Elektronų ir skylučių statistika puslaidininkiuose

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Elektronų ir skylučių statistika puslaidininkiuose"

Transcript

1 lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt lydimas atvirkštiio procso - rkombiacijos, kada lktroai gražiami į dooriius lygmis arba į valtię juostą. Ji gracija vyksta tik dėl šilumiio atomų judėjimo trmodiamiės pusiausvyros sąlygomis, tai gauam pusiausvirąją laisvų lktroų koctraciją 0. ( 0 - kai tmpratūra pastovi ir yra diamiė pusiausvyra tarp gracijos ir rkombiacijos). Laisvų skylučių gracija, t.y. lktroų prėjimas iš valtiės juostos į akcptoriius lygmis arba į laidumo juostą, taip pat lydima rkombiacijos. Trmodiamiės pusiausvyros sąlygomis gauam pusiausvirąją laisvų skylučių koctraciją p 0. B laisvų lktroų ir skylučių stbimi judrūs (įtvirtiti) lktroai ir skylutės lygmys, sačiuos draustiėj juostoj. Jigu - doorų koctracija, - joizuotų doorų koctracija, tai - - p, čia - lktroų koctracija dooriiuos lygmys, p - tigiamų skylučių koctracija dooriiuos lygmys. čia Jigu a - akcptorių koctracija, - a - joizuotų akcptorių koctracija, tai p a a - - a a - a, p a - skylučių koctracija akcptoriiuos lygmys, a - a - lktroų koctracija akcptoriiuos lygmys. Puslaidiikio su vio tipo doorais ir vio tipo akcptoriais lktriio utralumo sąlyga: (p 0 p ) - ( 0 a ) 0 arba p 0 p 0 a. Tokią pat lktroutralumo sąlygą taikom ir pusiausvirosioms laisvųjų krūviikų koctracijoms, kai 0 5

2 p p 0 p čia ir p - papildomos koctracijos, atsiradačios dėl įvairių prižasčių. Paprastai tigiama, kad akimirksiu usistovi pusiausvyra, t.y. p, ir tuomt lktroutralumo sąlyga: p p a. c a v 53

3 lktroų ir skylučių pasiskirstymas juostos ir diskrtiiuos lygmys Laisvųjų lktroų ir skylučių pusiausvyriės koctracijos puslaidiikiuos ir dilktrikuos aprašomos rmi - irako ukcija, kaip ir laisvųjų lktroiių dujų mtaluos. rmi lygms padėtis usakoma puslaidiikio tipu. lktroų pasiskirstymas mtaluos pagal rmi statistiką, kai T 0 K } 0 } 0 lktroų pasiskirstymas mtaluos pagal rmi statistiką, kai T > 0 K } } 0 0,5 0 0,5 lktroų pasiskirstymas puslaidiikiuos ir dilktrikuos, kai T 0 K c v } 0 0,5 } 0 0,5 54

4 lktroų pasiskirstymas puslaidiikiuos ir dilktrikuos, kai T > 0 K c v } 0 0,5 } 0 0,5 rmi - irako pasiskirstymo ukciją lktroams užrašom:. Skylutėms p galim užrašyti kaip skirtumą ( - ): p. ydis p yra tikimybė, kad rgijos lygmuo yra užpildytas skylut. - rmi lygmuo, kuriam p 0,5. Paagriėkim lktroų ir skylučių pasiskirstymo ukcijas dooriės ir akcptoriės rgtiės būsos. ooriiai arba akcptoriiai lygmys gali būti užimti tik viu lktrou arba skylut. Ji tarkim, kad arba būsoj yra dar vias lktroas, tai dėl didlės lktrostatiės sąvikos patys dydžiai ir pasikičia, t. y. viąkart ir dukart joizuotos primaišos rgtiiai lygmys skiriasi vias uo kito. raudimas primaišiiuos ir lygmys būti dvims ir daugiau lktroų turi atsispidėti lktroų pasiskirstymo ukcijoj. Gibso mtodas duoda tokias lktroų pasiskirstymo ukcijas dooriiuos ir akcptoriiuos lygmys: lktroų pasiskirstymas ir lygmys. 55

5 . Skylutėms pasiskirstymo ukcijas ir lygmys galim gauti, ji iš -, t.y. p. p lktroų ir skylučių koctracijos primaišiiuos lygmys: p p - p p -. 56

6 rmi lygmuo ir krūviikų koctracija išsigimusiam gryajam puslaidiikyj Gryajam puslaidiikyj primaišų ėra, t. y. 0. Šiuo atvju utralumo lygtis užrašoma taip: i p i. Ši ormulė rodo, kad kikvią valtiės juostos lktroą sužadiat prkėlus į laidumo juostą, valtiėj juostoj atsirada skylė, o laisvųjų lktroų ir skylių takiai yra lygūs. Paprastai ši takiai žymimi idksu i vitoj 0. išsigimimo kritrijus: lktroams - >> skylutėms - >>. išsigimusių lktroiių dujų pusiausviroji koctracija: 0, - būsų takis laidumo juostoj. išsigimusių skylučių pusiausvira koctracija: v - būsų takis valtiėj juostoj. p 0. Šias ormuls gauam suitgravę d ( ) d Kadagi gryajam puslaidiikyj i p i, d 0 dz ). ( 0 o o. bi lygybės puss padaliję iš gauam:. adiasi, 57

7 58 l. Tada l Kai T 0, gauam i Ši ormulė rodo, kad absoliutiio ulio tmpratūroj gryojo puslaidiikio rmio lygmuo yra draustiės rgijos juostos viduryj. Ji tika ir kai T 0, ji. lktroų takį gryajam puslaidiikyj apskaičiuojam rmio lygms išraišką įrašę į pusiausvirosios lktroų koctracijos išraišką: - i l i 0 Laisvųjų krūviikų takio priklausomybę uo tmpratūros i (T) ulmia kspotiis arys. Sadauga ( c v ) / priklauso uo tmpratūros tik T 3/. ksprimtiškai ustatę i (T) ir išmatuotą l( i ) pavaizdavę kaip /T ukciją, turėtum gauti tisę. - i l l, čia l l - dydis, kuris mažai kičiasi uo tmpratūros. adiasi, l i yra tisiė priklausomybė uo /T. i T

8 l( i ) l Iš šios tisės polikio galima ksprimtiškai rasti draustiės juostos plotį. α /T k l l tgα l - l - [ l ] tgα k T adiasi, ksprimtiškai iš graiko ustatę tgα, apskaičiuojam draustiės juostos plotį. Kartu būtia prisimiti, kad draustiės juostos plotis gali priklausyti uo tmpratūros. Pirmuoju artutiumu šį kitimą galima laikyti tisiiu: (T) 0 - βt čia 0 - draustiės rgijų juostos plotis absoliutiio ulio tmpratūroj, β d( )/dt - tmpratūriis koicitas. Todėl, orit apskaičiuoti draustiės juostos plotį aukštsėj tmpratūroj, rikia audotis šia ormul. 59

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

1 Puslaidiikių krūviikai Tikslas: Išsiaiškiti krūviikų gryuosiuose ir riemaišiiuose uslaidiikiuose rigimtį. Išsiaiškiti, uo ko, kai ir kodėl riklauso krūviikų takiai. Išmokti skaičiuoti uslaidiikių krūviikų

Διαβάστε περισσότερα

Veikiančių masių dėsnis. Pagrindiniai ir nepagrindiniai krūvininkai

Veikiančių masių dėsnis. Pagrindiniai ir nepagrindiniai krūvininkai kačų masų dėss. Pagrda r agrda krūvka Pusausvyrosos lktroų r skylučų koctracjos šsgmusam usladkyj gzstuoja vu mtu, r galma, avyzdžu, rast jų sadaugą:, s r. B to turėjom, kad. Kadag abjų lygčų dšosos usės

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1 Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa

Διαβάστε περισσότερα

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS .5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame

Διαβάστε περισσότερα

Dviejų kintamųjų funkcijos dalinės išvestinės

Dviejų kintamųjų funkcijos dalinės išvestinės Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento

Διαβάστε περισσότερα

PNEUMATIKA - vožtuvai

PNEUMATIKA - vožtuvai Mini vožtuvai - serija VME 1 - Tipas: 3/2, NC, NO, monostabilūs - Valdymas: Mechaninis ir rankinis - Nominalus debitas (kai 6 barai, Δp = 1 baras): 60 l/min. - Prijungimai: Kištukinės jungtys ø 4 žarnoms

Διαβάστε περισσότερα

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................

Διαβάστε περισσότερα

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS

ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS II skyrius ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS 2.1. Kietųjų kūnų klasifikacija pagal laiduą Pagal gebėjią praleisti elektros srovę visos edžiagos gatoje yra skirstoos į tris pagridines klases: laidininkus,

Διαβάστε περισσότερα

Statistinis ir termodinaminis tyrimo metodai

Statistinis ir termodinaminis tyrimo metodai MOLEKULINĖS FIZIKOS IR TERMODINAMIKOS PAGRINDAI Statistiis i temodiamiis tyimo metodai Statistiis tyimo metodas Kaip buvo aiškiama medžiagos sadaa Mitį, kad kiekviea medžiaga sudayta iš smulkiausių edalomų

Διαβάστε περισσότερα

Lina Ragelienė, Donatas Mickevičius. Fizikin chemija. Praktiniai darbai

Lina Ragelienė, Donatas Mickevičius. Fizikin chemija. Praktiniai darbai Lina Ragelienė, Donatas Mickevičius Fizikinchemija Praktiniai darbai Vytauto Didžiojo universitetas Kaunas, 011 ISBN 978-9955-1-751- Lina Ragelienė, Donatas Mickevičius Vytauto Didžiojo universitetas TURINYS

Διαβάστε περισσότερα

Statistinė termodinamika. Boltzmann o pasiskirstymas

Statistinė termodinamika. Boltzmann o pasiskirstymas Statistinė termodinamika. Boltzmann o pasiskirstymas DNR molekulių vaizdas DNR struktūros pakitimai. Keičiantis DNR molekulės formai keistųsi ir visos sistemos entropija. Mielėse esančio DNR struktūros

Διαβάστε περισσότερα

Puslaidininkių fizikos laboratoriniai darbai

Puslaidininkių fizikos laboratoriniai darbai VILNIAUS PEDAGOGINIS UNIVERSITETAS FIZIKOS IR TECHNOLOGIJOS FAKULTETAS Puslaidininkių fizikos laboratoriniai darbai Audzijonis Audzijonis Aurimas Čerškus VILNIUS 003 Algirdas Audzijonis, 003 Aurimas Čerškus,

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

Šotkio diodo voltamperinės charakteristikos tyrimas

Šotkio diodo voltamperinės charakteristikos tyrimas VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra Krūvio pernašos vyksmų skaitinis modeliavimas Darbas Nr. 1 Šotkio diodo voltamperinės charakteristikos tyrimas Parengė A. Poškus 214-9-3 Turinys

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

TERMODINAMIKA. 1. Pagrindinės sąvokos ir apibrėžimai

TERMODINAMIKA. 1. Pagrindinės sąvokos ir apibrėžimai TERMODINAMIKA 1. Pagrindinės sąvks ir apibrėžimai Įvadas Termdinamika (T) graikiškas ždisiš dviejų daliųterm (šiluma) + dinamika (jėga). Tai fundamentalus bendrsis inžinerijs mkslas apie energiją : js

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė

Διαβάστε περισσότερα

Skysčiai ir kietos medžiagos

Skysčiai ir kietos medžiagos Skysčiai ir kietos medžiagos Dujos Dujos, skysčiai ir kietos medžiagos Užima visą indo tūrį Yra lengvai suspaudžiamos Lengvai teka iš vieno indo į kitą Greitai difunduoja Kondensuotos fazės (būsenos):

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

Atsitiktinių paklaidų įvertinimas

Atsitiktinių paklaidų įvertinimas 4.4.4. tsitiktinių paklaidų įvertinimas tsitiktinės paklaidos įvertinamos nurodant du dydžius: pasikliaujamąjį intervalą ir pasikliaujamąją tikimybę. tsitiktinių paklaidų atveju, griežtai tariant, nėra

Διαβάστε περισσότερα

Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje

Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje Lango vieta angoje Reguliuojami stiklo pluošto laikikliai Sukurta mūsų, pagaminta mūsų Geram rezultatui

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

III.Termodinamikos pagrindai

III.Termodinamikos pagrindai III.ermodinamikos pagrindai III.. Dujų plėtimosi darbas egu dujos yra cilindre su nesvariu judančiu stūmokliu, kurio plotas lygus S, ir jas veikia tik išorinis slėgis p. Pradinius dujų parametrus pažymėkime

Διαβάστε περισσότερα

1 TIES ES IR PLOK TUMOS

1 TIES ES IR PLOK TUMOS G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

Atomų sąveikos molekulėje rūšys (joninis ir kovalentinis ryšys). Molekulė mažiausia medžiagos dalelė, turinti esmines medžiagos chemines savybes.

