Основе теорије вероватноће

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Основе теорије вероватноће"

Transcript

1 . Прилог А Основе теорије вероватноће Основни појмови теорије вероватноће су експеримент и исходи резултати. Најпознатији пример којим се уводе појмови и концепти теорије вероватноће је бацање новчића и накнадно одређивање предвиђање на коју ће страну пасти ''глава'' или ''писмо''. Један од основних концепата теорије вероватноће је случајни догађај. Случајни или стохастички догађај је онај догађај који није предвидљив зато што је и сам последица великог броја узрока. Претпоставља се да и узроци случајног догађаја имају случајан карактер. Скуп свих елементарних догађаја називамо простор елементарних догађаја. Простор елементарних догађаја је дискретан ако је број његових елемената коначан а у случају да је број елемената бесконачан онда се такав простор назива континуалан. Квантитативна оцена могућности појаве случајног догађаја представља вероватноћу неког догађаја. Нека Х буде нека произвољна случајна променљива и нека је х одређена вредност коју Х може да има. У том случају за исход догађаја можемо написати: X. У стандардном примеру са бацањем новчића важи: Xglaa.5 и Xismo.5. Уобичајено је ради једноставнијег записивања да се у ознаци за вероватноћу догађаја не узима симбол случајне променљиве већ само њена могућа вредност симболички односно:.3 У општем случају након N извршених бацања новчића вероватноћа појављивања једнака је лимесу релативне фреквенције догађаја односно: N lim.4 N N

2 Интелигентни технолошки системи ПА Из релације А.4 није тешко закључити да се вероватноћа неког догађаја креће у границама:.5 На основу претходних ставова могу се увести три аксиома теорије вероватноће:. Вероватноћа неког догађај је увек ненегативна величина:.6. Вероватноћа неког догађаја има вредност ако ће се поменути догађај сигурно одиграти:.7 и вредност ако не постоји вероватноћа одигравања догађаја:.8 3. За два догађаја који се међусобно искључују важи својство адитивности: односно у општем случају: B B B.9 B B B B. Концепт вероватноће може бити примењен и на две промењљиве X и Y: Ако су величине X и Y независне важи следеће својство: Условна вероватноћа неког догађаја је: X i Y.. X Y.3 Релација А.3 нам омогућава да одредимо случајну променљиву X ако је величина Y позната. Условна вероватноћа неког догађаја је тада:.4 што значи да ако су две величине независне онда нам величина Y неће пружити додатну информацију о променљивој X. Међутим уколико су две величине зависне онда сходно Бајесовом правилу можемо одредити променљиву X на следећи начин:

3 Интелигентни технолошки системи ПА 3.5 Бајесово правило може бити и проширено:.6 Бајесово правило може бити изведено и у рекурзивној форми: Одакле се увођењем претпоставке Маркова о независности величине од... ако знамо величину претходна релација може значајно поједноставити. Функијом расподеле вероватноће скаларне континуалне случајне променљиве у тачки називамо следећу граничну вредност: lim < d d d.8 Сходно основним теоретским поставкам теорије вероватноће неопозиво следи:.9 Важи и: d d. Неке од основних функција расподеле вероватноће као што су равномерна експоненцијална Гаусова Студентова итд. са свим својим основним карактеристикама могу се наћи у литератури. С обзиром да јe већина модела шума како мерења тако и управљања апроксимирана Гаусовом нормалном расподелом у наставку ће бити приказана основна математичка формулација поменуте расподеле функције. За скаларну променљиву Гаусова расподела је дата у следећем облику: } e{ σ µ πσ.

