προεξόφλησης είναι 15%, σε ποιες δραστηριότητες πρέπει να επενδύσει; Πίνακας 9.4 Χρηµατοροές των τεσσάρων επενδυτικών σχεδίων και διαθέσιµα κεφάλαια (σε χιλιάδες ). Επένδυση Έτος 1 Έτος 2 Έτος 3 Έτος 4 Σχέδιο Σχέδιο Σχέδιο Σχέδιο ιαθέσιµα Κεφάλαια Λύση Το κριτήριο για την επιλογή των επενδυτικών σχεδίων που θα υιοθετήσει η εταιρεία είναι η µεγιστοποίηση της καθαρής παρούσας αξίας. Το σηµαντικό στοιχείο στο πρόβληµα αυτό είναι ότι αν η εταιρεία αποφασίσει να επενδύσει σε ένα σχέδιο, είναι υποχρεωµένη να το υιοθετήσει συνολικά. εν µπορεί δηλαδή να επενδύσει κατά ένα ποσοστό σε κάποιο από τα επενδυτικά σχέδια. Το µοντέλο για το πρόβληµα αυτό παρουσιάζεται στο σχήµα 9.10 (αρχείο INVESTMENT.XLS). Η απόφαση επένδυσης ή όχι σε κάποιο σχέδιο αντιπροσωπεύεται από τέσσερις λογικές µεταβλητές (επίπεδα) οι οποίες µπορούν να πάρουν µόνο τις τιµές 0 ή 1 και οι οποίες δηλώνουν απόρριψη ή υιοθέτηση του επενδυτικού σχεδίου αντίστοιχα. Το µοντέλο καταστρώνεται ως εξής: εδοµένα εισόδου. Στο κελί C4 εισάγεται η τιµή του επιτοκίου προεξόφλησης. Στην περιοχή C8:F11 εισάγονται οι χρηµατοροές των τεσσάρων σχεδίων. Τέλος, στην περιοχή C22:F22 εισάγονται τα διαθέσιµα κεφάλαια. Επίπεδα επένδυσης. Στα κελιά G16:G19 εισάγονται τυχαίες τιµές για τις µεταβλητές απόφασης. Καθαρές παρούσες αξίες επενδυτικών σχεδίων. Στο κελί Β8 εισάγεται ο τύπος:

17 Τεχνικές αριστοποίησης 213 Σχήµα 9.10 Το µοντέλο του προβλήµατος επιλογής επένδυσης. =C8+NPV($C$4;D8:F8) και αντιγράφεται προς τα κάτω µέχρι το κελί Β1. Απαιτούµενα κεφάλαια. Στο κελί C16 εισάγεται ο τύπος: =IF(C8<0;ABS(C8);0)*$G16 και αντιγράφεται στην περιοχή C16:F19. Επίσης στο κελί C20 εισάγεται ο τύπος: =SUM(C16:C19) και αντιγράφεται προς τα δεξιά µέχρι το κελί F20. Καθαρή παρούσα αξία επένδυσης. Στο κελί Β16 εισάγεται ο τύπος: =B8*G16 και αντιγράφεται προς τα κάτω µέχρι το κελί Β19. Τέλος, στο κελί Β24 υπολογίζεται η συνολική καθαρή παρούσα αξία, εισάγοντας τον τύπο:

