Convorbiri didactice Nr. 13

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Convorbiri didactice Nr. 13"

Transcript

1 CONSIDERAȚII METODICE PRIVIND PREDAREA GEOMETRIEI CERCULUI ÎN ȘCOALĂ Aspecte metodice privind predarea geometriei cercului în gimnaziu și liceu Necesitățile aferente distribuției materiei, fac ca programa să așeze primele cunoștințe despre cerc (definiție, construcție, elemente, poziții relative) în geometria clasei a VI-a; geometria clasei a VII-a continuă studiul cercului în următoarea ordine: determinarea cercului, elementele cercului, pozițiile unei drepte față de cerc, unghi la centru înscris în cerc, patrulater inscriptibil și încheie studiul cercului în geometria clasei a IX-a astfel: definiții, coarde, arce, unghi la centru, unghi înscris, poligoane înscrise și circumscrise, probleme de loc geometric, poziția relativă a două cercuri, puterea punctului față de cerc, lungimea și aria cercului. După ce în clasa a VI-a elevii au învățat definiția cercului și construcția lui cu ajutorul compasului, în clasa a VII-a completează cunoștințele referitoare la cerc, iar în clasa a IX-a le consolidează. Ei au studiat deja bisectoarea unui unghi și mediatoarea unui segment ca locuri geometrice, au însușită această noțiune de loc geometric, deci o putem utiliza în definirea cercului. Îi vom determina pe elevi să înțeleagă că orice punct al cercului are proprietatea că se află la distanța dată r de O se află pe cercul dat. În plan nu mai există alte puncte decât cele de pe cercul desenat, care să fie la distanța r față de O. În acest capitol avem două serii de teoreme: teoreme simple, ușor de intuit, de demonstrat, cum sunt cele referitoare la coarde și arce, diametrul perpendicular pe o coardă, congruența coardelor și a distanțelor de la centrul cercului la acestea, poziția dreptei față de cerc, teoreme mai greu de înțeles și intuit în formă generală și completă cum sunt cele referitoare la unghi înscris în cerc, patrulatere inscriptibile. Avem în plus și o problemă nouă, aceea a determinării cercului. Enunțul de a construi un cerc este legat în mintea copilului, prin toată experiența lui anterioară, de ideea: am centrul și raza. Pentru prima dată îi cerem să construiască un cerc, fără a-i da centrul și raza, urmând ca el să le găsească în condițiile date. Urmărim ca elevul să înțeleagă că această condiție să treacă prin trei puncte date determină în mod unic cercul. Această idee nu este înțeleasă bine, decât în confruntare cu contrara ei, cerc nedeterminat. Începem deci cu problema: Se dă un punct A. Să se deseneze un cerc care trece prin A. După ce înlăturăm unele nelămuriri în legătură cu ce înseamnă a trece prin A (unii elevi înțeleg să-l ia pe A centru), scoatem în evidență faptul că putem construi multe cercuri trecând prin A, centrele acestor cercuri fiind oriunde în plan. Punem acum problema de a construi un cerc care să treacă prin două puncte distincte A și B. Ghidați de cazul precedent, luând centrul la întâmplare, observăm că cercul poate trece prin A, dar nu prin B, ceea ce înseamnă că centrul trebuie luat în așa fel încât [OA]=[OB]. Unde sunt punctele care îndeplinesc această condiție? Pe mediatoarea segmentului [AB]. Îi îndrumăm pe elevi să observe că putem construi oricâte cercuri vrem care să treacă prin cele două puncte, cu condiția ca centrul lor să fie pe mediatoarea segmentului [AB]. 1

2 Trecem la al treilea caz, când se dau trei puncte necoliniare. Este primul contact al elevului cu metoda intersecției locurilor geometrice. Știm că, pentru ca cercul să treacă prin punctele A și B, centrul trebuie să fie pe mediatoarea segmentului AB, dar nu în orice punct al acesteia, deoarece s-ar putea ca cercul să nu treacă prin C. Dacă vrem ca cercul sa treacă prin B și C, centrul cercului se va găsi pe mediatoarea segmentului BC, dar nu în orice punct al acestuia, deoarece s-ar putea ca cercul să nu treacă si prin A. Elevii pot deduce acum că centrul cercului căutat este la intersecția celor două mediatoare, fiind punct egal depărtat de A și B, găsindu-se pe prima mediatoare și de B și C, găsinduse pe a doua mediatoare. Mediatoarele fiind unice, punctul O (intersecția mediatoarelor), este unic determinat. Deci, există un singur cerc care să treacă prin punctele A, B și C. Cele afirmate pot constitui o justificare intuitivă, accesibilă pentru existența și unicitatea cercului cu trei puncte date. Nu este o demonstrație riguroasă deoarece nu răspunde întrebării: Cine ne asigură că cele două mediatoare se intersectează într-un punct. Deci o demonstrație riguroasă a problemei: trei puncte necoliniare date determină un cerc și numai unul (și este bine să-i obișnuim pe elevi cu astfel de formulări pentru a-i pregăti pentru studiul geometriei din clasa a IX-a) se poate face cu elevii care au un nivel mai ridicat de pregătire, în cadrul cercului de matematică. Putem da apoi ca temă elevilor să construiască cercul ce trece prin vârfurile triunghiului ABC, alegând cazuri când unghiul A al triunghiului are diferite măsuri: 60, 90, 120, 150, dându-le chiar denumirea cercului, aceea de cerc circumscris triunghiului, analizăm cazul cercului circumscris triunghiului dreptunghic. Referitor la măsura unghiurilor și a arcelor, se impun câteva probleme importante: -să explicăm de ce spunem măsura unghiului la centru = măsura arcului cuprins și nu spunem unghiul = arcul cuprins. -să explicăm de ce două arce din cercuri necongruente pot avea același număr de grade, deși au lungimi diferite. În această etapă, elevul nu are bine fixată noțiunea de egalitate în geometrie (suprapunere de figuri)ꓼ cuvântul egal îi evocă în minte numere egale. Îl vom lămuri că unghiul și arcul sunt figuri, și figuri egale în geometrie sun cele care coincid. La predarea temei: Pozițiile unei drepte față de un cerc vom arăta mai întâi că o dreaptă nu poate avea mai mult de două puncte distincte comune cu un cerc, respectiv drepte care au un singur punct comun cercului, numind de fiecare dată poziția dreptei față de cerc și scriind relația care există în fiecare caz între raza cercului și distanța de la centrul cercului la dreaptă. Ținând cont că enunțul teoremei unghiului înscris este greu de înțeles: măsura unghiului este egală cu jumătate din măsura arcului cuprins (sunt termeni care trebuie explicați, interpretați), este bine să nu începem cu enunțul ci cu unele considerații intuitive care să ne așeze pe linia înțelegerii enunțului și a descoperirii demonstrației. 2

3 După ce actualizăm mai întâi unele noțiuni ca: măsura unghiului la centru, unghi exterior unui triunghi și faptul că unghiul exterior de la vârful triunghiului isoscel are măsura egală cu dublul măsurii unghiului de la bază, desenăm un cerc, un unghi la centru ΔAOB, stabilim măsura lui, apoi punem problema: ne închipuim că vârful O al unghiului se mută într-un punct M de pe diametru OA pe semidreapta opusă semidreptei [OA. Ce se întâmplă cu măsura unghiului AMB când M se deplasează pe semidreapta considerată? Analizăm cazul când M este pe cerc și îi vom deduce măsura cu ajutorul unghiului AOB exterior triunghiului isoscel MOB. Folosind definiția, ei pot deduce că, în acest caz, unghiul AMB este înscris în cerc și îi vor deduce măsura (fig.6.1.). Se desenează figura cu centrul în interiorul unghiului cu centrul în exteriorul unghiului, se deduce în fiecare caz măsura unghiului, apoi se formulează enunțul teoremei unghiului înscris. Pentru fiecare vom sublinia etapele demonstrației și faptul că un caz particular servește descoperirii unei proprietăți generale și demonstrării ei. Această temă se poate preda și astfel: -se demonstrează teorema referitoare la măsura unui unghi cu vârful pe cerc, care are una din laturi secantă și cealaltă tangentă, măsura unghiului respectiv este egală cu jumătate din măsura arcului subîntins de coardă. Într-adevăr avem: m(sta)= 90 - m(ato)= m(top)= 1/2M(AT) unde OP ꓼ TA (se actualizează mai întâi definiția tangentei, a proprietății de a fi perpendiculară pe rază în punctul de contact, a diametrului perpendicular pe o coardă, a măsurii unghiului la centru, a unghiurilor complementare. Folosindu-se această teoremă se poate deduce apoi teorema unghiului înscris în cerc. 3

4 Dacă nivelul de pregătire al clasei permite, este bine să se dea ambele metode de deducere a măsurii unghiului înscris, dacă nu în cadrul aceleași ore, în cadrul cercului cu elevii clasei, sau să se propună a doua metodă ca temă. Bineînțeles, că se vor da apoi aplicații simple în care se cere să se 4

5 calculeze unghiul când se dă arcul, sau arcul când se dă unghiul (măsurile lor), apoi aplicații mai dificile din manual sau culegeri. Pentru a face accesibilă, unui număr cât mai mare de elevi, teorema arcului capabil de un unghi dat, vom proceda astfelꓼ -desenăm pe tablă (Fig.6.3.) cercul, punctele fixe A și B și punctul M mobil pe arcul mare AB. Arătăm cu degetul mișcarea punctului M pe arcul considerat, oprindu-ne în anumite poziții și constatând că măsura unghiului AMB este aceeași (=1/2 m(ab). Dacă însă M iese în afară (ca M pe figură), unghiul se micșorează, dacă intră în interiorul cercului, unghiul se mărește. Deci toate unghiurile M care au aceeași măsură și laturile ce trec prin punctele fixe A și B se găsesc pe arcul mare și numai pe acesta, sau pe unul simetric cu acesta față de AB, situat în semiplanul opus. Vom spune că acest arc se numește arc capabil de măsura unghiului M. O demonstrație mai riguroasă (ca cea din lucrare) o putem face cu elevii dotați în orele de cerc. O primă observație, după predarea teoremelor referitoare la patrulatere inscriptibile, este că pătratul, dreptunghiul și trapezul isoscel sunt patrulatere inscriptibile. O altă observație utilă în rezolvări de probleme este aceea că un unghi interior al unui patrulater inscriptibil este congruent cu unghiul exterior al unghiului opus (sunt congruente deoarece au același suplement). Proprietățile patrulaterului inscriptibil se consolidează printr-un volum de aplicații bine dozat (ca număr și dificultate gradată), punându-se accent pe cele privind linii și puncte importante în triunghi. Selecționarea problemelor propuse pentru considerarea temei se face și în funcție de nivelul clasei, în așa fel ca după parcurgerea temei și elevul de notă minimă de promovare să rămână cu convingerea că, fiind dat un patrulater convex, cercul determinat de oricare trei dintre vârfurile sale nu trec totdeauna și prin al patrulea și că, atunci când trece, spunem că patrulaterul este inscriptibil, iar când nu trece, spunem că nu este inscriptibil. După acest criteriu al inscriptibilității, elevul rămâne cu convingerea că mulțimea tuturor patrulaterelor se împarte în două submulțimi disjuncte, cea a patrulaterelor inscriptibile și cea a patrulaterelor neinscriptibile, că fiind dat un cerc, întotdeauna în el putem înscrie un patrulater convex, reciproc însă, fiind dat un patrulater convex, nu există întotdeauna un cerc care să treacă prin toate cele patru vârfuri ale sale. În ceea ce privește demonstrarea teoremelor și problemelor din geometria cercului, trebuie să facem în așa fel încâtꓼ -elevul să ajungă la convingerea că nu poate să culeagă roadele studiilor sale matematice fără eforturi deosebite, că nu este suficient numai să înțeleagă raționamentele ce-i sunt expuse, și să construiască singur, pe baza lor, raționamente noiꓼ -să observe corect care este ipoteza și care este concluzia unei teoreme pe care vrea să o demonstrezeꓼ -să înțeleagă că a demonstrat o teoremă, înseamnă a trece prin raționament, de la ipoteză la concluzie, că trebuie dedusă concluzia din ipotezăꓼ -să știe că în orice demonstrație se arată că concluzia are loc, în presupunerea că ipoteza este adevărată. 5