4 Интелигентни технолошки системи ПА где су са µ и σ обележене очекивана вредност и варијанса респективно. Ове две величине једнозначно одређују функцију расподеле случајне промењљиве односно ℵ ;. У случају векторске случајне променљиве нормална расподела је: µ σ detπσ e{ µ Σ µ }. где су са µ и Σ обележене одговарајуће матрице очекиване вредности величине и матрице коваријанси. Важно је напоменути је µ вектор а матрица коваријанси Σ позитивно-семидефинитна матрица увек позитивна. Густина расподеле је на основу претходног једнозначно дефинисана као ℵ ; µ Σ. Потребно је и математички дефинисати очекивану вредност µ расподеле и матрицу коваријанси Σ. Очекивана вредност µ се може дефинисати помоћу оператора математичког очекивања: док је варијансa за скаларну промењљиву дата као: ar [ d µ.3 [ d [ [ σ.4 Основне особине оператора математичког очекивања су:. [C C Ccost.. [C C [ 3. [ [ [ 4. [C C [ [ 5. [ ако су величине и независне. 4

5 Интелигентни технолошки системи ПА. Прилог Б Линеарна алгебра Б. Извод вектора и матричне функције Нека је f нека функција реалног или комплексног аргумента при чему је аргумент вектор са N компоненти. Први извод функције f је тада: gradf f Б.. и назива се градијент. Елементи градијента дефинисани су на следећи начин: f N Б.. Други извод функције f је матрица типа N х N која се назива Хесијан: f Б..3 са елементима који су дефинисани на следећи начин: h m f m Б..4 Јакобијан матрица N-димензионе векторске функције f. одређује се сходно: f J где су елементи Јакобијан матрице j m f m Б..5 Б..6 5

6 Интелигентни технолошки системи ПА Б. Квадратна форма и извод квадратне форме За сваки вектор на следећи начин: R и матрицу R скаларна функција дефинисана f a Б.. i j назива се квадратна форма. За квадратну форму се каже да је позитивно дефинитна када год је матрица А позитивно дефинитна матрица. Основне особине квадратне форме одређују се помоћу матрице А. Квадратна форма је: Позитивно негативно дефинитна ако и само ако је матрица А> < за свако Позитивно негативно семи-дефинитна ако и само ако је матрица А. Нека је дата квадратна форма: ij i j Б.. где је матрица А квадратна матрица типа N х N. Први извод квадратне форме је: Б..3 а уколико је матрица А симетрична израз се своди на: Б..4 Други извод квадратне форме је у општем случају: Б..5 Иначе што у случају симетричне матрице А квадратне форме даје следећи резултат: У следећој табели су дата основна правила: Б..6 6

7 Интелигентни технолошки системи ПА Б.3 Извод сложене векторске функције Потребно је одредити где је функција векторског аргумента који је даље функција векторског аргумента. Развијањем комплетног израза веома лако се доказује следећа једнакост: Б.3. Важно је нагласити да уколико је потребно да се одреди извод финкције w која је функција која је функција која је функција онда следи: w w Б.3. Б.4 Инверзна матрична лема општи и специјални случај Инверзија производа две или више матрица постоји и потпуно је математички дефинисана. С друге стране у општем случају инверзија збира двеју или више матрица не постоји. Односно B - може али у општем случају не мора да буде једнако збиру инверзија појединачних матрица иb: Шерман-Морисонова формула гласи: B Б.4. B CD C D C D Б.4. Постоји и специјалан случај инверзне матричне леме који је у употреби у теорији естимације и назива се Шерман-Морисон-Вудбуријева формула: R Q R R Q R R Б.4.3 Докази Шерман-Морисонове леме и Шерман-Морисон-Вудбуријеве леме могу се једноставно извести. У том смислу у наставку овог прилога биће изведен доказ за 7

8 Интелигентни технолошки системи ПА 8 Шерман-Морисонову формулу. Применом идентичног поступка може се извести и доказ за Шерман-Морисон-Вудбуријеве лему. Да би се доказала једнакост Б.4. све што је потребно је показати да важи следећа једнакост: CD D C D C Б.4.4 Уведимо следећу смену ради једноставнијег записивања: C D B Б.4.5 Једнакост Б.4.4 сада гласи CD CBD Б.4.6 Множењем чланова израза добијамо: CD BD BD D C CD CBD CD CBD 3 3 Б.4.7 Да би претходна једнакост била задовољена потребно је показати да је израз у загради једнак нули: D BB C D B C D B C D C BD B C Б.4.8 чиме је инверзна матрична лема доказана.