18 214 Κεφάλαιο 9 =SUM(B16:B19) Στη συνέχεια ενεργοποιείται ο Solver και εισάγονται οι πληροφορίες που φαίνονται στο σχήµα Ο περιορισµός G16:G19 = binary περιορίζει τις τιµές των αντίστοιχων µεταβλητών απόφασης στο σύνολο (0, 1) Σχήµα 9.11 Το πλαίσιο διαλόγου του Solver για το πρόβληµα επιλογής επένδυσης. Τα αποτελέσµατα της αριστοποίησης είναι αυτά που παρουσιάστηκαν στο σχήµα Συγκεκριµένα, η βέλτιστη απόφαση είναι αυτή της επένδυσης στις δραστηριότητες 1, 3 και 4. Στην περίπτωση αυτή η καθαρή παρούσα αξία είναι ίση µε Επισηµάνσεις Στη συνέχεια παρουσιάζονται ορισµένες ενδιαφέρουσες παραλλαγές του παραπάνω προβλήµατος και ο τρόπος µε τον οποίο µπορούν να µοντελοποιηθούν. Έστω ότι δε γίνεται να επιλεγούν πάνω από 2 επενδυτικά σχέδια. Η περίπτωση αυτή αντιµετωπίζεται εισάγοντας ένα νέο περιορισµό σύµφωνα µε τον οποίο το άθροισµα των λογικών µεταβλητών δεν πρέπει να υπερβαίνει την τιµή 2. Έτσι, σε κάποιο κελί (π.χ. το κελί G20) υπολογίζεται το άθροισµα των λογικών µεταβλητών µε τον τύπο =SUM(G16:G19) και στο πλαίσιο διαλόγου του Solver εισάγεται ο περιορισµός G20<=2. Έστω ότι το επενδυτικό σχέδιο 1 προϋποθέτει το σχέδιο 2, δηλαδή, αν επιλεγεί το σχέδιο 1 πρέπει απαραίτητα να επιλεγεί και το 2. Στην περίπτωση αυτή εισάγεται ένας νέος περιορισµός, σύµφωνα µε τον οποίο η λογική µεταβλητή του σχεδίου 2 είναι µεγαλύτερη ή ίση από

19 Τεχνικές αριστοποίησης 215 τη λογική µεταβλητή του σχεδίου 1 (G17>=G16). Ο περιορισµός αυτός αφαιρεί από το σύνολο των λύσεων την περίπτωση επιλογής του σχεδίου 1 (G16=1) χωρίς να έχει επιλεγεί το σχέδιο 2 (G17=0). Έστω ότι κάποιο από τα επενδυτικά σχέδια 1 ή 3 (ή και τα δύο) πρέπει απαραίτητα να επιλεγεί. Η περίπτωση αυτή αντιµετωπίζεται εισάγοντας ένα νέο περιορισµό σύµφωνα µε τον οποίο το άθροισµα των λογικών µεταβλητών των σχεδίων 1 και 3 πρέπει να είναι µεγαλύτερο ή ίσο του 1. Έτσι, σε κάποιο κελί (π.χ. το κελί G20) υπολογίζεται το άθροισµα των λογικών µεταβλητών των σχεδίων 1 και 3 µε τον τύπο =G16+G18 και στο πλαίσιο διαλόγου του Solver εισάγεται ο περιορισµός G20>=1. Αριστοποίηση χαρτοφυλακίου Σε πολλά προβλήµατα αριστοποίησης, η αντικειµενική συνάρτηση ή οι περιορισµοί δεν είναι γραµµικές συναρτήσεις των µεταβλητών απόφασης. Τα προβλήµατα αυτά είναι γνωστά ως προβλήµατα µη-γραµµικού προγραµµατισµού. Στη συνέχεια εξετάζεται ένα τυπικό παράδειγµα αριστοποίησης χαρτοφυλακίου. Ένας επενδυτής έχει σκοπό να επενδύσει ένα ποσό σε τρεις µετοχές. Οι αποδόσεις των µετοχών κατά τα τελευταία 10 χρόνια φαίνονται στον πίνακα 9.5. Επιδίωξη του επενδυτή είναι επιτύχει απόδοση τουλάχιστον 12%, µειώνοντας ταυτόχρονα το ρίσκο της επένδυσης. Ποια είναι τα ποσοστά των χρηµάτων που πρέπει να επενδύσει σε κάθε µετοχή; Πίνακας 9.5 Ετήσιες αποδόσεις των µετοχών. Έτος Μετοχή ,5 15,3 11,5 1,6-3,6 8,4 6,8 11,9 6,1 11,5 2 6,7 9,2 11,3 17,7 7,4 13,0 19,5 15,1 19,4 15,2 3 15,1 27,8 38,6 12,0 5,9 12,7 2,1 12,8 36,8 22,7 Λύση Τα κριτήρια µε τα οποία ο επενδυτής επιλέγει το χαρτοφυλάκιο είναι η µεγιστοποίηση της απόδοσης και η ελαχιστοποίηση του ρίσκου. Μέτρο του ρίσκου είναι η διασπορά των ετησίων αποδόσεων. Ο πιο κοινός τρόπος αντιµετώπισης του προβλήµατος ύπαρξης δύο αντικειµενικών συναρτήσεων

