NEUZEMLJENI OPERACIONI AVAČI I (OFA)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "NEUZEMLJENI OPERACIONI AVAČI I (OFA)"

Transcript

1 NEUZEMLJENI OPERACIONI POJAČAVA AVAČI I (OFA) Johan Huijsing, OPERATIONAL AMPLIFIERS, Theory and Design, Kluwer Academic Publishers, 2001, Ch 9. 1 OFA treba da ima osobine nulora: Zadovoljavanje ovih uslova za ulazne i izlazne signale postiže se izolacijom na ulazu i na izlazu. Izolacija strujnim izvorima na izlazu je komplikovanija zbog većih izlaznih struja. Zbog toga se u nekim primenama precizne struje realizuju bez primene potpuno univerzalnih OFA. 2 1

2 Unipolarni konvertor napona u struju Često se OFA koristi kao elemenat sa tri priključka. Tada je ulazni nulator spojen sa izlaznim noratorom, sa kojim formira konvertor napona u struju. Samo jedan pasivni elemenat određuje V I transfer. 3 Najjednostavnija realizacija ideje sa prethodnog slajda je jedan tranzistor. Za određeni polaritet izvora za napajanje struja je odgovarajućeg fiksnog polariteta, pa je transfer unipolaran. Idealizovani transfer je I out = g m V in, gde je g m = g e ili g m = g s. Sa jednim tranzistorom transfer je jako nelinearan. 4 2

3 Unipolarni V-I konvertor sa jednim tranzistorom Ostvaruje se dodavanjem provodnosti G u emitor ili sors uopštenog tranzistora: 5 Unipolarni precizni V-I konvertor sa jednim tranzistorom, sa pojačanjem uvećanim pomoću OP-a Povećava se g m tj. interno pojačanje kompozitnog tranzistora i smanjuju parazitni efekti. G I = V GV 1+ G ( A g ) out in in v m Ako OA 1 funkcioniše od V in = 0V, onda i konvertor radi od 0V, ali ne može da radi za negativan polaritet ulaza. 6 3

4 Unipolarni precizni V-I konvertor u CMOS tehnologiji Ako se OA 1 sa prethodnog slajda realizuje u CMOS tehnologiji kao GA-CF operacioni pojačavač, dobija se ukupno GA-CF-VF konfiguracija. Kolo je precizno, a kompenzovano je ekvivalentnom Milerovom kapacitivnošću između gejta M 1 i mase. Funkcioniše od 0V. 7 Unipolarni precizni V-I konvertor u bipolarnoj tehnologiji Kolektorska struja ulaznog tranzistora Q 11 je iskorišćena kao struja polarizacije pobudnog tranzistora Q 2. Istovremeno je kolektor Q 11 butstrepovan na napon kolektora Q 12, pa je ofset zbog Early-jevog efekta ulaznog stepena mali. Bazna struja Q 1, koja se obično gubi, ovde je ponovno pomoću Q 2 usmerena u izlazni čvor, što važi i za baznu struju Q 2. Zbog ovakvog usmeravanja baznih struja, CF funkcija je vrlo precizna. Veliko strujno pojačanje kaskadne veze Q 11, Q 2 i Q 1 učestvuje i u VF i u CF putanji. Napon na G ne može da dostigne negativno napajanje. 8 4

5 Unipolarni precizni V-I konvertor sa OP OA 1 je LV OP sa RR ulazom i izlazom. Ako je virtuelna masa kompenzacije OP na negativnom priključku napajanja, koristi se kolo sa slike b, a ako je na pozitivnom priključku koristi se kolo sa slike a. Jedini uzroci grešaka su ulazni ofset napon za VF funkciju i struja polarizacije za CF funkciju. Minimalna izlazna struja je ograničena strujom napajanja OP. 9 Diferencijalni V-I konvertori Bipolarna izlazna struja može da se obezbedi primenom unipolarnih V-I konvertora u diferencijalnoj sprezi. Diferencijalni prosti V-I konvertor Polazeći od unipolarnog V-I konvertora sa jednim tranzistorom koji predstavlja OFA sa tri priključka, ako se izvrši njegovo balansiranje i polarizacija strujnim izvorima tako da transkonduktansa G može da se koristi neuzemljena, dobija se diferencijalni V-I konvertor. Ako je g m1, g m2»g 10 5

6 Diferencijalni precizni V-I konvertor g m1 tranzistora se povećava dodatnim internim naponskim pojačanjem. Relativna greška je: Ukupni faktor preslušavanja CMCR =1/H je gde su: G B = srednja vrednost parazitnih provodnosti strujnih izvora I B1 i I B2 ΔG B = razlika parazitnih provodnosti strujnih izvora I B1 i I B2 H 1,2 = CMRR OP1 i 2, respektivno. CMCR može da bude velik. 11 Diferencijalni precizni V-I konvertor u CMOS tehnologiji Ako se u konvertoru sa prethodnog slajda OP realizuju kao u primeru unipolarnog konvertora, dobija se sledeće kolo Međutim, uključivanje strujnih izvora I B1 i I B2 sprečava da se srednja vrednost ulaznih napona spusti do napona negativnog priključka napajanja. Ovaj nedostatak može da se otkloni ubacivanjem pomerača nivoa. Ovo kolo radi sa minimalnim naponom napajanja od 2,5V, ima propusni opseg od 3MHz i CMRR > 90 db. 12 6

7 Instrumentacioni pojačavači Projektovanje kvalitetnih instrumentacionih pojačavača ne zahteva OFA opšte namene sa fizički bipolarnim naponima i strujama, već je dovoljan diferencijalni V-I konvertor. Sa OVA (tj. OP) može da se napravi standardni (polu)instrumentacioni pojačavač sa tri OP. Pogodan je za pojačavanje malih diferencijalnih signala sa velikim CM naponom. Pogodan je za primenu sa senzorima tipa mosta. Ako nije potrebno veliko pojačanje i ne koriste se precizni otpornici R 3 R 6, ovo rešenje ne zadovoljava. Otpornici u kolima povratne sprege operacionih pojačavača prelaze izolacionu barijeru realizovanu primenom strujnih izvora, zbog čega je CMRR određen tačnošću uparivanja otpornika, i pored velikog CMRR samih OP. Pravi instrumentacioni pojačavači, kod kojih otpornici u kolima povratne sprege ne moraju da prelaze izolacionu barijeru, zahtevaju V-I konvertore koji imaju izolacionu barijeru na izlazu sa ugrađenim strujnim izvorima. 13 Instrumentacioni pojačavač sa diferencijalnim V-I konvertorom na ulazu Diferencijalni V-I konvertor je upotrebljen kao ulazni stepen instrumentacionog pojačavača. Podešavanje izlaznog CM napona može da se realizuje mostnim pojačavačem (tj. pojačavačem razlike). Mana ovog rešenja je što PSSR zavisi od uparenosti otpornika. 14 7

8 Instrumentacioni pojačavač sa diferencijalnim V-I konvertorima na ulazu i izlazu Zavisnost PSRR od uparenosti otpornika se drastično smanjuje ako se primeni princip izolacije strujnim izvorima sa dva V-I konvertora, za dovođenje ulaznog napona kao i za odmeravanje izlaznog napona (za povratnu spregu) i pojačavanje razlike struja za pobudu izlaznog pojačavača. Razlika struja može da se dobije kaskodnim ili paralelnim vezivanjem dva diferencijalna V-I konvertora. Prednost kaskodnog vezivanja je da se koristi ista struja polarizacije za oba V-I konvertora, što rezultuje manjim šumom nego u slučaju paralelnog vezivanja. S druge stane, kaskodno vezivanje zahteva veći napon napajanja. Instrumentacioni pojačavač na slici koristi minimalan broj pasivnih komponenata koje određuju pojačanje preko odnosa dve provodnosti: A v =G 1 /G 2. Preslušavanje CM signala je određeno sa: Ovaj instrumentacioni pojačavač je najprecizniji, ali i najkompleksniji. Dodatna prednost mu je da se greške pojačanja i nelinearnosti ulaznog V-I konvertora poništavaju jednakim greškama izlaznog V-I konvertora. 15 Instrumentacioni pojačavač sa jednostavnim diferencijalnim V-I konvertorima na ulazu i izlazu Posebna osobina prethodnog instrumentacionog pojačavača da se greške pojačanja i nelinearnosti ulaznog V-I konvertora poništavaju jednakim greškama izlaznog V-I konvertora može da se iskoristi za uprošćavanje, upotrebom jednostavnih diferencijalnih tranzistorskih parova sa otpornicima za degeneraciju kao V-I konvertora, i podešavanjem pojačanja odnosom otpornika ukupne povratne sprege. P-kanalni CMOS tranzistori se koriste da se eliminiše efekat osnove vezivanjem osnove na sors. Rezidualna modulacija pojačanja modulacijom gm tranzistora zbog razlika CM napona na ulazu i izlazu mora da se eliminiše primenom butstrepovanih kaskoda na ulazu. Naponsko pojačanje je Za R 1 = R 2 je Ovaj princip je razrađen u sledeće dve realizacije instrumentacionog pojačavača. 16 8

9 Bipolarni instrumentacioni pojačavač sa opsegom ulaznog napona srednje vrednosti koji uključuje negativni napon napajanja Kada je negativni napon napajanja jedan od ulaznih napona, ne može da se koristi poluinstrumentacioni pojačavač sa tri OP, čak i ako ulazni OP imaju CM opseg koji uključuje negativni napon napajanja. Povratna sprega oko ulaznih OP sprečava da ulazni CM opseg uključuje negativni napon napajanja. Mogući izlaz je da se koriste PNP ili P-kanalni emitor (sors) follower -i kao pomerači nivoa. Međutim, ovi stepeni povećavaju šum i ofset. Pored toga, poluinstrumentacioni pojačavač sa tri OP ima i druge, već pomenute nedostatke. Stoga je povoljnije da se direktno PNP ili P- kanalni tranzistori koriste kao ulazni tranzistori jednostavnih degenerisanih V-I konvertora kojima slede presavijeni kaskodni tranzistori, čime se realizuje topologija slična onoj sa prethodnog slajda. Bipolarna vezija je prikazana na sledećem slajdu. Bipolarni ulazni tranzistori imaju veliku izlaznu impedansu i malu modulaciju transkonduktanse ulaznim CM nivoom, pa nije potrebno kaskodiranje (za kaskodiranje nema ni dovoljno razlike napona u odnosu na V SN ). Međustepen predstavljaju Darlington tranzistori koji imaju veliko strujno ali i veliko naponsko pojačanje, pošto je impedansa u kolektoru Q 44 kompenzovana negativno impedansom preslikanom sa kolektora Q 43 pomoću strujnog ogledala. Izlazni stepen je Darlington emitor follower. Opseg izlaznog napona uključuje V SN i izlaz je referenciran na V SN vezivanjem baze Q 22 na masu. Opseg ulaznog napona je ±100mV. Minimalni napon napajanja je 2,5V

10 CMOS instrumentacioni pojačavač sa opsegom ulaznog napona srednje vrednosti koji uključuje negativni napon napajanja CMOS diferencijalni V-I konvertori imaju manju tačnost od bipolarnih zbog manjeg pojačanja i zbog modulacije transkonduktanse ulaznim CM nivoom. Zbog toga se tranzistori kaskodiraju. Zbog kaskodiranja opseg izlaznog napona uključuje V SN. Opseg ulaznog napona je ±100mV. 19 Pojednostavljena šema i simbol instrumentacionog pojačavača 20 10

11 Univerzalni V-I konvertor u klasi AB na bazi instrumentacionog pojačavača Univerzalni V-I konvertor procesira signale fizički oba polariteta. Rešenje u klasi AB na bazi instrumentacionog pojačavača je povoljnije od rešenja sa OFA. U cilju analize nedostataka može da se razmatra i rešenje na bazi poluinstrumentacionog pojačavača. Univerzalni V-I konvertor na bazi poluinstrumentacionog pojačavača Merni otpornik R M je vezan redno sa izlazom instrumentacionog pojačavača i potrošačem. Diferencijalni priključci za odmeravanje izlaza V 3 i V 4 su priključeni na R M. Baferski pojačavač OA 2 izoluje izlazne struje od struja mosta. Na diferencijalne priključke za odmeravanje ulaza V 1 i V 2 priključen je ulazni napon V id. 21 CM izlazna provodnost je Ako izlaz treba da funkcioniše za veliki deo opsega napona napajanja, napon na R M treba da bude mali, npr0,5v za napon napajanja od 5V. Ako je ulazni napon V id jednak 1V, naponsko pojačanje treba da bude A V = -0,5, tj. inverzno naponsko pojačanje A VR = -2. Za nominalnu struju od 1mA treba da bude R M =500Ω, pa je I o / V id =1mS. Pri debalansu mosta ΔR B / R B od 1% inverno preslušavanje je 1/H R = 0,3%. Ovo rezultuje CM izlaznom provodnošću G OCM = 3μS. Za manju izlaznu provodnost most mora da se trimuje. Stoga je bolje upotrebiti pravi instrumentacioni pojačavač čije CM preslušavanje ne zavisi od trimovanja, kao što je kolo prikazano na sledećem slajdu

