7. Geometriniai plokščiųjų figūrų rodikliai

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. Geometriniai plokščiųjų figūrų rodikliai"

Transcript

1 7. Geometra plokščųjų fgūrų rodkla 7.. Bedrosos žos 7. tekstas 7.. Pagrdės sąvokos Geometras vadam pjūvo (plokščosos fgūros) rodkla, kure prklauso uo pjūvo matmeų, formos e oretacjos r kekška įverta jo sugeėjmą prešts mecaam poveku. Ddesė dals pjūvo geometrų rodklų ra susejam su koordatų ašų sstema. Naudosme VGTU Medžagų atsparumo katedroje prmtas koordatų ašų žmėjmo taskles (žr.. poskrį). Tag agrėjamo elemeto skerspjūvo koordatės ašs gal ūt dvejopos (7. pav.). Tarkme, turme pjūvį r lasva pasrktą koordatų ašų sstemą (7. pav.). šskrkme kstama mažą plotelį d r pažmėkme jo koordates r. Tap pat pažmėkme jo polę koordatę ρ, lakdam, kad polus sutampa su koordatų ašų r suskrtmo tašku. Tada pagrda pjūvo geometra rodkla us še: plotas d, (7.) stata mometa S d, S d, (7.) aša ercjos mometa d, d (7.) šcetrs ercjos mometas d, (7.4) pols ercjos mometas p ρ d. (7.5) kvazdu, kad +, es ρ +. p d 7. pav. ρ 7.. Pjūvo ploto svoro cetras Svoro cetras (suko cetras) ra ektama su ketuoju kūu susjęs geometrs taškas, per kurį ea vsų kūo dalelų svorų atstojamosos vekmo lja. Tarkme, kad pjūvs (plokščoj fgūra) ra ketass kūas, kuro stors lgus veam, kuro medžagos taks lgus veam r kurs oretuotas tap, kad suko jėgos ra statmeos jo plokščajam pavršu (7. pav.). Prtakkme jam atstojamosos mometo (Varjoo) teoremą: jegu jėgų sstema tur atstojamąją, ta šos atstojamosos mometas et kuros ašes atžvlgu lgus jėgų mometų tos pačos ašes atžvlgu suma:, c d,, c d. (7.6) ρ, Ča: pjūvo plotas (ara taramojo kūo svoro atstojamoj), d elemetaruss plotels (ara taramojo kūo elemetarosos dalelės svoro jėga),, c,, c ploto cetro koordatės lasva pasrktų (pagalų) ašų r, 7. pav. d 56

2 atžvlgu,, elemetarojo plotelo koordatės. Bet d S, d S, tag, c, c S S,, (7.7) ča S, S pjūvo ploto stata mometa pagalų ašų atžvlgu. š 7.6 formulų matt, kad cetrų ašų atžvlgu pjūvo ploto stata mometa ra lgūs ulu (ka pagalės ašs sutapdamos su cetrėms ašms, koordatės, c r, c tampa lgos ulu; žr. 7. pav.). Š cetrų ašų savė audojama skačavmams tkrt. Be to, pasaudojus ša save galma tegt, kad et kur pjūvo ploto smetrjos ašs kartu ra r cetrė ašs (jos atžvlgu kekveam elemetarajam plotelu vsada galma rast tokį patį plotelį su prešgo žeklo koordate; 7.4 pav.). Šta kodėl, jegu pjūvo plotas tur dv smetrjos ašs, ta jo svoro cetras sutampa su šų ašų suskrtmo tašku (7.5 pav.). Jegu pjūvo plotas ra smetrškas taško atžvlgu, ta šs taškas tap pat ra r pjūvo ploto svoro cetras (7.6 pav.). a) ) c) c c c c d d 7.4 pav. 7.5 pav. 7.6 pav. 7. pvz ercjos mometa lgagrečų ašų atžvlgu Tarkme, duotojo pjūvo ploto ercjos mometa ašų r atžvlgu ra žom. Reka rast ercjos mometus lgagrečų ašų r atžvlgu (7.7 pav.). Elemetarojo plotelo koordates r šreškme per koordates r : + a, +. (7.8) Įraškme gautas koordačų šraškas į edrąsas ercjos mometų šraškas (7., 7.4): d a 7.7 pav. d d d d d ( + ) S, d ( + a) d d + a d + a d, + a + a S 57

3 d a d d a d ( + )( + ) d + a d a S a S Jegu ašs r ra cetrės, ta S ; S. Tada gautos formulės supaprastėja: +, + a, + a. (7.9) šs ercjos mometas atžvlgu ašes, lgagrečos cetre aša, ra lgus cetro ercjos mometo r pjūvo ploto, padaugto š ašes atstumo uo pjūvo ploto svoro cetro kvadrato, suma. šcetrs ercjos mometas atžvlgu ašų, lgagrečų cetrėms ašms, ra lgus cetro šcetro ercjos mometo r pjūvo ploto, padaugto š ašų atstumų uo pjūvo ploto svoro cetro, suma. 7. pvz ercjos mometa pasuktų ašų atžvlgu Tarkme, duotojo pjūvo ploto ercjos mometa ašų r atžvlgu ra žom. Reka rast ercjos mometus pasuktų ašų α r α atžvlgu (7.8 pav.). Elemetarojo plotelo koordates α r α šrekškme per koordates r (pasaudokme žomoms š matematkos koordačų trasformacjos formulėms): α cosα + sα, α sα + cosα. (7.) Įraškme gautas koordačų šraškas į edrąsas ercjos mometų šraškas. Pradėkme uo ašo ercjos mometo ašes atžvlgu: α α α α α d ( sα + cosα) d s α d + cos α d sα cosα d cos α + s α s α. alogška šspredę lkusus du tegralus (prsmkme, kad cos α s α cosα ), gausme šas ercjos mometų, pasuktų koordatų ašų atžvlgu, formules: d 7.8 pav. α α cos α + s α sα, α s α + cos α + sα, sα + cosα. αα (7.) 58

4 Sudėkme prmąsas dv lgts. Įvertę, kad s α + cos α, gauame svarą prklausomę: α + α + cost. (7.) Ta reška, kad sukat koordates ašs ašų ercjos mometų suma eskeča. Š ašų ercjos mometų savė paprasta audojama skačavmams tkrt. 7. pvz Svarausosos ašs r svarausej ercjos mometa Formulės (7.) rodo, kad ercjos mometų rekšmės prklauso uo pjūvo ploto koordatų ašų padėtes. Skačuotojus paprasta doma tokos koordatės ašs, kurų atžvlgu aša ercjos mometa įgja ekstremes rekšmes. Toka ašų padėča ustatt audosme matematį metodą, audojamą fukcjos ekstremumu skačuot: jegu dferecjuojamos fukcjos švestė kurame ors taške ra lg ulu, ta šame taške duotoj fukcja tur ekstremumą. šdferecjuokme ašo ercjos mometo α šrašką kampo, kuruo sukamos koordatės ašs, atžvlgu: d α cosα sα + sα cosα cosα dα ( )sα cosα cosα ( ) s α + cosα. Kampą, pre kuro aša ercjos mometa įgja ekstremes rekšmes, pažmėkme α. Tada s α + cos α, (7.) tgα, (7.4) α arctg. (7.5) π Formulė (7.4) duoda dv kampo rekšmes: α r α + (7.9 pav.). Tag ra dv tarpusavje statmeos ašs, kurų atžvlgu aša ercjos mometa įgja ekstremes rekšmes. Žat, kad ašų ercjos mometų suma ra pastovus dds, galma tegt, kad ašs ercjos mometas veos š jų atžvlgu ra ddžausas, o ktos mažausas. Šos dv tarpusavje statmeos ašs vadamos svarausosoms ašms r paprasta žmmos smolas u r v. ša ercjos mometa jų atžvlgu vadam svarausasas ercjos mometas r žmm smolas u, v (žr. 7.9 pav.). Lgtes (7.) karoj pusė sutampa su šcetro ercjos mometo šraška (7.). Tag šcetrs ercjos mometas svarausųjų ašų atžvlgu ra lgus ulu. Įvertę šį faktą r u α α +π 7.9 pav. v 59

5 paaudoję įvestus smolus, gauame šas formules svarausesems ercjos mometams skačuot: u cos α + s α s α, v s α + cos α + s α, (7.6) uv. 7.4 pvz. Je žom svarausej ercjos mometa, ta ercjos mometa et kokų ktų pasuktų ašų atžvlgu apskačuojam pagal šas formules: u cos α + v s α, u s α + v cos α, u v s α. (7.7) ptarsme keletą šcetro ercjos mometo savų r kelas su joms glaudža susjusas švadas.. šcetrs ercjos mometas atžvlgu dvejų statmeų ašų, kurų et vea ra pjūvo smetrjos ašs, ra lgus ulu (jos atžvlgu kekveam elemetarajam plotelu vsada galma rast tokį patį plotelį su prešgo žeklo attkama koordate; 7. pav.). Tag et kur pjūvo smetrjos ašs ra e tk cetrė (žr. 7. poskrį), et r svarausoj. o. Pasukus koordatų ašų sstemą 9 kampu, šcetrs ercjos mometas pakeča žeklą, et jo skatė rekšmė leka toka pat (š savė gauama į (7.) trečąją lgtį įstačus kampą α + 9 ).. Valcuoto pleo kampuočo šcetram ercjos mometu skačuot paprasta audojama formulė, prtakta pre sortmeto letelų: ± ( * m ) tgα, ča * ddesss š ašų ercjos mometų ( ara ); žeklas ustatomas pagal ploto tasklę: jegu pjūvo ploto ra daugau tegamuose koordatų ašų kvadratuose, ta >, jegu egamuose, ta < (7. pav.). (u) d (v) 7. pav. > < 7. pav. d < > 7.7. ercjos spduls r atsparumo mometas ptarsme dar kels pjūvo geometrus rodklus, audojamus skačuojat įvaras kostrukcjas. Je ra gauam š pagrdų pjūvo geometrų rodklų (7.-7.5). šį ercjos mometą daža patogu šrekšt pjūvo ploto r tam tkros atkarpos kvadrato sadauga; pvz.: d. 6

6 tkarpa vadama pjūvo ercjos spdulu ašes atžvlgu:. (7.8) alogška:. Padalję pjūvo ašį ercjos mometą š tolausa uo attkamos ašes esačo taško koordatės, pamtos asolutu ddumu, gausme dar veą pjūvo geometrį rodklį atsparumo mometą (7. pav.). Koordatų ašų r atžvlgu atsparumo mometų šraškos turės tokį pavdalą: ma W W ma ma,. (7.9) 7. pav. ma 7.5 pvz Elemetarųjų fgūrų cetra ercjos mometa 7. tekstas Stačakamps (7. pav.). šskrkme elemetarųjį plotelį d d. Įraškme gautą šrašką į ašo ercjos mometo tegralę šrašką (7., prmas tegralas): d d ( ). (7.) 8 8 d. d d alogška gauame, kad 7. pav.. (7.) Stačakamps tur dv smetrjos ašs, tag. (7.) 7.6 pvz. 6

7 Trkamps. Prmausa skačuosme ašį ercjos mometą ašes atžvlgu (7.4 pav.). šskrkme elemetarųjį plotelį d s d. š trkampų BD r KL paašumo gauame, kad s. Tada d d. Įraškme gautą elemetarojo plotelo šrašką į ašo ercjos mometo tegralę šrašką (7., prmas tegralas): d d 4 d (7.) 6 alogška gauame, kad B K / / s L d D d s. d 7.4 pav. / /. (7.4) 6 Skačuodam šcetrį ercjos mometą, tap pat šskrkme elemetarųjį plotelį d (7.5 pav.). Jo svoro cetro c e koordates r susesme geometras ršas pasaudoję trkampų BK r e L paašumu:. Įraškme gautas elemetarojo plotelo r jo svoro cetro koordatės šraškas į tegralą (7.4): d d 4 d (7.5) pvz. B e / / / K D L / d / / d ( -)d 7.5 pav. 6