Atomų sąveikos molekulėje rūšys (joninis ir kovalentinis ryšys). Molekulė mažiausia medžiagos dalelė, turinti esmines medžiagos chemines savybes. Atomų sąveikos molekulėje rūšys (joninis ir kovalentinis ryšys). Molekulė mažiausia medžiagos dalelė, turinti esmines medžiagos chemines savybes. Ji susideda iš vienodų arba skirtingų atomų. Molekulėje

Διαβάστε περισσότερα

EKONOMETRIJA 1 (Regresinė analizė)

EKONOMETRIJA 1 (Regresinė analizė) EKONOMETRIJA 1 Regresinė analizė Kontrolinis Sudarė M.Radavičius 004 05 15 Kai kurių užduočių sprendimai KOMENTARAS. Kai kuriems uždaviniams tik nusakytos sprendimų gairės, kai kurie iš jų suskaidyti į

Διαβάστε περισσότερα

KURKIME ATEITĮ DRAUGE! FIZ 414 APLINKOS FIZIKA. Laboratorinis darbas SAULĖS ELEMENTO TYRIMAS

KURKIME ATEITĮ DRAUGE! FIZ 414 APLINKOS FIZIKA. Laboratorinis darbas SAULĖS ELEMENTO TYRIMAS EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

Modalumo logikos S4 kai kurios išsprendžiamos klasės

Modalumo logikos S4 kai kurios išsprendžiamos klasės VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA Magistro baigiamasis darbas Modalumo logikos S4 kai kurios išsprendžiamos klasės Some Decidable Classes of Modal Logic

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

PUSLAIDININKINIAI ĮTAISAI. VEIKIMO IR TAIKYMO PAGRINDAI

PUSLAIDININKINIAI ĮTAISAI. VEIKIMO IR TAIKYMO PAGRINDAI VILNIAUS UNIVERSITETAS Fizikos fakultetas Radiofizikos katedra ČESLOVAS PAVASARIS PUSLAIDININKINIAI ĮTAISAI. VEIKIMO IR TAIKYMO PAGRINDAI (1 dalis- radiotechninių grandinių pasyvieji ir aktyvieji elementai)

Διαβάστε περισσότερα

Rankinio nustatymo ventiliai MSV-F2, PN 16/25, DN

Rankinio nustatymo ventiliai MSV-F2, PN 16/25, DN Rankinio nustatymo ventiliai MSV-F2 PN 16/25 DN 15-400 Aprašymas MSV-F2 DN 15-150 MSV-F2 DN 200-400 MSV-F2 yra rankinio nustatymo ventiliai. Jie naudojami srautui šildymo ir šaldymo įrenginiuose balansuoti.

Διαβάστε περισσότερα

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 05 m. birželio 8 d. įsakymu Nr. (.3.)-V-73 05 M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA. Pagrindinė sesija I dalis Teisingas

Διαβάστε περισσότερα

Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė

Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė dėst. T. Rekašius, 2012 m. lapkričio 19 d. 1 Duomenys Visi trečiam laboratoriniam darbui reikalingi duomenys yra tekstinio formato failuose http://fmf.vgtu.lt/~trekasius/destymas/2012/ekomet_lab3_xx.dat,

Διαβάστε περισσότερα

Įžanginių paskaitų medžiaga iš knygos

Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio

Διαβάστε περισσότερα

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio

Διαβάστε περισσότερα

BRANDUOLIO FIZIKOS EKSPERIMENTINIAI METODAI

BRANDUOLIO FIZIKOS EKSPERIMENTINIAI METODAI VILNIAUS UNIVERSITETAS Andrius Poškus ATOMO FIZIKA IR BRANDUOLIO FIZIKOS EKSPERIMENTINIAI METODAI (20 ir 21 skyriai) Vilnius 2008 Turinys 20. Blyksimieji detektoriai 381 20.1. Įvadas 381 20.2. Blyksnio

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

Taikomoji branduolio fizika

Taikomoji branduolio fizika VILNIAUS UNIVERSITETAS Taikomoji branduolio fizika Parengė A. Poškus Vilnius 2015-05-20 Turinys 1. Neutronų sąveika su medžiaga...1 1.1. Neutronų sąveikos su medžiaga rūšys...1 1.2. Neutrono sukeltų branduolinių

Διαβάστε περισσότερα

6. Konstrukcijų patikimumo įvertinimo metodai

6. Konstrukcijų patikimumo įvertinimo metodai 6. Kostrukcijų patikimumo įvertiimo metodai 6.1. Bedrieji kostrukcijų patikimumo įvertiimo pricipai 6.1 tekstas Eksploatuojamoje kostrukcijoje, kaip ir visur gamtoje, vyksta priešybių kova: iš vieos pusės,