12 Univerzalni V-I konvertor sa pravim instrumentacionim pojačavačem Šema je sa pojednostavljenom šemom instrumentacionog pojačavača sa diferencijalnim V-I konvertorima. A V =R 2 /R 1 U slučaju R 2 /R 1 =1 G M = 1/R M CM izlazna otpornost R OCM = 1/G OCM može lako da bude H=10 4 puta veća od otpornosti mernog otpornika. Ovo je mnogo bolji rezultat nego sa poluinstrumentacionim pojačavačem bez trimovanja. 23 Univerzalni OFA u klasi A Zadatak je da se projektuje OFA čije izlazne struje zadovoljavaju relaciju Ovo se može postići sa neuzemljenim tj. izolovanim izlaznim stepenom. Na čipu se to realno ostvaruje izolacijom strujnim izvorima. Univerzalni OFA u klasi A sa neuzemljenim napajanjem sa zener diodama Pomoću strujnih izvora i zener dioda je napravljena neuzemljena baterija. Ako je I OP = I ON, neuzemljeni napon za napajanje V S = V SP -V SN se pojavljuje na krajevima zener dioda. Diode preuzimaju višak struje koji ne koristi OP. Rezultat je da je struja polarizacije izlaza I ob skoro jednaka nuli. Zener diode dele ukupan opseg napona napajanja na opseg na OP za V o1 i opseg koji ostaje između priključaka za napajanje i zener dioda. Stoga se gubi najmanje za faktor 2 u ukupnom opsegu izlaznog napona

13 Univerzalni OFA u klasi A sa neuzemljenim napajanjem sa strujnim foloverima za napajanje Izbegava se gubitak zbog fiksnih napona na zener diodama. Strujni foloveri prihvataju struju napajanja OP i šalju je u drugi izlazni priključak. Opseg izlaznog napona ovde može da bude proširen blizu napona napajanja. Sem toga, promene napona na strujnim izvorima za napajanje I OP i I ON su ovde fiksirani kaskodama M 1 i M 2, što čini da ove struje ne zavise od signala i povećava CM izlaznu impedansu. Nije potrebno da sva struja napajanja OP teče iz strujnih izvora, već samo struja za izlazne tranzistore. To je primenjeno u realizaciji sa VF izlaznim stepenom na sledećem slajdu. 25 U ovom kolu je efikasno iskorišćen opseg napona napajanja, a takođe i strujni izvori za napajanje I OP i I ON, koliko je to moguće u klasi A. Ako se pri maksimalnom signalu sva struja I OP koristi za I o1, sva negativna struja napajanja I ON automatski se koristi za I o2. Ovo pretpostavlja da su M 3 i M 4 ispravno polarisani za rad u klasi AB

14 Univerzalni OFA u klasi A sa neuzemljenim napajanjem sa diferencijalnim parom Diferencijalni par funkcioniše kao prenosnik struja između dva izlazna priključka. Izlazna struja polarizacije I ob i faktor potiskivanja CM izlazne struje H o određuju jednakost izlaznih struja I o1 i -I o2 : Strujni izvori obezbeđuju I o1 i -I o2 što rezultuje vrlo velikom vrednošću H o. Povratna sprega kroz spoljašnje veze obezbeđuje funkcionalni radni režim za OFA. Preciznost izlaznog stepena se zadržava i u bipolarnoj verziji. Mana primene jednog diferencijalnog para je da za željenu izlaznu struju može da se iskoristi samo polovina ukupne struje polarizacije izlaza I OP1 + I OP2. struja polarizacije može da se efikasnije iskoristi ako se zajedno upotrebe P par i N par, kao na sledećem slajdu. 27 Glavni problem je realizacija neuzemljenih izvora V B3 i V B4. Oni moraju da slede napone napajanja. Jedno rešenje je da se donji tranzistori pobuđuju direktno, zatim da se pređe napon napajanja i gornji tranzistori pobuđuju indirekno. Ovo je prikazano na sledećem slajdu

15 Izlazni tranzistori funkcionišu kao kaskode za strujne izvore u njihovim sorsovima, obezbeđujući tako veliku CM izlaznu impedansu. Stepen koji modeluje polarizaciju (desna strana) precizno izjednačava struje kroz tranzistore gornjeg i donjeg strujnog izvora. U odnosu na izlazni stepen, on je strujno skaliran sa faktorom 1/N. Pored toga, on diferencijalno pobuđuje gornje izlazne tranzistore protivfazno u odnosu na donje. Stoga je ukupna izlazna struja polarizacije optimalno upotrebljena kao maksimalna pozitivna i negativna izlazna struja. Milerovi kondenzatori obezbeđuju frekventnu kompenzaciju. Ulazni stepen je realizovan kao presavijeni kaskodni stepen, čime je obezbeđeno veliko pojačanje reda pojačanje izlaznog stepena je jednako dvostrukom pojačanju svakog od parova u izlaznom stepenu. Ukupna transkonduktansa je 29 Povratna sprege oko donjih izlaznih tranzistora i gejtova M21 i M22 izjednačava gornje i donje CM struje u presavijenom kaskodnom stepenu. Diferencijalna izlazna impedansa nije jako velika zbof ZS sprege izlaznih tranzistora. Mođutim, redna spoljašnja povratna sprega na izlazu povećava izlaznu impedansu do velikih vrednosti. Alternativno rešenje je prikazano na ovom slajdu. Izlazni tranzistori se protivfazno pobuđuju konturama koje čine M 51, M 52 i M 53, M 54. Otpornici R 64, R 69 i R 68 u polarizacionom lancu M 63 M 68 obezbeđuju potreban napon za rad strujnih izvora. Izlazni tranzistori rade u klasi A. Stepen koji modeluje polarizaciju izjednačava struje strujnih izvora M 35 i M 36. Ovo rešenje ima nešto bolje ponašanje na visokim učestanostima pošto se gornji izlazni tranzistori pobuđuju paralelno sa donjim, a ne indirektno preko modela za polarizaciju

16 Izlazni napon se razlikuje od napona napajanja najmanje za jedan napon diode i napon zasićenja. Strujni CMRR na izlazu H o je veći od struja polarizacije izlaza I ob je oko 0,5% od strujnih izvora za polarizaciju I BP i I BN. Ovo određuje ofset između izlaznih struja. Propusni opseg je nekoliko desetina MHz. Ovaj OFA ima sličnosti sa OP sa diferencijalnim izlazom sa slike Međutim, suprotno od situacije kod tog OP, kod kojeg je bilo potrebno uparivanje elemenata tj. dva otpornika, zbog prirode OFA ovde regulacija izlaznih struja ne zahteva uparivanje, sem zbog ofseta. 31 Univerzalni OFA u klasi AB sa izolacijom izvora za napajanje Jedan pristup realizaciji OFA u klasi AB je da se koristi napajanje koje je izolovano od uzemljenja. Zanemarujući ulazne struje: I o1 i -I o2 treba da budu jednake nezavisno od uparivanja elemenata. Ako je OP polarisan u klasi AB, ceo OFA takođe radi u klasi AB. Mana je što je maksimalni izlazni diferencijalni napon V od ograničen na polovinu ukupnog napona napajanja. Ovo se može izbeći korišćenjem OP sa diferencijalnim izlazom

17 Univerzalni neuzemljeni izvor za napajanje Za male struje napajanja moguća je realizacija na čipu, tj. integrišu se mali kondenzatori. Na ovaj način se problem realizacije izolovanog tj. neuzemljenog izlaza zamenjuje problemom realizacije neuzemljenog napajanja. 33 Finalni zadatak u projektovanju univerzalnih OFA je obezbeđenje izlaznog stepena polarisanog u klasi AB bez primene neuzemljenog izvora za napajanje. Univerzalni OFA u klasi AB Svaka od ovih jednačina zahteva da OFA radi u klasi AB

18 Univerzalni OFA u klasi AB sa izjednačavanjem ukupne izlazne struje napajanja U realizaciji na slici se koristi kontura od dva OP i mere se i izjednačavaju ukupne pozitivne i negativne struje napajanja. Skalirana razlika struja napajanja se dovodi na neinvertujući ulaz OA 2 koji izjednačava struje. Ovo kolo može da ima veliki dinamički opseg od 140dB. Međutim, nesimetrija tranzistora unosi nelinearnost u prenosnu karakteristiku. Prenosna karakteristika je jako nelinearna za nultu struju. Ako se ovakav OFA koristi za žiratorske filtre, filtri mogu da budu nestabilni za Q > 1/δ. Nelinearnost je delimično maskirana za male struje signala u okviru polarizacije OP u klasi A kada se ukupna struja izvora ne menja mnogo. Nelinearnost karakteristike je prikazana na sledećem slajdu. Nelinearnost može da se smanji trimovanjem tranzistora, čime se dobija veliki dinamički opseg i velika linearnost, ali je ovo skup postupak

19 Drugi pristup je da se nađe realizacija koja realizuje drugu jednačinu od uslova za univerzalni OFA: Univerzalni OFA u klasi AB sa strujnim ogledalima To se može ostvariti dijagonalnim vezivanjem strujnih ogledala kao na slici. Zbog netačnosti strujnih ogledala i Early-jevog efekta mogu se očekivati greške u prenosu signala reda o,5%. Zbog istih razloga dolazi i do nelinearnih izobličenja istog reda veličine. Ako se struje preslikavaju samo jedanput, dobija se tzv operational mirrored amplifier OMA, prikazan na sledećem slajdu. Kao i OFA, i OMA može da se koristi u realizaciji univerzalnih V-I konvertora. Izlazne struje su sada jednake 37 Neslaganje dveju struja δ je i ovde izazvano neslaganjem tranzistora, što daje greške i nelinearnosti reda o,5%. Iako OMA ima isti polaritet dve struje, OMA može da se primeni u skoro svim OFA aplikacijama. Prednosti i nedostaci uparivanja strujnih ogledala su isti kao kod uparivanja struja izvora za napajanje. Strujna ogledala treba da budu pažljivo kaskodirana da bi se izbegao uticaj modulacije naponom u transferu struje

20 Univerzalni OFA u klasi AB sa izjednačavanjem izlaznih struja Ovaj pristup koristi prvu jednačinu tj. Izlazne struje se direktno mere i izjednačavaju. Ovo može da se ostvari ubacivanjem senzorskih otpornika R M1 i R M2 u izlazne priključke, merenjem razlike na ovim otpornicima i izjednačavanjem ovih napona. Ovi diferencijalni naponi na otpornicima mogu da se mere jedino instrumentacionim pojačavačima (IA) sa velikim CMRR za ulazni napon. Praktična realizacija ovoga je na slici. IA sa T 1 do T 4 i OA 2 meri razliku napona na R M1 koji je redno vezan sa izlazom OA 1. IA je vezan kao V-I konvertor sa mernim otpornikom R M2 vezanim redno sa izlazom OA 2. Drugi krajevi R M1 i R M2 predstavljaju izlazne priključke univerzalnog OFA u klasi AB. Izlazne struje I o1 i I o2 zadovoljavaju treću jednačinu za OFA. Bitno je da isti fizički elementi R 1, R M1 i R 2, R M2 koji mere izlazne struje takođe mere i kada je polaritet struje promenjen. To znači da je veza struja I o1 i I o2 linearna, sa linearnim faktorom skaliranja α. Nema stepenika u prenosnoj karakteristici. Postiže se odnos signal-šum oko 100dB. Izlazni strujni faktor potiskivanja H o je jednak polovini neuparenosti otpornika. 39 Univerzalni V-I konvertor u klasi AB sa instrumentacionim pojačavačem Ukoliko je OFA potreban za realizaciju funkcije V-I konverzije, nije potrebna kompletna OFA konstrukcija, nego veza IA sa otpornikom R M za merenje struje redno sa izlazom, kao na slici. Sa IA se dobija univerzalni V-I konvertor u klasi AB visokog kvaliteta. Bez trimovanja se lako dobija izlazna impedansa veća od 10 4 R M, sa greškom linearnosti manjom od 10-4, propusnim opsegom od nekoliko desetina MHz i odnosom signal-šum od 120dB

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

PROJEKTOVANJE CELINE AVAČA

PROJEKTOVANJE CELINE AVAČA PROJEKTOVANJE CELINE POJAČAVA AVAČA Johan Huijsing, OPERATIONAL AMPLIFIERS, Theory and Design, Kluwer Academic Publishers, 2001, Ch 6 1 Pored aspekata specifičnih za ulazni odnosno izlazni stepen, operacioni

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

OPERACIONI POJAČAVAČI. Doc. dr. Neđeljko Lekić

OPERACIONI POJAČAVAČI. Doc. dr. Neđeljko Lekić OPERACIONI POJAČAVAČI Doc. dr. Neđeljko Lekić ŠTO JE OPERACIONI POJAČAVAČ? Pojačavač visokog pojačanja Ima diferencijalne ulaze Obično ima jedan izlaz Visoka ulazna i mala izlazna otpornost Negativnom

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe-

Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe- Aneta Prijić Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe- Studijski program Mikroelektronika i mikrosistemi (IV semestar) Označavanje jednosmernih i naizmeničnih veličina

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona lementi elektronike septembar 2014 ŠNJA. Za rednosti ulaznog napona V transistor je isključen, i rednost napona na izlazu je BT V 5 V Kada ulazni napon dostigne napon uključenja tranzistora, transistor

Διαβάστε περισσότερα

Analogna mikroelektronika

Analogna mikroelektronika Analogna mikroelektronika Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014. Idealni operacioni pojačavač Diferencijalni pojačavač Deo I Operacioni pojačavači Idealni operacioni

Διαβάστε περισσότερα

Diferencijalni pojačavač

Diferencijalni pojačavač Diferencijalni pojačavač Prirodno-matematički fakultet u Nišu Departman za fiziku dr Dejan S. Aleksid lektronika vod Diferencijalni pojačavač je linearni elektronski sklop namenjen pojačavanju razlike

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

INTEGRISANA KOLA OPERACIONIH POJAČAVAČA

INTEGRISANA KOLA OPERACIONIH POJAČAVAČA NTEGRSN KOL OPERONH POJČVČ 1 UVOD U interisanim kolima ne realizuju se induktivnosti zbo toa što je za to potrebna velika površina čipa. Ukoliko su neophodne u kolu one mou biti vezane na spoljašne priključke

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Poglavlje 7. Blok dijagrami diskretnih sistema

Poglavlje 7. Blok dijagrami diskretnih sistema Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama

Διαβάστε περισσότερα

2.2 Pojačavač snage. Autori: prof. dr Predrag Petković, dr Srđan Đorđević,

2.2 Pojačavač snage. Autori: prof. dr Predrag Petković, dr Srđan Đorđević, 2.2 Pojačavač snage Autori: prof. dr Predrag Petković, dr Srđan Đorđević, 2.2.1 Cilj vežbe Ova vežba treba da omugući studentima da sagledaju osobine pojačavača velikih signala koji rade u klasi AB i B.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

POJAČAVAČI VELIKIH SIGNALA (drugi deo)

POJAČAVAČI VELIKIH SIGNALA (drugi deo) OJAČAAČI ELIKIH SIGNALA (drugi deo) Obrtači faze 0. decembar 0. ojačavači velikih signala 0. decembar 0. ojačavači velikih signala Obrtači faze Diferencijalni pojačavač sa nesimetričnim ulazom. Rc Rb Rb

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

4 IMPULSNA ELEKTRONIKA

4 IMPULSNA ELEKTRONIKA 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno TTL kolo sa parametrima čije su nominalne vrednosti: V cc = 5V, V γ = 0, 65V, V be = V bc = V d = 0, 7V, V bes = 0, 75V, V ces = 0, 1V, R

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage Model za male

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

Dr Željko Aleksić, predavanja MS1AIK, februar D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008.