8 Skrtuls (7.6 pav.). šskrkme elemetarųjį žedą, kuro plotas d πρ dρ. Įraškme gautą šrašką į tegralą (7.5): ara r 4 4 r ρ π r p ρ d π ρ dρ π 4 ρ dρ 4 d p π. (7.6) r r Prsmkme, kad p +, tag d 4 π d. 64 (7.7) 7.6 pav. Skrtuls tur e galo daug smetrjos ašų, tag. (7.8) 7.8 pvz., 7. letelė 7.9. Sudėtgo skerspjūvo geometrų rodklų skačavmo algortmas Tarkme, turme skerspjūvį, suskadtą į elemetarųjų fgūrų (,,...,), (7.7 pav.). Prmausa pasrekamos pagalės ašs, r jų atžvlgu ustatomos skerspjūvo svoro cetro koordatės: S, c S, c, c,, c. (7.9),, v Gautos koordatės tkramos: S c, S c. (7.) etra ercjos mometa skačuojam audojat (7.9) formules: α u,, ( ( (,, +, + + c c ), ), c c ). (7.) 7.7 pav. 6

9 Jegu skerspjūvs etur et veos smetrjos ašes, ta, audojat formulę (7.5), ustatomas svarausųjų ašų passukmo kampas α, r, audojat formules (7.6), svarausej ercjos mometa u, v. Skačavma patkram: + u + v cost. Pagalau skačuojamos laausa uo u r v ašų utolusų taškų koordatės (7.) r skerspjūvo atsparumo mometa (7.9). 7.9 pvz. Kotrola klausma 7.. Kap aprėžama plokščųjų fgūrų (pjūvų) geometrų rodklų sąvoka? 7.. Užraškte pjūvo statų mometų tegrales šraškas. Brėžs. 7.. Užraškte pjūvo ašų ercjos mometų tegrales šraškas. Brėžs Užraškte pjūvo šcetro ercjos mometo tegralę šrašką. Brėžs Užraškte pjūvo polo ercjos mometo tegralę šrašką. Brėžs Koks ra pjūvo polo r ašų ercjos mometų ršs, ka polus sutampa su stačakampės koordačų sstemos pradža? Brėžs Kokos ašs vadamos cetrėms? 7.8. Ką tega atstojamosos mometo (Varjoo) teorema? Kap j prtakoma pjūvo svoro cetro padėča ustatt? Brėžs Užraškte pjūvo svoro cetro koordačų skačavmo formules. 7.. Kam lgus pjūvo stats mometas smetrjos ašes atžvlgu? 7.. Kokos ašs vadamos svarausosoms? 7.. Paaškkte formules (rėžs). cos α + s α s α, α α s α + cos α + s α. 7.. Ką tega pjūvo ašų ercjos mometų varatškumo dėss? Formulė, rėžs Paaškkte formulę: tgα Paaškkte formules: u cos α + s α s α, v s α + cos α + s α Kam lgus pjūvo šcetrs ercjos mometas svarausųjų ašų atžvlgu? 7.7. Kap ustatomas pjūvo šcetro ercjos mometo žeklas? Brėžs Jegu pjūvo aša ercjos mometa smetrjos ašų atžvlgu ra veod, ta kokos ašs ra svarausosos? 7.9. Kap skačuojam pjūvo aša r šcetrs ercjos mometa ašų, lgagrečų cetrėms jo ašms, atžvlgu? Brėžs. 7.. Užraškte pjūvo ercjos spdulų formules. 7.. Užraškte pjūvo atsparumo mometų formules. 7.. Kuram tkslu audojamos šos formulės? 7.. Kap aprėžama elemetarosos fgūros sąvoka? 7.4. Kam lgūs stačakampo ploto ercjos mometa savųjų cetrų ašų atžvlgu? Brėžs, formulės Kam lgūs trkampo ercjos mometa savųjų cetrų ašų atžvlgu? Brėžs, formulės Kam lgūs skrtulo ercjos mometa savųjų cetrų ašų atžvlgu? Brėžs, formulės Paaškkte formules., c, c, c,., c 7.8. Paaškkte formulę: (, + c ). 64

2 laboratorinis darbas. TIKIMYBINIAI MODELIAI

2 laboratorinis darbas. TIKIMYBINIAI MODELIAI laboratorns darbas laboratorns darbas. TIKIMYBINIAI MODELIAI DARBO TIKSLAS - šstudjuot atstktnų dydžų r vektorų skrstnus, skrstno (passkrstymo) funkcją, tanko funkcją, skatnes charakterstkas r jų savybes.

Διαβάστε περισσότερα

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

STATISTIKOS PRAKTINIAI DARBAI

STATISTIKOS PRAKTINIAI DARBAI VILNIAUS PEDAGOGINIS UNIVERSITETAS L. GRINIUVIENË STATISTIKOS PRAKTINIAI DARBAI (metodë medþaga) Vlus, 00 UDK 3 Gr 403 Recezetas prof. R. Jauðkevèus ISBN 9986-869-8-X Vlaus pedagogs uverstetas TURINYS

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof. Papldoo ugdyo okykla Fzkos olpas Mechanka Dnaka (II dals) (Paskatų konspektas) 9 kovo 1-18 d Prof Edundas Kuokšts Planas Ketojo kūno asės centras Statka Pagrndnė sukaojo judėjo lygts Judeso keko (pulso)

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

Veikiančių masių dėsnis. Pagrindiniai ir nepagrindiniai krūvininkai

Veikiančių masių dėsnis. Pagrindiniai ir nepagrindiniai krūvininkai kačų masų dėss. Pagrda r agrda krūvka Pusausvyrosos lktroų r skylučų koctracjos šsgmusam usladkyj gzstuoja vu mtu, r galma, avyzdžu, rast jų sadaugą:, s r. B to turėjom, kad. Kadag abjų lygčų dšosos usės

Διαβάστε περισσότερα

III. Darbas ir energija

III. Darbas ir energija III. Dabas enegja III.. Knetnė enegja. III.. Dabas. III. 3. Konsevatyvos jėgos (potencalnės). III.4. Potencnė enegja šonų jėgų lauke. III.5. Enegjos tvemės dėsns mechankoje. III.6. Enegjos dspacja. III..

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

DEFORMUOJAMO KŪNO MECHANIKA 1 dalis

DEFORMUOJAMO KŪNO MECHANIKA 1 dalis DEFORMUOJAMO KŪNO MECHANIKA dalis T U R I N Y S. Deformuojamojo kūo mechaikos objektas ir jos ršs su kitais mokslais. Tamprumo teorijos sąvokos ir prielaidos 3. Įtempimų būvio teorija 4. Pusiausvros difereciali

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

ŠILUMOS PERDAVIMO PER PASTATŲ ATITVARAS SKAIČIAVIMO METODAI I. BENDROSIOS NUOSTATOS

ŠILUMOS PERDAVIMO PER PASTATŲ ATITVARAS SKAIČIAVIMO METODAI I. BENDROSIOS NUOSTATOS ŠILMOS PEDVIMO PE PSTTŲ TITVS SKIČIVIMO METODI I. BENDOSIOS NOSTTOS ST 2.05.01:2005 1 predas 1. Šame eglamento prede patekt šlumos perdavmo per attvaras skačavmo metoda. II. NOODOS 2. Šame eglamento prede