20 216 Κεφάλαιο 9 είναι ο καθορισµός µιας ελάχιστης επιθυµητής απόδοσης και στη συνέχεια η ελαχιστοποίηση της διασποράς των αποδόσεων. Στη γενική περίπτωση n µετοχών, η αναµενόµενη απόδοση και η διασπορά του χαρτοφυλακίου ορίζονται ως: n ( ) ( ) E P E X w = i i i= 1 n n 1 n = i i + ij i j i= 1 i= 1 j= i+ 1 σ σ w 2 σ ww (9.10) (9.11) όπου wi είναι το ποσοστό επένδυσης στη µετοχή i (µεταβλητές απόφασης), 2 E( X i ) είναι η αναµενόµενη απόδοση της µετοχής i, σ i είναι η διασπορά της µετοχής i (υπολογίζεται µε τη συνάρτηση VAR) και σij είναι η συνδιασπορά των µετοχών i και j (υπολογίζεται µε τη συνάρτηση COVAR). Είναι φανερό από τη σχέση (9.11) ότι η αντικειµενική συνάρτηση είναι µηγραµµική. Σύµφωνα µε τα παραπάνω, καταστρώνεται το µοντέλο του σχήµατος 9.12 (αρχείο PORTOFOLIO.XLS), το οποίο αποτελείται από τα ακόλουθα στοιχεία: εδοµένα εισόδου. Στην περιοχή B6:D15 εισάγονται οι ετήσιες αποδόσεις των τριών µετοχών και στο κελί D24 η ελάχιστη επιθυµητή µέση απόδοση. Ποσοστά επένδυσης. Εισάγονται τυχαίες τιµές για τις µεταβλητές σχεδιασµού στα κελιά B20:D20. Επίσης, στο κελί Ε20 υπολογίζεται το άθροισµα των ποσοστών ως: =SUM(B20:D20) Πίνακας διασποράς. Στο κελί G6 εισάγεται ο τύπος: =VAR(B$6:B$15) και αντιγράφεται στα κελιά H7 και Ι8. Στο κελί G7 εισάγεται ο τύπος: =COVAR($B$6:$B$15;$C$6:$C$15) και αντιγράφεται στο κελί H6. Στο κελί G8 εισάγεται ο τύπος: =COVAR($B$6:$B$15;$D$6:$D$15)

21 Τεχνικές αριστοποίησης 217 Σχήµα 9.12 Το µοντέλο του προβλήµατος διαχείρισης χαρτοφυλακίου. και αντιγράφεται στο κελί Ι6. Τέλος, στο κελί Η8 εισάγεται ο τύπος: =COVAR($C$6:$C$15;$D$6:$D$15) και αντιγράφεται στο κελί Ι7. Αναµενόµενη απόδοση χαρτοφυλακίου. Υπολογίζεται στο κελί Β24 µε τον τύπο: =SUMPRODUCT(B20:D20;B16:D16) ιασπορά και τυπική απόκλιση χαρτοφυλακίου. Η διασπορά υπολογίζεται στο κελί C27 µε τον τύπο: =SUMPRODUCT(MMULT(B20:D20;G6:I8);B20:D20) ενώ η τυπική απόκλιση στο κελί C28 ως: =SQRT(C27) Η συνάρτηση MMULT περιγράφεται παρακάτω.