6 O importanță deosebită o acordăm definirii termenilor folosiți sau reactualizării definirii termenilor folosiți, deoarece nu se pot efectua raționamente asupra unor noțiuni care nu au fost definite. Definiția aceluiași termen poate adeseori să ia mai multe forme, dintre care trebuie să o alegem pe cea mai indicată pentru scopul urmărit. Astfel, putem defini bisectoarea [AM a unghiului ca semidreaptă cu originea în A (vârful unghiului), care face cu una din laturi, în sensul care convine problemei, un unghi cu măsura egală cu jumătate din măsura celui inițial. Anumite teoreme ne îngăduie să înlocuim o definiție printr-o alta echivalentă cu ea. Astfel, în locul definiției patrulaterului inscriptibil de a avea vârfurile conciclice putem folosi una din proprietățile inscriptibile de a avea unghiurile opuse suplementare sau un unghi din interior să aibă aceeași măsură cu un unghi exterior celui opus. Experiența la catedră arată că, un număr mare de construcții auxiliare nu sunt arbitrare, ci o consecință directă a acestei reguli Astfel, dacă vrem să arătăm că un punct M este pe cerc, îl unim cu centru și arătăm că OM=r, conform definiției cercului. De multe ori însă, această construcție nu ajută, ci alta, în care M se unește cu trei puncte distincte A,B,C ale cercului și se arată apoi că patrulaterul ABCM este inscriptibil. Un alt aspect de care trebuie să ținem cont în demonstrațiile problemelor și teoremelor este acela de a transforma datele ipotezei, în așa fel încât să punem în evidență concluzia, sau să înlocuim concluzia inițială cu alta, care o implică pe cea dată, și care se deduce mai ușor din ipoteză. De exempluꓼ dreapta lui Simson. Dacă dintr-un punct M situat pe cercul circumscris triunghiului ABC coborâm perpendicularele MP, MQ, MR pe cele trei laturi, picioarele acestor trei laturi sunt coliniare. În locul concluzieiꓼ picioarele perpendicularelor sunt coliniare, folosim concluziaꓼ ΔBPR ΔCPQ, unde P= pr M BC, R= pr M BA, Q= pr M AC. Congruența se arată ușor folosind patrulaterele inscriptibile care apar, iar concluzia inițială reiese din faptul că cele două unghiuri sunt opuse la vârf. (teorema este demonstrată în cadrul lucrării). O atenție deosebită o acordăm formulării reciprocelor unor propoziții și demonstrării adevărului exprimat de ele, de multe ori prin reducere la absurd, metodă de demonstrare care constă în a arăta că, presupunând ipoteza adevărată și totodată concluzia falsă, ajungem la o contradicție, așa cum este demonstrată în lucrare la capitolul Teoreme și probleme clasice de geometrie, reciproca primei teoreme a lui Ptolemeu. Stabilirea proprietăților geometrice se face folosind o anumită figură. Raționamentul se face folosind îndeaproape figura, dar judecățile se exprimă cu ajutorul literelor puse ca notații pe figură. Deși judecățile se fac pe o anumită figură, concluzia este generală, valabilă pentru toate figurile din categoria respectivă. Pentru a rezolva probleme de construcții, o primă condiție este ca toți elevii să aibă riglă și compas, apoi să posede noțiunile învățate până la cerc inclusiv, să aibă deprinderi formate de a construi mediatoarea unui segment, bisectoarea unui unghi, să cunoască proprietățile punctelor de pe bisectoare, respectiv mediatoare. Să știe să construiască cercul când se dă centrul și raza, să ridice o perpendiculară dintr-un punct al unei drepte, să coboare o perpendiculară dintr-un punct pe o dreaptă. Când au de rezolvat probleme de construcții geometrice, elevii au tendința de a deduce rezolvarea lor, numai la efectuarea desenului. De aceea, îi vom obișnui să exprime în scris, etapele în care au efectuat construcția, în ce condiții au dus anumite linii, sau au liniat anumite puncte. Vom preciza elevilor, încă de la început, că la orice construcție geometrică putem considera problema rezolvată, și 6