Διαβάστε περισσότερα

MEDŽIAGŲ ATSPARUMAS. Jonas Juodis. Tatjana Sankauskienė

MEDŽIAGŲ ATSPARUMAS. Jonas Juodis. Tatjana Sankauskienė LETUVOS ŽEĖS ŪKO UVERSTETS Vanens ūo r žemėtvaros faultetas Statbnų onstrucjų atera Jonas Juos Tatjana Sanausenė EDŽGŲ TSPRUS Pratnų arbų aprašas aemja 009 UDK 59 / (07)(00) Jonas Juos, Tatjana Sanausenė

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

ρ ρ s ::= sd sd ::= K x sk xotse se sk ::= K (sk x) se ::= x K se se se x = se xotse se xotse se x sp se se l lo sp ::= x l K sp x(x ) l ::= char number lo ::= se (+ = = < > ) se se se ot ::= τ ɛ τ

Διαβάστε περισσότερα

Kreivių tipai. Neparametrinės kreivės. Grafika ir vizualizavimas Kreivės. Grafika ir vizualizavimas, VDU, Kreivės 1

Kreivių tipai. Neparametrinės kreivės. Grafika ir vizualizavimas Kreivės. Grafika ir vizualizavimas, VDU, Kreivės 1 Grafka r vzualzavas, VDU, Krevų pa Grafka r vzualzavas Krevės Neparaerės Nešrekšės agl. plc Išrekšės agl. eplc Kūgės krevės araerės Kubės krevės Ierpolavo būdu gauaos krevės Dals esės krevės Lagražo krevės

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά

Διαβάστε περισσότερα

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε 1 ÈÖ Ð Ñ Για να είναι εφαρμόσιμη η μέθοδος της συνάρτησης Green, θαπρέπειηομογενής εξίσωση Ly =+ Ο.Σ.Σ. να έχει ως μοναδική λύση τη μηδενική. α) Η ομογενής εξίσωση y =έχει λύση y = A + B, από τις δεδομένες

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

P r s r r t. tr t. r P

P r s r r t. tr t. r P P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str

Διαβάστε περισσότερα

..,..,.. ! " # $ % #! & %

..,..,.. !  # $ % #! & % ..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5.

5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5. ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. (α) Να βρεθεί η τιμή της σύνθετης αντίστασης Ζ(s) των τριών κυκλωμάτων στο σχήμα Π5. (β) Να βρεθούν οι πόλοι και τα μηδενικά της Ζ(s). (γ) Να βρεθεί

Διαβάστε περισσότερα

Fotodiodas. Puslaidinikis fotodiodas

Fotodiodas. Puslaidinikis fotodiodas Fotododas Fotododas vdo fotoefekto įregys kečats švesą į elektrą. Fotododa šrast jau sea r jų vekmo rca arašyt daugelyje vadovėlų. Dabar remsmės A. Krotkaus Pusladkų otoelektrokos sstemos r retasa. Vsa

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

20.2.5 Å/ ÅÃ... YD/ kod... 130

20.2.5 Å/ ÅÃ... YD/ kod... 130 Περιεχόμενα 13 Ψάχνοντας υποαπασχόληση 1 13.1 Διάλογοι.................................................. 1 13.1.1 Ÿ º Â È Ç½µ¹ Å»µ¹..................................... 1 13.1.2 Ä µãä¹±äìá¹...........................................

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

NEAPIBRöŽTIES SKAIČIAVIMO PROCEDŪRA

NEAPIBRöŽTIES SKAIČIAVIMO PROCEDŪRA NEAPIBRöŽTIES SKAIČIAVIMO PROCEDŪRA MATAVIMO NEAPIBRöŽTIS- parametras, susetas su matavmo rezultatu r charakterzuojants skladą rekšmų, gautų matavmo procese, kuros gal būt pagrįsta prskrtos matuojamajam.

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d

Διαβάστε περισσότερα

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des

Διαβάστε περισσότερα

TRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG)

TRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG) TÌ TỰ TÍ TOÁ TIẾT Ế BỘ TUYỀ BÁ ĂG TỤ (TẲG, GIÊG Thôg số đầu à: côg suất P, kw (hặc môme xắ T, mm; số òg quy, g/ph; tỷ số truyề u Chọ ật lệu chế tạ báh răg, phươg pháp hệt luyệ, tr cơ tíh ật lệu hư: gớ

Διαβάστε περισσότερα

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1] 1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

Henrikas CESIULIS Vytautas SKUČ AS ELEKTROLITŲ TIRPALAI. Enciklopedinis žinynas

Henrikas CESIULIS Vytautas SKUČ AS ELEKTROLITŲ TIRPALAI. Enciklopedinis žinynas Henrkas CESIULIS Vytautas SKUČ AS ELEKTROLITŲ TIRPALAI Encklopedns žnynas Vlnaus unversteto ledykla 000 Encklopednį žnyną apsvarstė r rekomendavo spauda Vlnaus Unversteto chemjos fakulteto fzknės chemjos

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

Neodreeni integrali. Glava Teorijski uvod

Neodreeni integrali. Glava Teorijski uvod Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f

Διαβάστε περισσότερα

UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA PREDAVANJE

UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA PREDAVANJE UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA - - 4. PREDAVANJE - Dr Darko Mhajlov, doc. 1. ČAS Sredšte (cetar) sstema paralelh sla; Težšte krutog tela;

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Detyra për ushtrime PJESA 4

Detyra për ushtrime PJESA 4 0 Detyr për ushtrime të pvrur g lëd ANALIZA MATEMATIKE I VARGJET NUMERIKE Detyr për ushtrime PJESA 4 3 Të jehsohet lim 4 3 ( ) Të tregohet se vrgu + + uk kovergjo 3 Le të jeë,,, k umr relë joegtivë Të

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Cursul 10 T. rezultă V(x) < 0.

Cursul 10 T. rezultă V(x) < 0. ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()

Διαβάστε περισσότερα

Logique et Interaction : une Étude Sémantique de la

Logique et Interaction : une Étude Sémantique de la Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Register your product and get support at PPX 4150 GR Ο

Register your product and get support at  PPX 4150 GR Ο Register your product and get support at www.philips.com/welcome PPX 4150 GR Ο μ Α π π...3 μ...3 μ π...3...4 Ε...4...4 Επ...5...6 μ...6...6 μ...6 μ...7 μ μ...7...8 Ε...8 / μπ...8...8 μ π...9 μ HDMI...9...9

Διαβάστε περισσότερα

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( ((( ? / / / o/ / / / o/ / / / 1 1 1., D 1 1 1 D 1, E F 1 D 1. = a, D = b, 1 = c. a, b, c : #$ #$ #$ 1) 1 ; : 1)!" ) D 1 ; ) F ; = D, )!" D 1 = D + DD 1, % ) F = D + DD 1 + D 1 F, % 4) EF. 1 = 1, 1 = a + b

Διαβάστε περισσότερα

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α

Διαβάστε περισσότερα

Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība

Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =

Διαβάστε περισσότερα

ITU-R SA (2010/01)! " # $% & '( ) * +,

ITU-R SA (2010/01)!  # $% & '( ) * +, (010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory Σ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Conrol Theory (η Ενότητα: Συστήματα Συνεχούς Χρόνου) Επίλυση εξισώσεων κατάστασης Διδάσκων : Αναπληρωτής Καθηγητής Έστω

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

19 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

19 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ SECTION 9 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 9. Υπεργεωµετρικές Συναρτήσεις ιαφορικές εξισώσεις Η υπεργεωµετρική διαφορική εξίσωση (Σ Ε του Gass) είναι ( )'' {c (a b )}' ab Αν οι c, a b, και c a b δεν είναι ακέραιοι,

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

,

, ... 7 1.,... 8 1.1... 8 1.2... 10 1.3-4... 12 1.4,... 13 1.5,... 14 1.6... 14 2... 16 2.1... 16 2.2... 18 2.3... 23 2.4... 24 2.5... 24 2.6... 27 2.7... 29 2.8... 32 2.9... 34 2.10... 40 2.11... 40 2.12...

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΑΣ : Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 14 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 1. Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή. Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές.

Διαβάστε περισσότερα