9 Интелигентни технолошки системи ПА Б.5 Развијање функције векторске промењљиве у Тејлоров ред Аналогно развијању функције скаларне промењљиве у Тејлоров ред у околини неке посматране тачке х математички је дефинисан и развој векторске функције у околини тачке вектора х. Тејлорова теорема у простору R каже да ако је f нека функција дефинисана у R при чему је аргумент f реална променљива дефинисана у R онда се вредност f у тачки може одредити на следећи начин: Где су: f f f O Б.5. х тачка у којој се функција апроксимира Тејлоровим редом полиномом f - градијент векторске фунције f тачки апроксимације х односно f дефинисан изразом Б.. срачунат у - матрица других извода векторске функције Хесијан дефинисана изразом Б..3 срачуната у тачки апроксимације х где су елементи матрице f hm m Ако је тачка х критична тачка екстрем онда члан реда одређује понашање функције f у тачки која је у непосредној близини тачке х : Ако је матрица позитивно-дефинитна онда функција f минимум у тачки Ако је матрица негативно-дефинитна онда функција f максимум у тачки. има има 9

10 Интелигентни технолошки системи ПА Б.6 Норма Махаланобиса За разлику од еуклидске норме која је дефинисана следећим изразом: R i i Б.6. норма метрика Махаланобиса уводи тежинску матрицу која представља корелацију између два скупа. Норма Махаланобиса је дата као: d R Б.6. На основу Б.6. веома једноставно је закључити да се за јединичну тежинску матрицу норма Махаланобиса своди на еуклидску норму. Норма Махаланобиса се користи да одреди сличност између два скупа једног чије вредности су познате и другог чије вредности треба одредити. Прасанта Шандра Махаланобис индијски математичар

11 Интелигентни технолошки системи ПА 3. Прилог В Калманов филтер основна формулација Нека је дат неки сигнал t са придруженим шумом t и замислимо да само збир ове две величине t t t можемо да одредимо односно употребом сензора можемо ''доћи'' до информације о збиру ове две величине при чему не знамо колики део сензорске информације t припада ''правом'' t а колики шуму t. Такође замислимо и да нам је доступна информација о претходним мерењима на основу којих можемо да формирамо следећи низ {t t t}. Питање на које треба дати одговор је: Шта можемо да закључимо о стању система у тренутку t ако t може да буде мање веће или једнако тренутку t? Естимација оцењивање представља процес оцењивања параметара стања или пак самог стања система на основу прикупљених информација. Проблем естимације се може разврстати у три категорије. Филтрација; t t - представља процес који за циљ има одређивање удела сигнала t и шума t у сензорској информацији t. Предикција; t > t - сврха процеса предикције је да се на основу свих информација прикупљених до тренутка t направи што боље предвиђање стања система или само једног елемента система у тренутку t. Интерполација; t < t - основни циљ процеса интерполације је прикупљање што више валидних информација о неком процесу или систему. Калманов филтер претпоставља да се линерани динамички систем напише у форми једначина које описују простор стања ида се на тим једначинама изведе рекурзивна естимација. Под термином рекурзивна естимација подразумева се оцењивање стања система на основу информација о мерењима али се разматрају само најскорије информације о стању система. Другим речима важи претпоставка Маркова. Нека је дата једначина система у простору стања: F w В. где F представља матрицу система која дефинише транзицију система из у док је w шум чије основне карактеристике су:

12 Интелигентни технолошки системи ПА Q [ ww В. Претпоставља се да шум спада у беле шумове и да има нормалну расподелу са нултом очекиваном вредношћу. Такође претпоставља се да почетно стање познато одређеном очекиваном вредношћу и познатом матрицом коваријанси. Излаз система или једначина мерења је: В.3 Матрица је матрица излаза система док је шум мерења за кога важе идентичне претпоставке као и код шума система w односно: R [ В.4 Два шума шум мерења и шум система w који су уведени у анализу у циљу правилног моделовања реалне ситуације су независни један од другог али и од почетног стања. Ова претпоставка се зове линеарна Гаусова претпоставка. Након увода у коме је дефинисана суштина проблема и где се уведене основне претпоставке следи извођење Калмановог филтера. Нека је извршено прикупљање информација мерење о стању система у тренутку на основу чега треба извршити ваљану оцену стања система које је дато вектором стања. Вектор оцене стања система може бити представљен као линеарна комбинација предвиђеног стања система на основу претходног понашања и нових информација о стању система: В.5 Вектор је стање система које је предвиђено на основу претходних стања кроз које је систем прошао и предтсваља a riori процену стања информације о мерењу нису узете у обзир. Вектор је вектор чије компоненте су мерења док матрице и треба одредити. Грешка оцене је дефинисана на следећи начин: ~ В.6 Да би успешно одредили оптимално решење неопходно је увести критеријум перформансе J који у овом случају мора да задовољи следеће услове: Критеријум перформансе J мора бити ненегативна функција Критеријум перформансе J мора бити функција грешке оцене стања система. На основу горњих услова критеријум перформансе J своди се на следећи облик: [ ~ J [ В.7

13 Интелигентни технолошки системи ПА који представља критеријум минимизације грешке у смислу методе најмањих квадрата. С обзиром да је у питању Марковски процес грешка коју правимо је потпуно независна од претходних мерења односно математички исказано: ~ [ i ; i... В.8 Заменом израза за ~ и i у израз В.8 који дефинише ортогоналност две величине добијамо: Даљим развијањем имамо: [ i ; i... В.9 [ w В. Одакле се након сређивања добија следећа једначина: [ В. i Оператор математичког очекивања Е је линеарни оператор па након његове примене на горњи израз уз чињеницу да је грешка која се направи пре мерења на основу a riori информација независна од мерења [ следи: i i [ В. Израз В. ће бити тачан само у случају ако је члан i i једнак нули за потпуно произвољне величине и i па је на основу тога прва непозната величина матрица у функцији друге: В.3 Заменом у полазни израз за и након сређивања добијамо: В.4 Матрица назива се Калманово појачање Kalma ai и ''физички'' представља наш степен поверења у последње мерење које је извршено односно колико озбиљно схватамо мерење у односу на предвиђену вредност мерења. Да би целокупно извођење Калмановог филтера било комплетно потребно је одредити матрицу Калмановог појачања у целости. У том циљу можемо увести нову величину у анализу која се назива иновација мерења: ~ В.5 3

14 Интелигентни технолошки системи ПА 4 која дефинише колико нових информација имамо у к. Величина ŷ је предикција мерења која је извршена на основу свих претходних мерења... Вектор иновације мерења може бити написан у следећем знатно погоднијем облику ~ ~ В.6 Однос између грешке оцене ~ и предикције мерења ŷ је на основу принципа ортогоналности дат следећом релацијом [ [ ~ В.7 одакле следи и ~ [ В.8 Принципом ортогоналности се исказује да је коваријанса компонената вектора грешке оцене стања система и компонената вектора мерења нула. Једнакост В.8 има велики значај с обзиром да се на основу особине ортогоналности грешке оцене ~ и предикције мерења ŷ изводи израз за Калманово појачање. Наиме грешка оцене ~ може бити написана и на следећи начин 443 ~ ~ В.9 где је са ~ обележена грешка пре него што је мерење узето у обзир. Развијањем израза В.8 добија се: ~ } ~ [{ В. уз примену чињенице да су шум мерења и ~ ортогонални имамо [ ~ [ ~ 443 R В. Величина ~ [ ~ може бити развијена на следећи начин: [ ~ ~ [ В.