Διαβάστε περισσότερα

Rotaciniai vožtuvai HRB 3, HRB 4

Rotaciniai vožtuvai HRB 3, HRB 4 Techninis aprašymas Rotaciniai vožtuvai HRB 3, HRB 4 Aprašymas HRB rotacinius vožtuvus galima naudoti kartu su elektros pavaromis AMB 162 ir AMB 182. Savybės: Mažiausias pratekėjimas šioje klasėje Uniklalus

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra Juozas Navickas FIZIKA I dalis MOKOMOJI KNYGA KAUNAS, ARDIVA 8 UDK 53(75.8) Na95 Juozas Navickas FIZIKA, I dalis

Διαβάστε περισσότερα

Biologinių pigmentų fluorescencijos tyrimas

Biologinių pigmentų fluorescencijos tyrimas VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS KVANTINĖS ELEKTRONIKOS KATEDRA BIOFOTONIKOS LABORATORIJA Laboratorinis darbas (BPFT) Biologinių pigmentų uorescencijos tyrimas VILNIUS 24 1. Darbo tikslas Ištirti

Διαβάστε περισσότερα

PAPILDOMA INFORMACIJA

PAPILDOMA INFORMACIJA PAPILDOMA INFORMACIJA REKOMENDACIJOS, KAIP REIKIA ĮRENGTI, PERTVARKYTI DAUGIABUČIŲ PASTATŲ ANTENŲ ŪKIUS, KAD BŪTŲ UŽTIKRINTAS GEROS KOKYBĖS SKAITMENINĖS ANTŽEMINĖS TELEVIZIJOS SIGNALŲ PRIĖMIMAS I. BENDROSIOS

Διαβάστε περισσότερα

APRAŠOMOJI STATISTIKA

APRAŠOMOJI STATISTIKA STATISTIKA FILOLOGAMS 4 paskaita APRAŠOMOJI STATISTIKA Pagrindinės sąvokos Statistika keliareikšmė sąvoka. Skirtinos bent jau šios ryškios bei kartu skirtingos reikšmės: a) tokia duomenų apie valstybę,

Διαβάστε περισσότερα

MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA

MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA III KURSO III TURO METODINIAI NURODYMAI IR UŢDUOTYS

Διαβάστε περισσότερα

Aviacinės elektronikos pagrindai

Aviacinės elektronikos pagrindai Antanas Savickas Aviacinės elektronikos pagrindai Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus

Διαβάστε περισσότερα

SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE

SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE Mokymo priemonė Parengė A. Poškus 4 Turinys. ĮVADAS..... Telekomunikaijų sistemos struktūrinė shema. Pagrindinės

Διαβάστε περισσότερα

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE ŠVIESOS SKLIDIMAS IZOTROPIĖSE TERPĖSE 43 2.7. SPIDULIUOTĖS IR KŪO SPALVOS Spinduliuotės ir kūno optiniam apibūdinimui naudojama spalvos sąvoka. Spalvos reiškinys yra nepaprastas. Kad suprasti spalvos esmę,

Διαβάστε περισσότερα

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA JONAS DUMČIUS (1905 1986) TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA 1975 metais rotaprintu spausdintą vadovėlį surinko klasikinės filologijos III kurso studentai Lina Girdvainytė Aistė Šuliokaitė Kristina

Διαβάστε περισσότερα

Įvadas į laboratorinius darbus

Įvadas į laboratorinius darbus M A T E M A T I N Ė S T A T I S T I K A Įvadas į laboratorinius darbus Marijus Radavičius, Tomas Rekašius 2005 m. rugsėjo 26 d. Reziumė Laboratorinis darbas skirtas susipažinti su MS Excel priemonėmis

Διαβάστε περισσότερα

Kinetinė biomolekulių spektroskopija 1. Darbo tikslas šmatuoti BSA (jaučio serumo albumino) ir GFP (žaliai fluorescuojančio baltymo) baltymų fluoresce

Kinetinė biomolekulių spektroskopija 1. Darbo tikslas šmatuoti BSA (jaučio serumo albumino) ir GFP (žaliai fluorescuojančio baltymo) baltymų fluoresce Laboratorinis darbas Kinetinė biomolekulių spektroskopija 2008 Vilnius Kinetinė biomolekulių spektroskopija 1. Darbo tikslas šmatuoti BSA (jaučio serumo albumino) ir GFP (žaliai fluorescuojančio baltymo)