7 vom analiza proprietățile figurii, proprietăți ce permit o înlănțuire de construcții până la obținerea rezultatului. Fiecare pas făcut în construcția figurii trebuie justificat. Se fac precizări la numărul soluțiilor sau în ce cazuri avem soluții. Rezolvarea problemelor de loc geometric se bazează pe cunoașterea unor locuri geometrice uzuale, ca bisectoarea unui unghi, mediatoarea unui segment, arcul capabil de un unghi dat. În general, ca o anumită figură să reprezinte locul geometric al punctelor M care au proprietatea P, trebuie demonstrate două propozițiiꓼ 1. Orice punct care are proprietatea P, aparține figurii F. 2. Orice punct al figurii F are proprietatea P Dacă am demonstra numai prima propoziție, am ajunge la concluzia că toate punctele locului căutat aparțin figurii F, dar n-am putea preciza că pe figura F nu se găsesc și puncte care să nu aibă proprietatea P. Dacă am demonstra numai a doua propoziție, am ajunge la concluzia că toate punctele figurii F aparțin locului căutat, dar n-am preciza că mai sunt totuși puncte în afara figurii F, care aparțin locului geometric. În cele mai multe cazuri, problemele de loc geometric se reduc la probleme tipice de loc geometric, deja studiate, greutatea constă în a le recunoaște. Caracteristic geometriei este faptul că, în principiu, toate adevărurile ei pot fi descoperite prin propria gândire. Sarcina principală a predării geometriei este să pună elevii, după ce li se dă un număr minim de definiții în prezența problemelor, să-i deschidă gustul, îndemnându-i să descopere teoreme și aplicații, să-i sprijine, să-i călăuzească, atât cât este necesar în această activitate vie și proprie de descoperire. Tensiunea căutării, emoția aflării, constituie fenomenul psihic fundamental al copilului în fața geometriei. Prof. Mariana GĂLĂȚEANU Liceul Teoretic Constantin Brătescu Isaccea 7

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

CERCUL LUI EULER ŞI DREAPTA LUI SIMSON

CERCUL LUI EULER ŞI DREAPTA LUI SIMSON CERCUL LUI EULER ŞI DREAPTA LUI SIMSON ABSTRACT. Articolul prezintă două rezultate deosebite legate de patrulaterul inscriptibil şi câteva consecinţe ce decurg din aceste rezultate. Lecţia se adresează

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii:

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii: TRIUNGHIUL Profesor lina Penciu, Școala Făgăraș, județul rașov Daca, si sunt trei puncte necoliniare, distincte doua câte doua, atunci ( ) [] [] [] se numeste triunghi si se noteaza cu Δ. Orice Δ determina

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Cercul lui Euler ( al celor nouă puncte și nu numai!)

Cercul lui Euler ( al celor nouă puncte și nu numai!) Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:

Διαβάστε περισσότερα

Conice şi cercuri tangente

Conice şi cercuri tangente Conice şi cercuri tangente Ioan POP 1 Abstract It proves how to obtain the non-degenerate conics, ellipse, hyperbola and parabola, of some basic tangent problems Keywords: circle, ellipse, hyperbola, parabola

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică Geometrie pentru pregătirea Evaluării Naționale la Matematică (Cls. a V a, a VI a, a VII a) UNITĂȚI DE MĂSURĂ Lungime rie Volum Capacitate DE REȚINUT! Masă 1hm 1ha 1dam 1ar 1dm 1l 1q 1kg 1t 1kg 1v 1kg

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

3. REPREZENTAREA PLANULUI

3. REPREZENTAREA PLANULUI 3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).

Διαβάστε περισσότερα

BREVIAR TEORETIC CU EXEMPLE CONCRETE, PENTRU PREGĂTIREA EXAMENULUI DE EVALUARE NAŢIONALĂ, clasa a VIII-a

BREVIAR TEORETIC CU EXEMPLE CONCRETE, PENTRU PREGĂTIREA EXAMENULUI DE EVALUARE NAŢIONALĂ, clasa a VIII-a GEOMETRIE-Evaluare Naţională 010 BREVIAR TEORETIC CU EXEMPLE CONCRETE, PENTRU PREGĂTIREA EXAMENULUI DE EVALUARE NAŢIONALĂ, clasa a VIII-a - 010 Propunător: Şcoala cu clasele I-VIII Măteşti, com. Săpoca,

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI

LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ SPECIALIZAREA MATEMATICI APLICATE LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI Conducător Ştiinţific: Lect. Dr. VĂCĂREŢU

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Subiecte Clasa a VI-a

Subiecte Clasa a VI-a Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a Ediţia a XVII-a, 7 8 Aprilie 207 SUBIECTUL CLASA a IV-a Într-o zi de Duminică, la Salina Turda, a venit un grup de vizitatori, băieți și de două ori mai multe fete. Au intrat în Salină 324 băieți și 400

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

P A + P C + P E = P B + P D + P F.

P A + P C + P E = P B + P D + P F. Fie P un punct situat în interiorul cercului C. Prin punctul P se duc trei coarde care determină în jurul punctului P şase unghiuri de 60. Notăm A, B, C, D, E, F (în ordine) capetele acestor coarde. Arătaţi

Διαβάστε περισσότερα

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr.

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr. I UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Specializarea Matematică-Informatică, linia de studiu română 29 Iunie I 1 2 3 I 4 5 MATEM 6 MATEM 7 Bibliografie I Motivaţia:

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC .Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

cercului circumscris triunghiului ABE.

cercului circumscris triunghiului ABE. Concursul Gazeta Matematică și ViitoriOlimpici.ro Ediția a IV-a 2012-2013 Problema 1. Rezolvaţi în mulţimea numerelor reale ecuaţia (x 2 + y 2 ) 3 = (x 3 y 3 ) 2. Soluţie. Ecuaţia se scrie echivalent x

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Axiomatica Hilbert a spaţiului euclidian

Axiomatica Hilbert a spaţiului euclidian Axiomatica Hilbert a spaţiului euclidian Mircea Crâşmăreanu Prezentare generală a sistemului axiomatic Hilbert Prin Geometrie Euclidiană se înţelege într-un sens general şi clasic acea geometrie ce are

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Capitolul 9. Geometrie analitică. 9.1 Repere

Capitolul 9. Geometrie analitică. 9.1 Repere Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a

Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, -3 noiembrie 0 Subiecte clasa a VII-a. Fie în exteriorul triunghiului ascuţitunghic ABC, triunghiurile dreptunghice ABP şi ACT cu ipotenuzele

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Capitole speciale de geometrie pentru profesori. Camelia Frigioiu

Capitole speciale de geometrie pentru profesori. Camelia Frigioiu apitole speciale de geometrie pentru profesori amelia Frigioiu Galaţi, 2010 2 uprins 1 Geometrie sintetică plană 1 1.1 oncurenţa liniilor importante într-un triunghi............ 1 1.1.1 oncurenţa medianelor,

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma: CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare

Διαβάστε περισσότερα