22 218 Κεφάλαιο 9 Στη συνέχεια ενεργοποιείται ο Solver και εισάγονται οι πληροφορίες που φαίνονται στο σχήµα Ο πρώτος περιορισµός (Β24>=D24) αφορά στην ικανοποίηση της ελάχιστα αποδεκτής αναµενόµενης απόδοσης, ενώ ο δεύτερος (E20=1) επιβάλλει τα ποσοστά επένδυσης να αθροίζονται στο 100%. Προσοχή δίνεται ώστε να µην είναι ενεργοποιηµένη η επιλογή Assume Linear Model ενώ ενεργοποιείται η επιλογή Assume Non-Negative. Σχήµα 9.13 Το πλαίσιο διαλόγου του Solver για το πρόβληµα αριστοποίησης χαρτοφυλακίου. Τα αποτελέσµατα της αριστοποίησης είναι αυτά που παρουσιάστηκαν στο σχήµα Συγκεκριµένα, η βέλτιστη απόφαση είναι η επένδυση του 24,6% των χρηµάτων στη µετοχή 1, του 73,7% στη µετοχή 2 και του 1,7% στη µετοχή 3. Στην περίπτωση αυτή επιτυγχάνεται αναµενόµενη απόδοση ίση µε 12% και διασπορά ίση µε 0, (τυπική απόκλιση ίση µε 3,76%). ΣΥΝΑΡΤΗΣΗ MMULT Η συνάρτηση MMULT είναι µια διανυσµατική συνάρτηση η οποία υπολογίζει το γινόµενο δύο πινάκων. Η σύνταξή της είναι η ακόλουθη: = MMULT(range1;range2) όπου range1, range2 είναι οι περιοχές κελιών οι οποίες περιέχουν τις τιµές των πινάκων. Ο αριθµός των στηλών του πίνακα range1 πρέπει να είναι ίσος µε τον αριθµό των γραµµών του πίνακα range2. Το αποτέλεσµα της συνάρτησης είναι ένας πίνακας µε αριθµό γραµµών όσο και ο range1 και αριθµό στηλών όσο και ο range2.

23 Τεχνικές αριστοποίησης 219 Βιβλιογραφία Albright, S.C., Winston, W.L, and Zappe, C. (1999) Data Analysis & Decision Making with Microsoft Excel, Duxbury Press, USA. Barlow, F.G. (1999) Excel Models for Business and Operations Management, John Wiley & Sons, Chichester, Sussex. Gottfried, B.S (1998) Spreadsheet Tools for Engineers, McGraw-Hill, Singapore. Monks, J.G. (1987) Operations Management, Mc-Graw Hill, USA. Orvis, J.W. (1996) Excel for Scientists and Engineers, Sybex, USA. Williams, H.P. (1999) Model Building in Mathematical Programming, John Wiley & Sons, Chichester, Sussex. Οικονόµου, Γ.Σ., και Γεωργίου, Α.Κ. (1999) Ποσοτική Ανάλυση για τη Λήψη ιοικητικών Αποφάσεων, Εκδόσεις Ευγ. Μπένου, Αθήνα. Πραστάκος, Γ. (2000) ιοικητική Επιστήµη: Λήψη Επιχειρηµατικών Αποφάσεων στην Κοινωνία της Πληροφορίας, Εκδόσεις Αθαν. Σταµούλης, Αθήνα. Σίσκος, Γ. (1998) Γραµµικός Προγραµµατισµός, Εκδόσεις Νέων Τεχνολογιών, Αθήνα.

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER 4.1. ΕΙΣΑΓΩΓΗ Με την "Επίλυση", µπορείτε να βρείτε τη βέλτιστη τιµή για τον τύπο ενός κελιού το οποίο ονοµάζεται κελί προορισµού σε ένα φύλλο εργασίας. Η "Επίλυση" λειτουργεί

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL 1. Στο Tools menu, click Solver. 2. Εάν η επιλογή Solver δεν είναι διαθέσιµη στο Tools menu, πρέπει να το

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Ανάλυση χρονοσειρών Εισαγωγή Η ανάλυση χρονοσειρών αποσκοπεί στην ανεύρεση των χαρακτηριστικών εκείνων που συµβάλουν στην κατανόηση της ιστορικής συµπεριφοράς µιας µεταβλητής και επιτρέπουν

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Έλεγχοι υποθέσεων ΚΕΦΑΛΑΙΟ 6. Εισαγωγή

Έλεγχοι υποθέσεων ΚΕΦΑΛΑΙΟ 6. Εισαγωγή ΚΕΦΑΛΑΙΟ 6 Έλεγχοι υποθέσεων Εισαγωγή Οι έλεγχοι υποθέσεων µαζί µε τα διαστήµατα εµπιστοσύνης είναι τα δύο σηµαντικότερα εργαλεία της στατιστικής συµπερασµατολογίας. Αντικείµενο του κλάδου αυτού της στατιστικής

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Ειδικές κατανοµές πιθανότητας

Ειδικές κατανοµές πιθανότητας ΚΕΦΑΛΑΙΟ 4 Ειδικές κατανοµές πιθανότητας Εισαγωγή Οι κατανοµές πιθανότητας που εξετάστηκαν στο προηγούµενο κεφάλαιο έχουν γενική µορφή και δεν εµφανίζουν κάποια τυποποιηµένη συµπεριφορά. Στο κεφάλαιο αυτό

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

Διοίκησης Επιχειρήσεων. ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΜΗΜΑ ΤΙΤΛΟΣ ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ. Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ

Διοίκησης Επιχειρήσεων. ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΜΗΜΑ ΤΙΤΛΟΣ ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ. Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ ΤΜΗΜΑ Διοίκησης Επιχειρήσεων ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΙΤΛΟΣ Επιχειρησιακή ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ Έρευνα Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ Βασίλης Αγγελής Ε-ΜAIL v.angelis@aegean.gr ΠΕΡΙΓΡΑΦΗ

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Διδάσκων: Νίκος Λαγαρός

Διδάσκων: Νίκος Λαγαρός ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 4 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2013-2014 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Βελτιστοποίηση ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ σε διάφορα

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

Επενδυτικός κίνδυνος

Επενδυτικός κίνδυνος Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ιαµόρφωση Προβλήµατος

ιαµόρφωση Προβλήµατος Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

The Product Mix Problem

The Product Mix Problem Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Προγραµµατισµός τεσσάρων διαφορετικών προϊόντων Σιτάρι, σόγια, βρώµη καικαλαµπόκι Μέγιστη συνολική έκταση 1.500 στρέµµατα Ακριβώς 100 στρέµµατα

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ Επιχειρήσεων ΤΙΤΛΟΣ. ΔΙΔΑΣΚΟΝΤΟΣ ΒΙΔΑΛΗΣ

ΠΡΟΓΡΑΜΜΑ Επιχειρήσεων ΤΙΤΛΟΣ. ΔΙΔΑΣΚΟΝΤΟΣ ΒΙΔΑΛΗΣ Διοίκησης ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ Επιχειρήσεων eμβα ΚΩΔ. ΤΙΤΛΟΣ Λήψη Επιχειρηματικών ΔΙΕΠ3 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ Αποφάσεων Credits 6 ΕΞΑΜΗΝΟ 2 ος κύκλος ΟΝΟΜ/ΝΟ ΜΙΧΑΗΛ Ε-ΜAIL mvid@ba.aegean.gr ΔΙΔΑΣΚΟΝΤΟΣ ΒΙΔΑΛΗΣ

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming)

Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming) Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ Τι ορίζεται ως απόθεμα;

Διαβάστε περισσότερα

Ανάλυση Χρόνου, Πόρων & Κόστους

Ανάλυση Χρόνου, Πόρων & Κόστους ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης

Διαβάστε περισσότερα

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας.

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας. Το πρόγραµµα λογιστικών φύλλων (spreadsheet) Microsoft Excel ενσωµατώνει ρουτίνα επίλυσης προτύπων γραµµικού προγραµµατισµού. Η ρουτίνα ονοµάζεται Solver και χρησιµοποιεί το λογιστικό φύλλο του Microsoft

Διαβάστε περισσότερα

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Η κ. Δημητρίου είναι γενική διευθύντρια σε μία επιχείρηση με κύρια δραστηριότητα την παραγωγή μαγνητικών μέσων και αναλώσιμων ειδών περιφερειακών συσκευών

Διαβάστε περισσότερα

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Αθήνα, 2007 Βασικά χαρακτηριστικά

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης Εφαρμογές Επιχειρησιακής Έρευνας Δρ. Γεώργιος Κ.Δ. Σαχαρίδης 1 Outline Introduction to mathematical programming Introduction to scheduling Flow shop optimization Scheduling of crude oil Decomposition techniques

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Τμήμα Διεθνούς Εμπορίου Επιχειρησιακή έρευνα. Επιχειρησιακή Έρευνα

Τμήμα Διεθνούς Εμπορίου Επιχειρησιακή έρευνα. Επιχειρησιακή Έρευνα ΤΕΙ Δυτικής Μακεδονίας Τμήμα Διεθνούς Εμπορίου Επιχειρησιακή Έρευνα Προβλήματα Διαμόρφωση μαθηματικού μοντέλου Γραφική λύση Επίλυση με τη μέθοδο Simplex Δρ. Ζαχαρούλα Καλογηράτου 1 Πρόβλημα 1. Εργαστήριο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Εφαρμογές του Γραμμικού Προγραμματισμού Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Ανάλυση Ευαισθησίας µε τη χρήση του Solver

Ανάλυση Ευαισθησίας µε τη χρήση του Solver Ανάλυση Ευαισθησίας µε τη χρήση του Solver Πρόβληµα 1 Μια εταιρία κατασκευής τηλεοράσεων κατασκευάζει τέσσερα µοντέλα τηλεοράσεων Μ1, Μ2, Μ3 και Μ4. Κάθε µοντέλο για να παραχθεί απαιτεί χρόνο συναρµολόγησης

Διαβάστε περισσότερα

Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα

Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα Case 15: Προστασία του Περιβάλλοντος ΣΕΝΑΡΙΟ Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα 1 Σενάριο και υπόλοιπα δεδοµένα Συγκροτήθηκε οµάδα εργασίας για την επεξεργασία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2005-6 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Πίνακας περιεχομένων. Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων Κεφάλαιο 2 Συγκεντρωτικοί πίνακες Πρόλογος... 11

Πίνακας περιεχομένων. Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων Κεφάλαιο 2 Συγκεντρωτικοί πίνακες Πρόλογος... 11 Πίνακας περιεχομένων Πρόλογος... 11 Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων...13 1.1 Εισαγωγή... 13 1.2 Δημιουργία βάσης δεδομένων... 14 1.3 Ταξινόμηση βάσης δεδομένων... 16 1.4 Μερικά αθροίσματα... 20

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά Οικονοµία Βασικές έννοιες και ορισµοί Οικονοµική Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά των ανθρώπινων όντων αναφορικά µε την παραγωγή, κατανοµή και κατανάλωση υλικών αγαθών και υπηρεσιών σε έναν

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 4: Το Πρόβλημα Ανάθεσης Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix)

Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix) Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix) Εισάγει στην αγορά για την επόµενη χειµερινή περίοδο έξι νέα είδη γυναικείων ενδυµάτων µε µεγάλες προοπτικές πωλήσεων Η ζήτηση για τα

Διαβάστε περισσότερα