Διαβάστε περισσότερα

Diskrečioji matematika

Diskrečioji matematika VILNIAUS UNIVERSITETAS Gintaras Skersys Julius Andrikonis Diskrečioji matematika Pratybų medžiaga Versija: 28 m. sausio 22 d. Vilnius, 27 Turinys Turinys 2 Teiginiai. Loginės operacijos. Loginės formulės

Διαβάστε περισσότερα

ORGANINIŲ METALŲ JUNGINIŲ CHEMIJA

ORGANINIŲ METALŲ JUNGINIŲ CHEMIJA Sigitas Tumkevičius GAIIŲ METALŲ JUGIIŲ CEMIJA METDIĖ PIEMĖ Projektas Chemijos ir chemijos inžinerijos specialistų rengimo tobulinimas, dėstytojų kvalifikacijos gerinimas bei mobilumo skatinimas, kodas

Διαβάστε περισσότερα

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad 45 DISKREČIOJI MATEMATIKA. LOGIKA. PAVYZDŽIAI Raidėmis U, B ir C pažymėti teiginiai: U = Vitas yra studentas ; B = Skirmantas yra studentas ; C = Jonas yra studentas. 1 Tada teigini Ne visi šie vaikinai

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

Arenijaus (Arrhenius) teorija

Arenijaus (Arrhenius) teorija Rūgštys ir bazės Arenijaus (Arrhenius) teorija Rūgštis: Bazė: H 2 O HCl(d) H + (aq) + Cl - (aq) H 2 O NaOH(k) Na + (aq) + OH - (aq) Tuomet neutralizacijos reakcija: Na + (aq) + OH - (aq) + H + (aq) + Cl

Διαβάστε περισσότερα

AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA. Plotis, mm 99,149,199,249,299 Aukštis, mm 199

AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA. Plotis, mm 99,149,199,249,299 Aukštis, mm 199 AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA Statinio sienos bei pertvaros projektuojaos ūrinės iš piros kategorijos akytojo betono blokelių AEROC CLASSIC pagal standartą

Διαβάστε περισσότερα

Rinktiniai informacijos saugos skyriai. 3. Kriptografija ir kriptografijos protokolai: Klasikinė kriptografija

Rinktiniai informacijos saugos skyriai. 3. Kriptografija ir kriptografijos protokolai: Klasikinė kriptografija Rinktiniai informacijos saugos skyriai 3. Kriptografija ir kriptografijos protokolai: Klasikinė kriptografija Paskaitos tikslai Šioje temoje nagrinėjami klausimai: Perstatų šifrai Keitinių šifrai Vienos

Διαβάστε περισσότερα

Laboratorinis darbas Nr. 2

Laboratorinis darbas Nr. 2 M A T E M A T I N Ė S T A T I S T I K A Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2005 m. spalio 23 d. Reziumė Antras laboratorinis darbas skirtas išmokti generuoti tikimybinių skirstinių

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

STOGO ŠILUMINIŲ VARŽŲ IR ŠILUMOS PERDAVIMO KOEFICIENTO SKAIČIAVIMAS

STOGO ŠILUMINIŲ VARŽŲ IR ŠILUMOS PERDAVIMO KOEFICIENTO SKAIČIAVIMAS STOGO ŠILUMINIŲ VAŽŲ I ŠILUMOS PEDAVIMO KOEFICIENTO SKAIČIAVIMAS ST 2.05.02:2008 2 priedas 1. Stogo suminė šiluminė varža s (m 2 K/W) apskaičiuojama pagal formulę [4.6]: s 1 2... n ( g q ); (2.1) čia:

Διαβάστε περισσότερα

Δp nustatymo ribos (bar) Kodas 003H6200

Δp nustatymo ribos (bar) Kodas 003H6200 Techninis aprašymas Slėgio perkryčio reguliatorius (PN 16) AVP montuojamas tiekimo ir grąžinimo vamzdyne, reguliuojami nustatymai AVP-F montuojamas grąžinimo vamzdyne, nekeičiami nustatymai Pritaikymas