15 Интелигентни технолошки системи ПА 5 и представља матрицу коваријанси пре него што су информације о мерењу узете у обзир. Матрица Калмановог појачања се сада лако одређује: [ R В.3 Као што се може видети матрица Калмановог појачања зависи од a riori матрице коваријанси матрице излаза система и матрице коваријанси шума мерења R. Матрица коваријанси стања система се може написати у следећем облику: [ ~ [ ~ В.4 Заменом израза за грешку вектора стања у претходни израз: } }{ [{ В.5 Одакле се након сређивања уз примену претпоставке о независности грешке стања система и шума мерења добијамо следећи израз: R [ ~ [ ~ В.6 Заменом матрице Калмановог појачања у претходни израз и након сређивања: В.7 Претходна једначина показује зависност a osteriori после мерења матрице коваријанси од a riori пре мерења матрице коваријанси. Преостало је само да се покаже како претходно стање система утиче на садашње. Ако напишемо следећу једнакост: F В.8 где матрица F- представља матрицу система која дефинише транзицију оцене стања система у тренутку - у оцену стања система у тренутку али пре него што је мерење извршено. Грешку оцене ~ пре него што је мерење узето у обзир можемо написати на следећи начин: ~ ~ w F F w F В.9

16 Интелигентни технолошки системи ПА 6 Коваријанснa матрицa стања система пре мерења je дата у следећем облику: [ ~ [ ~ Q F F w w F F В.3 који тачно показује како a riori матрица у тренутку зависи од a osteriori матрице коваријанси - у тренутку - али и од коваријансне матрице Q -.

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

ТЕОРИЈА ИГАРА-ЈАМБ Матурски рад из математике

ТЕОРИЈА ИГАРА-ЈАМБ Матурски рад из математике XII БЕОГРАДСКА ГИМНАЗИЈА ТЕОРИЈА ИГАРА-ЈАМБ Матурски рад из математике Ученица Исидора Ивановић Професорка Марина Радовановић Београд јун 2016. Садржај Резиме 1 Увод 1 Пермутације 2 Варијације 3 Вероватноће

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И

УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И УНИВЕРЗИТЕТ У НОВОМСАДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Зорана Томић ГРАНИЧНЕ ВРЕДНОСТИ ФУНКЦИЈА Мастер рад Нови Сад, 2012. Предговор... 3 1. Увод... 4 Појам функције...

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Теорија одлучивања. Циљеви предавања

Теорија одлучивања. Циљеви предавања Теорија одлучивања Бајесово одлучивање 1 Циљеви предавања Увод у Бајесово одлучивање. Максимална а постериори класификација. Наивна Бајесова класификација. Бајесове мреже за класификацију. 2 1 Примене

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

СТАБИЛНОСТ МАТРИЦЕ КОВАРИЈАНСЕ И ПРОБЛЕМ ОПТИМИЗАЦИЈЕ ПОРТФОЛИЈА

СТАБИЛНОСТ МАТРИЦЕ КОВАРИЈАНСЕ И ПРОБЛЕМ ОПТИМИЗАЦИЈЕ ПОРТФОЛИЈА УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Светлана Миловановић СТАБИЛНОСТ МАТРИЦЕ КОВАРИЈАНСЕ И ПРОБЛЕМ ОПТИМИЗАЦИЈЕ ПОРТФОЛИЈА - мастер рад - Ментор:

Διαβάστε περισσότερα

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ МЕНТОР: КАНДИДАТ: Проф. др Драгољуб Кечкић Милинко Миловић

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

ПОТПУНИ МЕТОД НАЈМАЊИХ КВАДРАТА У ФУНКЦИЈИ РЕШАВАЊА ГЕОДЕТСКИХ ПРОБЛЕМА

ПОТПУНИ МЕТОД НАЈМАЊИХ КВАДРАТА У ФУНКЦИЈИ РЕШАВАЊА ГЕОДЕТСКИХ ПРОБЛЕМА УНИВЕРЗИЕ У БЕОГРАДУ ГРАЂЕВИНСКИ ФАКУЛЕ Јован М. Поповић ПОПУНИ МЕОД НАЈМАЊИХ КВАДРАА У ФУНКЦИЈИ РЕШАВАЊА ГЕОДЕСКИХ ПРОБЛЕМА Докторска дисертација Београд 6 UNVESY OF BELGDE FULY OF VL ENGNEENG Јоa M.

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Мастер рад. Гребнерове базе. Аутор: Јелена Јовичић Број индекса: 1033/2008. Ментор: Доцент др Зоран Петровић. Математички факултет Београд 2010.

Мастер рад. Гребнерове базе. Аутор: Јелена Јовичић Број индекса: 1033/2008. Ментор: Доцент др Зоран Петровић. Математички факултет Београд 2010. Мастер рад Гребнерове базе Аутор: Јелена Јовичић Број индекса: /8 Ментор: Доцент др Зоран Петровић Математички факултет Београд. Резиме Рад пред вама је мастер рад судента Математичког факултета у Београду,

Διαβάστε περισσότερα

Изометријске трансформације еуклидскее равни и простора и њихове групе

Изометријске трансформације еуклидскее равни и простора и њихове групе УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАКСИМОВИЋ ТАЊА Изометријске трансформације еуклидскее равни и простора и њихове групе МАСТЕР РАД Ментор: др. Александар Липковски Београд 2015. Садржај Увод

Διαβάστε περισσότερα

Др Душан Дамиан MATLAB. (Скрипте) Београд, 2015.

Др Душан Дамиан MATLAB. (Скрипте) Београд, 2015. Др Душан Дамиан ML Скрипте Београд Матлаб УВОД Име Матлаб је настало као спој скраћеница од Mt Loto У овом програмском језику матрице су основни градивни елемент за даљи рад Скаларне величине се одређују

Διαβάστε περισσότερα

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената.

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената. Вежба Графика У МATLAB-у постоји много команди за цртање графика. Изглед графика може се подешавати произвољним избором боје, дебљине и врсте линија, уношењем мреже, наслова, коментара и слично. У овој

Διαβάστε περισσότερα

1. Моделирање и модели, врсте модела. 2. Неформални и формални модели

1. Моделирање и модели, врсте модела. 2. Неформални и формални модели . Моделирање и модели, врсте модела Моделирање представља један од основних процеса људскога ума. Оно се најчешће посматра као најзначајније концептуално средство које човеку стоји на располагању. У најширем

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. Владица Андрејић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2017.

АНАЛИТИЧКА ГЕОМЕТРИЈА. Владица Андрејић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2017. АНАЛИТИЧКА ГЕОМЕТРИЈА Владица Андрејић (27-04-2017) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2017. Глава 1 Вектори у геометрији 1.1 Увођење вектора Појам вектора у еуклидској геометрији можемо

Διαβάστε περισσότερα

ЊУТНОВ ПОСТУПАК И ЊЕГОВЕ МОДИФИКАЦИЈЕ ТРЕЋЕГ РЕДА КОНВЕРГЕНЦИЈЕ

ЊУТНОВ ПОСТУПАК И ЊЕГОВЕ МОДИФИКАЦИЈЕ ТРЕЋЕГ РЕДА КОНВЕРГЕНЦИЈЕ УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Дара Бошковић ЊУТНОВ ПОСТУПАК И ЊЕГОВЕ МОДИФИКАЦИЈЕ ТРЕЋЕГ РЕДА КОНВЕРГЕНЦИЈЕ мастер рад Нови Сад, Садржај Предговор

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

Монте Карло Интеграциjа

Монте Карло Интеграциjа Монте Карло Интеграциjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 2 22. март 2016. 1 / 22 Монте Карло методе Oве нумеричке методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ПОДЗЕМНИ РАДОВИ 15 (2006) 43-48 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ИЗВОД

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

C кплп (Кпндензатпр у кплу прпстпперипдичне струје)

C кплп (Кпндензатпр у кплу прпстпперипдичне струје) C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

МРЕЖЕ ПАРТИЦИЈА И КОНГРУЕНЦИЈА АЛГЕБРИ Мастер рад

МРЕЖЕ ПАРТИЦИЈА И КОНГРУЕНЦИЈА АЛГЕБРИ Мастер рад Универзитет у Београду Математички факултет МРЕЖЕ ПАРТИЦИЈА И КОНГРУЕНЦИЈА АЛГЕБРИ Мастер рад студент: Данка Николић ментор: доцент др Небојша Икодиновић Београд, 2016. Садржај Предговор... 1 1. Уводни

Διαβάστε περισσότερα

Данка Вујанац. Бојење графова. мастер рад

Данка Вујанац. Бојење графова. мастер рад Данка Вујанац Бојење графова мастер рад Нови Сад, 2015 Садржај Предговор... 2 Увод... 3 Глава 1. Основни појмови графа... 5 Глава 2. Бојење чворова... 11 Глава 3. Бојење грана... 22 Глава 4. Бојење планарних

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5 МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим. IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.

Διαβάστε περισσότερα

Теорија игара - Игре тражења и игре сусретања

Теорија игара - Игре тражења и игре сусретања Универзитет у Београду Математички факултет Марија Ивановић Теорија игара - Игре тражења и игре сусретања Дипломски мастер рад Б е о г р а д 0 Ментор: Проф др Ђорђе Дугошија Математички факултет у Београду

Διαβάστε περισσότερα

ОБЛАСТ АТРАКЦИЈЕ РАЗНИХ ПОСТУПАКА

ОБЛАСТ АТРАКЦИЈЕ РАЗНИХ ПОСТУПАКА УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Оља Скакавац ОБЛАСТ АТРАКЦИЈЕ РАЗНИХ ПОСТУПАКА мастер рад Нови Сад, 014. Садржај Предговор 4 1. Уводни део 5

Διαβάστε περισσότερα

МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА

МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА Драгутин Павловић 1 Војислав Вукмировић 2 Јасна Плавшић 3 Јован Деспотовић 4 УДК: 519.217 DOI: 10.14415/zbornikGFS24.008 Резиме: Метода пикова

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

Неколико различитих начина решавања једног геометријског задатка

Неколико различитих начина решавања једног геометријског задатка MAT-KOL (Banja Luka) XV()(00), 5-66 Неколико различитих начина решавања једног геометријског задатка Слађана Бабић Природно-математички факултет, 78000 Бања Лука Младена Стојановића, Б&Х e-mal: sladjanaac7@yahoocom

Διαβάστε περισσότερα

ИСПИТИВАЊЕ СВОJСТАВА КОМПЛЕКСНИХ МРЕЖА СА ДИСКРЕТНОМ ДИНАМИКОМ

ИСПИТИВАЊЕ СВОJСТАВА КОМПЛЕКСНИХ МРЕЖА СА ДИСКРЕТНОМ ДИНАМИКОМ УНИВЕРЗИТЕТ У БЕОГРАДУ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ Jелена М. Смиљанић ИСПИТИВАЊЕ СВОJСТАВА КОМПЛЕКСНИХ МРЕЖА СА ДИСКРЕТНОМ ДИНАМИКОМ докторска дисертациjа Београд, 2017 UNIVERSITY OF BELGRADE SCHOOL OF ELECTRICAL

Διαβάστε περισσότερα

Aлати и основне функције

Aлати и основне функције Bежба 1 Aлати и основне функције 1.1. КАКО ПОЧЕТИ РАД У MATLAB У MATLAB се дистрибуира у компримованом формату на CD-овима. Инсталацијом, датотеке са ових CD-ова премештају се на диск, декомпримују се

Διαβάστε περισσότερα

Основи системске биофизике. Предиспитне обавезе: Први колоквијум (предавања): Други колоквијум (предавања): Писмени испит (вежбе):

Основи системске биофизике. Предиспитне обавезе: Први колоквијум (предавања): Други колоквијум (предавања): Писмени испит (вежбе): Обавезни предмет Шести семестар Молекуларна биологија и физиологија Наставник: др Мирослав Живић Структура испитних обавеза: Основи системске биофизике Предиспитне обавезе: Први колоквијум (предавања):

Διαβάστε περισσότερα

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1 6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,

Διαβάστε περισσότερα

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница. 91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК СКАЛАРНЕ И ВЕКТОРСКЕ ВЕЛИЧИНЕ Величибе које су одређене само својом бројном вредношћу и одговарајућом јединицом су скаларне величине или кратко, скалари.

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕХНИКЕ

ОСНОВА ЕЛЕКТРОТЕХНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3

Διαβάστε περισσότερα