Dr Željko Aleksić, predavanja MS1AIK, februar D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008. OSNOVNE ANALOGNE STRUKTURE Dr Željko Aleksić, predavanja MS1AIK, februar 2009. D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008. 1 Osnovne analogne strukture Strukturisano projektovanje

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Bipolarni tranzistor

Bipolarni tranzistor i princip Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku Zoran Prijić predavanja 2014. Sadržaj i princip i princip Definicija i princip (bipolar junction transistor BJT) je poluprovodnička

Διαβάστε περισσότερα

Mreže sa dva pristupa

Mreže sa dva pristupa Mreže sa dva pristupa 18. novembar 2015 Mreža sa dva pristupa je električna mreža sa dva para priključaka kojima se povezuje sa drugim mrežama (kolima), Slika 1. Dva priključka čine pristup ako je struja

Διαβάστε περισσότερα

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka Stančić Goran Jevtić Milun Niš, 2004 2 IMPULSNA ELEKTRONIKA Glava 1 Logička kola i njihova primena 3 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA ANALIZA TTL, DTL I ECL LOGIČKIH KOLA Zadatak 1 Za DTL logičko kolo sa slike 1.1, odrediti: a) Logičku funkciju kola i režime rada svih tranzistora za sve kombinacije logičkih nivoa na ulazu kola. b) Odrediti

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

1.1 Osnovni pojačavački stepeni

1.1 Osnovni pojačavački stepeni 1.1 Osnovni pojačavački stepeni Autori: prof. dr Vlastimir Pavlović, dipl. inž. Dejan Mirković 1.1.1 Cilj vežbe Ova vežba treba da omugući studentima da sagledaju osobine osnovnih tipova pojačavača sa

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

METODOLOGIJA PROJEKTOVANJA ANALOGNIH CMOS INTEGRISANIH KOLA

METODOLOGIJA PROJEKTOVANJA ANALOGNIH CMOS INTEGRISANIH KOLA METODOLOGIJA PROJEKTOVANJA ANALOGNIH CMOS INTEGRISANIH KOLA D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008. 1 Strukturirano projektovanje analognih kola Tok projektovanja pojačavača

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Glava 3 INSTRUMENTACIONI POJAČAVAČI

Glava 3 INSTRUMENTACIONI POJAČAVAČI ioje Đurić - Osnoi analogne elektronike Glaa 3 NSTUMENTACON POJAČAVAČ ETF u eogru - Osek za elektroniku 3 nstrumentacioni pojačaači 33 X G Slika 3 A 3 Na ulaz instrumentacionog pojačaača sa slike 3 ooi

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA:

PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA: ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: ELEKTRONIKA Godina 2006/2007 PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA: ELEKTRONIKA (SGE, SGMIM, SGUS) ELEKTRONIKA U TELEKOMUNIKACIJAMA

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Aneta Prijić Poluprovodničke komponente

Aneta Prijić Poluprovodničke komponente Aneta Prijić Poluprovodničke komponente Modul Elektronske komponente i mikrosistemi (IV semestar) Studijski program: Elektrotehnika i računarstvo Broj ESPB: 6 JFET (Junction Field Effect Transistor) -

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA

FIZIČKO-TEHNIČKA MERENJA: ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA : ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA UVOD Signal koji generiše senzor je ili suviše slab ( ~ μv) ili sadrži šum ili sadrži neželjene komponente (DC nivo) ili nije u odgovarajućoj

Διαβάστε περισσότερα

Održavanje Brodskih Elektroničkih Sustava

Održavanje Brodskih Elektroničkih Sustava Održavanje Brodskih Elektroničkih Sustava Sadržaj predavanja: 1. Upoznavanje s osnovnim sklopovima tranzistorskih pojačala 2. Upoznavanje s osnovnim sklopovima operacijskih pojačala 3. Analogni sklopovi

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora MOSFET tranzistor obogaćenog tipa Konstrukcija MOSFET tranzistora obogaćenog tipa je

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE TEHNIČKI ŠKOLSKI CENTAR ZVORNIK PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE II RAZRED Zanimanje: Tehničar računarstva MODUL 3 (1 čas nedeljno, 36 sedmica) PREDMETNI PROFESOR: Biljana Vidaković 0

Διαβάστε περισσότερα