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

4 laboratorinis darbas. PARAMETRŲ ĮVERČIAI IR STATISTINĖS HIPOTEZĖS

4 laboratorinis darbas. PARAMETRŲ ĮVERČIAI IR STATISTINĖS HIPOTEZĖS PARAMETRŲ ĮVERČIAI IR STATISTINĖS HIPOTEZĖS DARBO TIKSLAS - išstudijuoti parametrų taškiių ir itervaliių įverčių radimo, parametriių ir eparametriių hipotezių tikriimo uždaviius ir jų taikymą Teorijos

Διαβάστε περισσότερα

KADETAS (VII ir VIII klasės)

KADETAS (VII ir VIII klasės) ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip

Διαβάστε περισσότερα

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu

Διαβάστε περισσότερα

Kurį bazinį insuliną pasirinkti

Kurį bazinį insuliną pasirinkti Kurį bazinį insuliną pasirinkti g y d y t o j u i p r a k t i k u i L. Zabulienė, Vilniaus universitetas, Vilniaus Karoliniškių poliklinika Cukrinis diabetas (CD) yra viena sparčiausiai plintančių ligų

Διαβάστε περισσότερα

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos .1. BENDROSIOS SĄVOKOS 1.1. Bendrosios sąvokos.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε =, xt;ε) C n T), T [,+ ), < ε ε ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε,

Διαβάστε περισσότερα

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Rimantas DEKSNYS, Robertas STANIULIS Elektros sistemų katedra Kauno technologijos universitetas

Διαβάστε περισσότερα

V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI

V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI Uždirbtų palūkanų suma priklauso ne tik nuo palūkanų normos dydžio, bet ir nuo palūkanų kapitalizavimo dažnio Metinė palūkanų norma nevisada atspindi

Διαβάστε περισσότερα

FRANKO IR HERCO BANDYMAS

FRANKO IR HERCO BANDYMAS VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra Atomo ir branduolio fizikos laboratorija Laboratorinis darbas Nr. FRANKO IR HERCO BANDYMAS Parengė A. Poškus 013-08-31 Turinys Darbo tikslas 1.

Διαβάστε περισσότερα

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA. Algoritmų teorija. Paskaitų konspektas

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA. Algoritmų teorija. Paskaitų konspektas VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Algoritmų teorija Paskaitų konspektas Dėstytojas: lekt. dr. Adomas Birštunas Vilnius 2015 TURINYS 1. Algoritmo samprata...

Διαβάστε περισσότερα

MONTE KARLO METODAS. Gediminas Stepanauskas IVADAS Sistemos Modeliai Modeliavimas ir Monte-Karlo metodas...

MONTE KARLO METODAS. Gediminas Stepanauskas IVADAS Sistemos Modeliai Modeliavimas ir Monte-Karlo metodas... MONTE KARLO METODAS Gediminas Stepanauskas 2008 Turinys 1 IVADAS 4 1.1 Sistemos.............................. 4 1.2 Modeliai.............................. 5 1.3 Modeliavimas ir Monte-Karlo metodas.............

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225

Διαβάστε περισσότερα

Paskait u konspektas. Jam padėjo Aristidas Vilkaitis ir Donatas Šepetys 2006 metais

Paskait u konspektas. Jam padėjo Aristidas Vilkaitis ir Donatas Šepetys 2006 metais Paskait u konspektas AKTUARINĖ MATEMATIKA Surašė Jonas Šiaulys Ja padėjo Aristidas Vilkaitis ir Donatas Šepetys 26 etais Naudota literatūra Bowers N.L., Gerber H.U., Hickan J.C., Jones D.A., Nesbitt C.J.,

Διαβάστε περισσότερα

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs

Διαβάστε περισσότερα

DVB-T, DVB-S ir WiMAX sistemų radijo sąsajų signalų tyrimas

DVB-T, DVB-S ir WiMAX sistemų radijo sąsajų signalų tyrimas Vilniaus universiteto Fizikos fakultetas, Radiofizikos katedra Telekomunikacijų sistemų mokomoji laboratorija Laboratorinis darbas Nr. 9 DVB-T, DVB-S ir WiMAX sistemų radijo sąsajų signalų tyrimas Vilnius

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

Algoritmai. Vytautas Kazakevičius

Algoritmai. Vytautas Kazakevičius Algoritmai Vytautas Kazakevičius September 2, 27 2 Turinys Baigtiniai automatai 5. DBA.................................. 5.. Abėcėlė............................ 5..2 Automatai..........................

Διαβάστε περισσότερα

1. Įvadas į sistemas ir signalus. 1. Signalas, duomenys, informacija ir žinios

1. Įvadas į sistemas ir signalus. 1. Signalas, duomenys, informacija ir žinios . Įvadas į sistemas ir signalus. Signalas, duomenys, informacija ir žinios Žodis signalas yra kilęs iš lotyniško žodžio signum ženklas. Signalas tai yra tai kas yra naudojama žiniai perduoti. Signalas

Διαβάστε περισσότερα

1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai

1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai 1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai 1.1. Branduolio nukleonų energijos diskretumo aiškinimas. Dalelė stačiakampėje potencialo duobėje Dalelės banginė funkcija tai koordinačių ir

Διαβάστε περισσότερα

Gairės audito institucijoms dėl audito atrankos metodų ir m. programavimo laikotarpiai

Gairės audito institucijoms dėl audito atrankos metodų ir m. programavimo laikotarpiai EGESIF_16-0014-00 017 01 0 EUROPOS KOMISIJA GENERALINIAI DIREKTORATAI Regioninės ir miestų politikos Užimtumo, socialinių reikalų ir lygių galimybių Jūrų reikalų Gairės audito institucijoms dėl audito

Διαβάστε περισσότερα

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos 0.1. BENDROSIOS SĄVOKOS 1 0.1. Bendrosios sąvokos 0.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε = 0, xt;ε) C n T), T [0,+ ), 0 < ε ε 0 ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε

Διαβάστε περισσότερα

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2010 m. vasario 23 d. Santrauka Antras laboratorinis darbas skirtas išmokti sudarinėti daugialypės

Διαβάστε περισσότερα

Pav1 Žingsnio perdavimo funkcija gali būti paskaičiuota integruojant VIPF. Paskaičiavus VIPF FFT gaunamo amplitudinė_dažninė ch_ka.

Pav1 Žingsnio perdavimo funkcija gali būti paskaičiuota integruojant VIPF. Paskaičiavus VIPF FFT gaunamo amplitudinė_dažninė ch_ka. Įvadas į filtrus Skaitmeniniai filtrai, tai viena iš svarbiausių siganalų apdorojimo dalių. Kadangi skaitmeniniai filtrai turi nepalyginamai daugiau pranašumų nei analoginiai filtrai, tai nulėmė jų populiarumą.

Διαβάστε περισσότερα

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009 1 Integriniai diodai Integrinių diodų pn sandūros sudaromos formuojant dvipolių integrinių grandynų tranzistorius. Dažniausiai integriniuose grandynuose kaip diodai naudojami tranzistoriniai dariniai.

Διαβάστε περισσότερα

MATEMATINĖS STATISTIKOS PRADMENYS. STATISTINIŲ DUOMENŲ ANALIZĖ NAUDOJANT MS EXCEL

MATEMATINĖS STATISTIKOS PRADMENYS. STATISTINIŲ DUOMENŲ ANALIZĖ NAUDOJANT MS EXCEL EduardasVaria MATEMATINĖ TATITIKO PRADMENY. TATITINIŲ DUOMENŲ ANALIZĖ NAUDOJANT M ECEL METODINIAI NURODYMAI NEAKIVAIZDININKAM 007 T u r i y s Įvadas... 3 Geeraliė aibė ir itis... 4 3 Duoeų grupavias...

Διαβάστε περισσότερα

Kompiuterinė lazerių fizika. Viktorija Pyragaitė

Kompiuterinė lazerių fizika. Viktorija Pyragaitė Kompiuterinė lazerių fizika Viktorija Pyragaitė VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS Viktorija Pyragaitė KOMPIUTERINĖ LAZERIŲ FIZIKA Elektroninis leidinys Mokomoji knyga Vilnius 2013 Apsvarstė ir

Διαβάστε περισσότερα

RADIONAVIGACINĖS SISTEMOS IR ĮRANGA

RADIONAVIGACINĖS SISTEMOS IR ĮRANGA VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Algimantas Jakučionis RADIONAVIGACINĖS SISTEMOS IR ĮRANGA Mokomoji knyga Vilnius 2007 UDK 656.7:621.396(075.8) Ja 248 Algimantas Jakučionis. Radionavigacinės sistemos

Διαβάστε περισσότερα

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis?

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis? VIII FRAKTALINĖ DIMENSIJA 81 Fraktalinės dimensijos samprata Ar baigtinis Norvegijos sienos ilgis? Tarkime, kad duota atkarpa, kurios ilgis lygus 1 Padalykime šia atkarpa n lygiu daliu Akivaizdu, kad kiekvienos

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα