P L A N P R E D A V A N J A

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "P L A N P R E D A V A N J A"

Transcript

1 MICELARNI KOLOIDI (KOLOIDNE POVRŠINSKI AKTIVNE MATERIJE) dr Nataša Pejić, vanr. prof. 1

2 P L A N P R E D A V A N J A Solubilizacija (u polarnom i nepolarnom rastvaraču, faktori koji utiču na solubilizaciju; uticaj solubilizacije na strukturu micele i KMK, primena solubilizacije) Praktični značaj rastvora PAM (primena micelarnih PAM; polimerne micele : formiranje polimernih micelarnih sistema, primena i prednosti korišćenja) 2

3 Živi organizmi Hemijske reakcije Micele kao kao nanoreaktori nanoreaktori Zašto su micele / samoorganizovane strukture važne Novi materijali Primena Boje, hrana, detergenti, kozmetika,

4 Solubilizacija Spontano rastvaranje supstancija (čvrstih, tečnih ili gasovitih) reverzibilnom interakcijom s rastvorima micelarnih PAM Solubilizant - supstancija (polarna ili nepolarna) koja se rastvara Dobijaju se termodinamički stabilni izotropni rastvori (solubilizant i rastvor za solubilizaciju su u istoj fazi) Praktičan značaj: moguće je rastvoriti određene supstancije u rastvaraču u kome je inače nerastvorljiv 4

5 SOLUBILIZACIJA u vodenom rastvoru koji sadrži agregate (micele, vezikule ili blok-kopolimerne micele): SOLUBILIZACIJA rastvorljivost slabo rastvornih ugljovodonika u nepolarnom rastvaraču reversna micela: promena rastvorljivosti polarnih supstancija (voda, amino kiseline ili proteini) 5

6 Solubilizacija u praktičan vodi praktičan značaj značaj kod pripreme različitih formulacija (farmaceutskih, kozmetičkih. insekcitida, itd.) proizvodi koji sadrže nerastvorljive sastojke u vodi korišćenje organskog rastvarača ili korastvarača pranje solubilizacija je glavni mehanizam kojim se otklanjaju masne mrlje micelarna kataliza organskih reakcija solubilizacija u biološkim sistemima ispitivanje mehanizama interakcije leka i membrane/lipidnog dvosloja Itd. 6

7 Solubilizacija Proces ugrađivanja molekula nerastvorljive supstancije (npr. steroidi, antibiotici, analgetici, barbiturati, itd. ) u MICELU PAM Materija koja se rastvara: solubilizant (aditiv) kolicina solubilizirane supstancije KMK koncentracija surfaktanta MKA (maksimalna koncentracija aditiva): kritična c aditiva koja može da se inkorporira u micelu

8 MKA MKA (maksimalna koncentracija aditiva): kritična c aditiva koja može da se inkorporira u micelu D MKA se određuje eksperimentalno Npr. Npr. nefelometrijski B Početni rastvor A. bistar B. zamućen A V solubilizanta 8

9 Solubilizacija mehanizam i mesto solubilizacije Mehanizam: 1. inkorporiranje aditiva u micelu 2. adsorpcija aditiva na micelu Mesto solubilizacije? 1. Na površini micele (međupovršina micela-rastvarač) 2. Između hidrofilnih glava (POE materijali) 3. Između hidrofilnih grupa i nekoliko prvih C-atoma hidrofobnih grupa 4. Između hidrofobnih grupa bliže jezgru micele 5. Unutrašnjosti jezgra micele 9

10 Solubilizacija mesto solubilizacije 1. Na površini micele (međupovršina micela-rastvarač) 2. Između hidrofilnih glava (POE materijali) 3. Između hidrofilnih grupa i nekoliko prvih C-atoma hidrofobnih grupa 4. Između hidrofobnih grupa bliže jezgru micele 5. Unutrašnjosti jezgra micele 10

11 Faktori koji utiču na solubilizaciju a) c i struktura PAM b) priroda solubilizanta c) radijus micele d) ph sredine e) T Solubilizant sa solubilizant sa nepolarnim grupama nepolarnim grupama solubilizant Solubilizant sa sa polarnim polarnim grupama grupama (ali (alinerastvorljiv u u vodi) vodi) 11

12 Posledice solubilizacije 1. Promena strukture micele (oblik) Npr. solubilizacija alkohola (solubilizira se na površinu micele) dovodi do formiranja sfernih micela 2. Promena tačke zamućenja kod vodenih rastvora nejonskih PAM 3. Smanjenje vrednosti KMK 12

13 Sferna micela nejonske PAM u vodi i solubilizacija molekula različite polarnosti polioksietilenski POE lanac lanac C Nepolaran centralni deo B A A A toluen toluen B B salicilna kiselina C C parahidroksibenzojeva kiselina 13

14 Hidrofilno-lipofilna ravnoteža (HLB skala) Količina solubizirane supstancije je funkcija polarno/nepolarnih karakteristika PAM (HLB broj) HLB vrednosti od 1 do 40 Griffin, god lipofilan hidrofilan Slaba Slabarastvorljivost u u vodi vodi Dobra Dobra rastvorljivost u u vodi vodi i jak i jak afinitet afinitet prema prema organskoj organskoj fazi fazi Mali HLB Lipofilni (hidrofobni) deo molekula je dominantan Veliki HLB hidrofilni deo molekula je dominantan

15 Hidrofilno-lipofilna ravnoteža (HLB skala) HLB nekih surfaktanata PAM Oleinska kiselina Sorbitan monooleat (Span 80) Sorbitol monolaurat (Span 20) Kalijum oleat HLB 4,3 4,3 8,6 20,0 Namena sredstva protiv penjenja detergent emulgator tipa U/V solubilizant HLB karakteristika emulgatora, ali ne i njegove efikasnosti; npr. smeša emulgatora daje jednak HLB, ali efikasniji grade kompleks na međupovršini

16 Praktičan značaj rastvora PAM Emulgatori Detergenti Sredstva za kvašenje Sredstvo protiv penjenja Sredstvo za penjenje Solubilizanti 16

17 Emulzije HLB = f(t) PIT ili HLB temperatura temperatura fazne inverzije ulje Vrste emulzija: emulzije tipa ulje/voda (U/V) ili uljane kapi u vodi emulzije tipa voda/ulje (V/U) ili vodene kapi u ulju Emulgatori PAM,... H 2 O H 2 O HLB smeše = f HLB + ( 1 f ) A HLB B ulje Surfaktanti A i B imaju HLB vrednosti 15 i 6, redom. Izračunati udele surfaktanata A i B koje treba uzeti da bi se dobila smeša surfaktanata čija je HLB 9? 9 = f 9 = f 9 f f = = ( 1 f ) f 6 1/3 A i 2/3 B na na času času

18 Mleko prirodna emulzija masti u vodi Emulgator: kazein na na času času α-kazein κ-kazein Majinez emulzija U/V U/V Emulgator: : žumance LECITIN Hidrofilna glava HH 2 O 2 Hidrofobni rep 18

19 U farmaciji: za orijentacionu namenu date PAM koriste se HLB vrednosti HLB = f(t) PIT ili HLB temperatura temperatura fazne inverzije U/V emulgatori Anti-peneća sredstva V/U emulgatori Sredstva za kvašenje detergent solubilizanti ulje voda Emulzija tipa V/U sa mineralnim uljem kao masnom fazom: emulgator HLB 4,5 Emulzija tipa U/V sa istim uljem: emulgator HLB 11

20 Praktičan značaj rastvora PAM-kvašenje Loše kvašenje veliki σ, veliki kontaktni ugao Kvašenje mali σ, mali kontaktni ugao KLJUČ: REDUKCIJA KONTAKTNOG UGLA 20

21 Dejstvo sapuna Kvašenje i i emulgovanje Na-palmitat Na-palmitat O H H OOC ugljovodonični niz COO H O H nečistoća COO H O H OOC H O H COO H COO H H O vodonična veza H O Ne Ne može može se se koristiti u u tvrdoj tvrdoj (i (i morskoj vodi), vodi), kao kao ni ni u u kiseloj kiselojsredini sredini Grade Grade se se nerastv. Ca Cai i Mg Mgsoli soli više više masnih masnih kiselina 21

22 PP RR NJ NJ EE EE LL EE M EE N TT AA RR N II KK O RR AA CC II 22

23 Biološka dejstva micelarnih PAM porast rastvorljivosti leka uticaj na permeabilnost bioloških membrana: porast apsorpcije leka antibakterijsko delovanje fizički uništava membranu bakterije interakcija PAM i delova virusa anjonski PAM smanjuje virusnu aktivnost oštećenje membrana toksičnost štetno dejstvo na kožu (izraženo kod sapuna i detergenata) Solubilizacija primena u farmaciji sredstva za dezinfekciju - solubilizacija fenolnih jedinjenja (krezol, hlorokrezol,..) sterilizacija solubilizacija rastvora joda micelama nejonskih PAM solubilizacija lekova (steroidi, vitamini nerastvorljivi u vodi..) nejonskim surfaktantima (polisorbati,...); sistemi za isporuku lekova 23

24 Micelarni PAM u solubilizaciji lekova Lipofilni lekovi ( 40%) imaju niz loših karakt.: slaba bioraspoloživost spor početak delovanja potrebne velike doze neželjeni efekti, itd. Antibiotici Steroidi Vitamini rastvor. u mastima Za poboljšanje karakteristika farmaceutika MICELA deo deo PAM: natrijum lauril sulfat natrijum kaprat heksadeciltrimetilamonijum bromid polisorbat 24

25 Manja KMK stabilnija micela Penicilin Penicilin I streptomicin streptomicin Penicilin I streptomicin se se injektiraju injekt iraju u koloidnom koloidnom obliku obliku se injektiraju u koloidnom obliku Kod intravenskog doziranja leka: razblaživanjem sa velikom V krvi jedino postoje micele sa malim KMK, dok one sa velikim disosuju na monomere i sadržaj precipitira u krvi 25

26 PAM kao AKTIVNA KOMPONENTA leka: Surfactin PAM micele u zaštiti lekova od degradacije PAM micele u solubilizaciji leka Hidrofilni lek Srednje polaran lek Hidrofobni lek 26

27 Faktori koji utiču na efikasnost micelarnih PAM u solubilizaciji lekova Struktura PAM: za hidrofobne lekove nejonski PAM bolji solubilizanti od jonskih (imaju manje KMK) Veličina micele: veća, bolja solubilizacija (farm. micela ima d od 10 do 80 nm) Struktura leka: manje polarni lekovi pokazuju manju solubilizaciju T: porast T dovodi do porasta solubilizacije (povećava se termalno kretanje); kod nejonskih PAM opada Jonska jačina: uticaj izražen kod jonskih PAM (soli smanjuju odbijanje polarnih glava PAM); solub. hidrof. lekova, a polarnih ph: kada su PAM i lek suprotno naelektrisani, ph na kome je lek jonizovan dovodi do porasta rastvorljivosti 27

28 POLIMERNE MICELE Prof. Dr Kazunori Kataoka, 1980., Tokio, Japan Skoro idealni samoorganizujući sistem za isporuku leka tkivo kancera polimerna micela zdravo tkivo

29 Hidrofobni lekovi (npr. citostatici) klasični ekcipijensi toksični Micele PAM Problemi: Slaba apsorpcija Loša bioraspoloživost Agregacija leka visoka KMK Polimerni nosači precipitiraju u vodi POLIMERNE MICELE Idealni micelarni sistem 29

30 Obrazovanje polimerne micele povezivanjem amfoternih segmenata (blokova) PAM kopolimera (vrlo niske KMK) kopolimeri formiraju sferne micele u vodi polimerne micele su vrlo stabilne OBRAZOVANJE POLIMERNIH MICELA PEG polietilen glikol Hidrofilan segment PE PE fosfatidil-etanolamin Hidrofoban segment 30

31 Micela formirana povezivanjem PEG (A) i PE (B) A A B B lek lek s ili lek lek so stabilišu PEG PEG Za selektivnu isporuku citostatika do čvrstih tumornih oblasti čije pore imaju nano dimenzije 31

32 Polimerne micele nano dimenzija Anti-virusni agensi nm nm µm µm 32

33 Prednosti korišćenja polimernih micela velika stabilnost (naročito važno kod parenteralne primene leka) kinetička stabilnost micela i spora disocijacija (akumuliranje u ciljanom mestu) veće jezgro od PAM micela (bolji solubilizanti) lako se sterilišu filtracijom (sigurne za upotrebu) mogu da transportuju svoj sadržaj i u slabo propustljive vaskulature tumora ciljano dejstvo micele može se poboljšati vezivanjem specifičnih liganada 33

34 Peptidni antibiotici mali peptidi (amfifili) sastoje se iz aminokiselina (lanci sa max. 15 aminokiselina; oko 800 je u kliničkoj upotrebi prekursori bioaktivnih peptida: kazein, albumin, gluten, citohrom C, hemoglobin, itd. u kontaktu sa bakterijama uništavaju fizički membranu bakterija (zbog dvofilnosti i katjonskog oblika) selektivni ne dolazi do rezistencije 34

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA

Διαβάστε περισσότερα

KOLOIDI. suspenzija. pravi rastvori. veće od. manje od < 1 nm. > 100 nm

KOLOIDI. suspenzija. pravi rastvori. veće od. manje od < 1 nm. > 100 nm MATERIJA SUPSTANCE SMEŠE ELEMENTI JEDINJENJA HOMOGENE HETEROGENE pravi rastvori veće od suspenzija manje od < 1 nm od do > 100 nm Tomas Grem je dao ime rastvorima kod kojih je primetio da: Čestice dispergovane

Διαβάστε περισσότερα

Kiselo bazni indikatori

Kiselo bazni indikatori Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Rastvori rastvaračem rastvorenom supstancom

Rastvori rastvaračem rastvorenom supstancom Rastvori Rastvor je homogen sistem sastavljen od najmanje dvije supstance-jedne koja je po pravilu u velikom višku i naziva se rastvaračem i one druge, koja se naziva rastvorenom supstancom. Rastvorene

Διαβάστε περισσότερα

Surfaktanti/Površinski aktivne materije u farmaceutskim oblicima lekova. Prof. dr Snežana Savić

Surfaktanti/Površinski aktivne materije u farmaceutskim oblicima lekova. Prof. dr Snežana Savić PITANJA? Šta su surfaktanti/pam i kakva je njihova primena u farmaceutskim oblicima lekova? Šta su (normalne i reversne) micele i kada nastaju? Tečni kristali, kako nastaju i koji su tipovi TK? Šta je

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

GRUPA HALOGENA. Halogeni oni koji lako grade soli (oznaka X) Rasprostranjenost im opada sa porastom Z

GRUPA HALOGENA. Halogeni oni koji lako grade soli (oznaka X) Rasprostranjenost im opada sa porastom Z Halogeni oni koji lako grade soli (oznaka X) Rasprostranjenost im opada sa porastom Z Zbog velike reaktivnosti ne nalaze se u elementarnom stanju F mineral fluorit CaF 2 Cl morskavodau obliku soli I jedini

Διαβάστε περισσότερα

CILJNA MESTA DEJSTVA LEKOVA

CILJNA MESTA DEJSTVA LEKOVA FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

RASTVORLJIVOST LEKOVA

RASTVORLJIVOST LEKOVA FIZIČK-HEMIJSKA KARAKTERIZACIJA LEKVA RASTVRLJIVST LEKVA Rastvorljivost leka u GIT-u Portalna vena Krvna plazma Enterociti Aktivni transport Tableta Raspadanje tablete Pasivna difuzija Rastvaranje Lek

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

RASTVORI. više e komponenata. Šećer u vodi, O 2 u vodi, zubne plombe, vazduh, morska voda

RASTVORI. više e komponenata. Šećer u vodi, O 2 u vodi, zubne plombe, vazduh, morska voda RASTVORI Rastvori su homogene smeše e 2 ili više e komponenata Šećer u vodi, O 2 u vodi, zubne plombe, vazduh, morska voda Fizička stanja rastvora Rastvori mogu da postoje u bilo kom od 3 agregatna stanja:

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

REAKCIJE ELIMINACIJE

REAKCIJE ELIMINACIJE REAKIJE ELIMINAIJE 1 . DEIDROALOGENAIJA (-X) i DEIDRATAIJA (- 2 O) su najčešći tipovi eliminacionih reakcija X Y + X Y 2 Dehidrohalogenacija (-X) X strong base + " X " X = l, Br, I 3 E 2 Mehanizam Ova

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Rastvori i osobine rastvora

Rastvori i osobine rastvora Rastvori i osobine rastvora U srpskom jeziku reč rasvor predstavlja homogenu tečnu smešu. U engleskom reč solution predstavlja više od toga smešu dva gasa, legure (homogene smeše dva metala)... Na ovom

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

HEMIJSKE RAVNOTEŽE. a = f = f c.

HEMIJSKE RAVNOTEŽE. a = f = f c. II RAČUNSKE VEŽBE HEMIJSKE RAVNOTEŽE TEORIJSKI DEO I POJAM AKTIVNOSTI JONA Razblaženi rastvori (do 0,1 mol/dm ) u kojima je interakcija između čestica rastvorene supstance zanemarljiva ponašaju se kao

Διαβάστε περισσότερα

SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA

SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SLABO RASTVORLJIVA JEDINJENJA ~ KOORDINACIONA JEDINJENJA

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI

RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI DISPERZNI SISTEMI Disperzija (lat.) raspršivanje, rasipanje Disperzni sistem je smeša u kojoj su

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

BETA ADRENERGIČKI BLOKATORI

BETA ADRENERGIČKI BLOKATORI BETA ADRENERGIČKI BLOKATORI KOMPETITIVNI INHIBITORI KATEHOLAMINA NA BETA ADRENERGIČKIM RECEPTORIMA LEKOVI KOJI SPECIFIČNO BLOKIRAJU BIOLOŠKI ODGOVOR NA IZOPRENALIN, A DELIMIČNO NA ADRENALIN PARCIJALNI

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine

evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine prof.goran Poš AMINOKISELINE elementarne jedinke proteina (belančevina) evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine AMINO-(karboksilne) (karboksilne)-kiseline

Διαβάστε περισσότερα

Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori

Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Supstituisane k.k. Značaj Sinteza Aminokiseline Biodegradabilni polimeri Peptidi Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Hidroksikiseline Kozmetička industrija kreme Biološki

Διαβάστε περισσότερα

Emulzije. Emulzijski proizvodi: Kozmetika i farmaceutika kreme losioni Paste masti gelovi injekcije (u farmaceutici)

Emulzije. Emulzijski proizvodi: Kozmetika i farmaceutika kreme losioni Paste masti gelovi injekcije (u farmaceutici) Emulzijski proizvodi: Kozmetika i farmaceutika kreme losioni Paste masti gelovi injekcije (u farmaceutici) Poljoprivreda sredstva za zaštitu bilja Emulzijske boje 1 Emulzije Emulzije termodinamički nestabilne

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Kiselo-bazne ravnoteže

Kiselo-bazne ravnoteže Uvod u biohemiju (školska 2016/17.) Kiselo-bazne ravnoteže NB: Prerađena/adaptirana prezentacija američkih profesora! Primeri kiselina i baza iz svakodnevnog života Arrhenius-ova definicija kiselina i

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM. 5. Navesti osobine amfoternih oksida i napisati 3 primera amfoternih oksida.

ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM. 5. Navesti osobine amfoternih oksida i napisati 3 primera amfoternih oksida. Dr Sanja Podunavac-Kuzmanović, redovni profesor tel: (+381) 21 / 485-3693 fax: (+381) 21 / 450-413 e-mail: sanya@uns.ac.rs web page: hemijatf.weebly.com ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

LIPIDI. Definicija lipida

LIPIDI. Definicija lipida LIPIDI Definicija lipida Lipidi su materije biološkog porekla koje ulaze u sastav organizama biljaka i životinja, i u osnovi se karakterišu time: što su slabo rastvorni ili nerastvorni u vodi, a rastvorni

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

Ekstrakcije 11/4/2013

Ekstrakcije 11/4/2013 Ekstrakcije Metode razdvajanja komponenata iz smeše u cilju prečišćavanja, a radi lakše identifikacije ili određivanja sadržaja. Može biti izuzetnokomplikovano zbog velike sličnosti komponenata i složenosti

Διαβάστε περισσότερα

Sekundarne struktura proteina Fibrilni proteini

Sekundarne struktura proteina Fibrilni proteini Sekundarne struktura proteina Fibrilni proteini Nivoi strukture proteina (strukturna hijerarhija) proteina Nivoi strukture proteina Primarna struktura Sekundarna struktura Super-sekundarna struktura Tercijarnastruktura

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Uvod u QSAR. Quantitative Structure Activity Relationships- QSAR. Quantitative Structure Property Relationships- QSPR

Uvod u QSAR. Quantitative Structure Activity Relationships- QSAR. Quantitative Structure Property Relationships- QSPR Uvod u QSAR Quantitative Structure Activity Relationships- QSAR Quantitative Structure Property Relationships- QSPR Postoji korelacija izmedju strukture i hemijske i biološke aktivnosti. SAR -tradicionalni

Διαβάστε περισσότερα

Kvantitativni odnosi strukture i dejstva

Kvantitativni odnosi strukture i dejstva FARMAEUTSKA HEMIJA 1 KVANTITATIVNI DNSI STRUKTURE I DEJSTVA LEKVA Predavač: Prof. dr. Slavica Erić Kvantitativni odnosi strukture i dejstva X N H N 4-X-pirazoli X Log1/Ki heksil 6.9 pentil 6.82 propil

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα