LIPIDI. Definicija lipida
|
|
- Μυρίνη Ελευθεριάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 LIPIDI Definicija lipida Lipidi su materije biološkog porekla koje ulaze u sastav organizama biljaka i životinja, i u osnovi se karakterišu time: što su slabo rastvorni ili nerastvorni u vodi, a rastvorni u različitim organskim rastvaračima (etar, dihlormetan, aceton); što predstavljaju biološki veoma značajna jedinjenja sa raznim funkcijama, u tkivima ćelija ili, pak, u tečnostima koje one sadrže. 1
2 Biološka aktivnost čine osnovnu strukturnu komponentu ćelijskih membrana i utiču na njihovu propustljivost, učestvuju u predaji nervnih impulsa, stvaraju kontakte meñu ćelijama, čine važnu grupu rezervnih materija za čuvanje energije kod organizama, imaju zaštitnu ulogu (kod kože, krzna, perja, listova biljaka), ispoljavaju hormonsko ili vitaminsko delovanje. Podela Lipidi se mogu podeliti na proste i složene. Prosti obuhvataju triacilglicerole (trigliceride) i voskove. U složene lipide spadaju fosfolipidi, steroli i glikolipidi. Podela se može izvršiti i na one koji sadrže nepolarne hidrofobne i polarne hidrofilne delove (triacilgliceroli, fosfolipidi), kao i na one koji sadrže tetraciklično jezgro (steroli). 2
3 Podela Kako se u lipide ubrajaju jedinjenja koja se karakterišu rastvorljivošću u organskim rastvaračima, u lipide se ubrajaju i terpeni i terpenoidi, vitamini rastvorni u mastima (A,D,E,K) Podela lipida se vrši i na osnovu sposobnosti da podležu hidrolizi u baznoj sredini (saponifikacija): osapunjivi (mogu se saponifikovati) masti i ulja, voskovi, fosfolipidi, sfingolipidi, lipoproteini, neosapunjivi (ne mogu se saponifikovati) steroidi, terpeni, prostaglandini. Triacilgliceroli Životinjske masti i biljna ulja su smeše triacilglicerola (triglicerida). Triacilgliceroli su tri estri glicerola i viših masnih kiselina. idrolizom triacilglicerola se dobija glicerol i tri masne kiseline. 2 2 triacilglicerol (mast ili ulje) R' R'' R''' 1. Na, 2 2. l, glicerol R' R'' R''' masne kiseline 3
4 Masne kiseline Najzastupljenije masne kiseline u mastima, uljima i biološkim membranama broj atoma:broj dvostrukih veza Zasićene 12:0 14:0 16:0 18:0 Nezasićene 16:1 18:1 18:2 18:3 20:4 Struktura 3 ( 2 ) 10 3 ( 2 ) 12 3 ( 2 ) 14 3 ( 2 ) 16 3 ( 2 ) 5 =( 2 ) 7 3 ( 2 ) 7 =( 2 ) 7 3 ( 2 ) 4 (= 2 ) 2 ( 2 ) (= 2 ) 3 ( 2 ) 6 3 ( 2 ) 4 (= 2 ) 4 ( 2 ) 2 Naziv laurinska miristinska palmitinska stearinska oleopalmitinska oleinska linolna linolenska arahidonska Svojstva masnih kiselina Skoro sve masne kiseline imaju parni broj atoma. Nezasićene masne kiseline imaju niže temperature topljenja od odgovarajućih zasićenih. Nezasićene masne kiseline se u prirodi nalaze u cis obliku. Dvostruke veze nisu konjugovane Strukturna formula oleinske kiseline (cis-konfiguracija) 4
5 idrogenovanje ulja Katalitičkim hidrogenovanjem tečnih ulja se dobijaju čvrste masti. "biljna mast" i priprema margarina. idrogenovanje se izvodi dejstvom molekulskog vodonika u prisustvu katalizatora (Pd, Ni) na atmosferskom pritisku ili na povišenom (npr bara). na temperaturi od o. 2, Ni Sapuni 2 2 R' R'' R''' triacilglicerol (mast ili ulje) + 3Na glicerol R' - + Na R'' - + Na R''' - + Na Na-sapuni polarni deo glava sapun nečistoća Na + Na + Na + _ Na+ _ Na + _ presek micele nepolarni deo rep 2 Na + Na + _ Na + 5
6 Voskovi Voskovi su lipidi izgrañeni od jednovalentnih viših masnih alkohola i jednobaznih viših masnih kiselina, tj. estri. 3 ( 2 ) 24 ( 2 ) ( 2 ) 30 ( 2 ) 33 3 glavna komponenta pčelinjeg voska Ulazi u sastav pčelinjeg saća glavna komponenta karnauba voska Nalazi se na lišću Brazilske palme Fosfolipidi Fosfolipidi ili fosfoacilgliceroli se nalaze u biološkim membranama (kod biljaka i životinja). Fosfolipidi se dele na glicerofosfolipide i sfingolipide. nepolarni repovi pšta formula glicerofosfolipida polarna glava 2 2 P X 6
7 Fosfolipidi X je npr., ostatak etanolamina, ostatak holina, ostatak serina, ostatak glicerola. R'' 2 R' R konfiguracija 2 P fosfatidna kiselina (X=) etanolamin holin serin glicerol N N( 3 ) N Fosfatidil-etanolamin Fosfatidil-etanolamini ulaze u sastav bioloških membrana. U živim ćelijama čine 25% svih lipida. Nalaze se i u nervnom i moždanom tkivu. U sastav kefalina (triv. naziv za ove fosfolipide) ulaze različite zasićene (14-18 atoma) i nezasićene (18-22 atoma) masne kiseline. Može se izolovati ekstrakcijom iz npr. semena soje. P _ + N 7
8 Fosfatidil-holin I fosfatidil-holini ulaze u sastav bioloških membrana. Trivijalni naziv za ove fosfolipide je lecitin. Lecitin se može izolovati ekstrakcijom (heksan, etanol, aceton, benzen) iz semena soje, suncokreta, pamuka, jaja, mleka itd. Koristi se kao dodatak hrani i kao emulgator. P _ N + Sfingolipidi Sfingolipidi takoñe ulaze u sastav bioloških membrana. U svojoj strukturi umesto glicerola sadrže amino-diol sfingozin. Pojavljuju se u tkivima mozga i nerava. Nazivaju se i sfingomielini (u sastav mielinskih listića nerava). sfingozin + 3 N ceramid R--N N sfingolipid (sfingomielin) + -P N( 3 ) 3 8
9 Biološke membrane lipidni dvojni sloj fosfolipid protein Propusnost membrane je kontrolisana prirodom masnih kiselina koje ulaze u sastav fosfolipida. Zasićene masne kiseline smanjuju propusnost membrane jer se njihovi ugljovodonični lanci gušće pakuju. Nezasićene masne kiseline povećavaju propusnost membrane zbog smanjene gustine pakovanja ugljovodoničnih lanaca. Animalne membrane sadrže holesterol, a kako holesterol smanjuje propusnost, one su manje propusne od biljnih membrana. Steroidi/steroli sadrže tetraciklično jezgro ciklopentanoperhidrofenantrena A B D
10 Stereohemija steroida 3 3 R 3 3 R 3 i su trans 3 i su cis holestan trans-oblik 3 R 3 koprostan cis-oblik 3 R 3 5α- 5β- olesterol * * A * * B * * * D * olesterol se sintetiše u jetri, a organizam ga izdvaja i iz hrane. Ulazi u sastav tzv. plazma lipoproteina Lipoproteini koji cirkulišu u krvnoj plazmi Prisustvo fosfolipida i belančevina čini ove agregate rastvorljivim u vodi. Lipoproteini krvne plazme se izdvajaju prema brzini sedimentacije metodom ultracentrifugiranja (DL, LDL). 10
o glikolipidi (glicero- i sfingoglikolipidi sadrže ostatke ugljenihhidrata (β-dglukoze,
LIPIDI aziv potiče od grčke reči lipos, mast. Lipidi su biomolekuli koji se nalaze u biljnim i životinjskim tkivima; rastvorni su u nepolarnim organskim rastvaračima (hloroform, dietiletar, benzen, aceton),
LIPIDI Definicija lipida
LIPIDI Definicija lipida Lipidi su materije biološkog porekla koje ulaze u sastav organizama biljaka i životinja, i u osnovi se karakterišu time: što su slabo rastvorni ili nerastvorni u vodi, a rastvorni
PODELA LIPIDA NE MOGU SE SAPONIFIKOVATI MOGU SE SAPONIFIKOVATI STEROIDI TERPENI PROSTI SLOŽENI MASTI I ULJA VITAMINI (A,D,E,K) FOSFOLIPIDI
LIPIDI ŠTA SU LIPIDI Pod nazivom lipidi podrazumeva se velika grupa raznorodnih jedinjenja, koja se nalaze u biljnim i životinjskim tkivima, nerastvotljiva u vodi a dobro rastvorljiva u nepolarnim organskim
LIPIDI. Osnove biokemije Boris Mildner OSNOVNE KARAKTERISTIKE LIPIDA
LIPIDI Osnove biokemije Boris Mildner OSNOVNE KARAKTERISTIKE LIPIDA Lipidi su raznolika grupa spojeva kojima je jedino zajedničko svojstvo da su netopljivi u vodi a topljivi su u organskim otapalima. Masti
ZADACI LIPIDI. Biohemija I Sarajevo,
ZADACI Biohemija I Sarajevo, 14.12.2015. Definicija lipida. Kako se definicija lipida razlikuje u odnosu na definiciju npr. aminokiselina ili proteina? Definicija lipida. Kako se definicija lipida razlikuje
MASTI U HRANI I ISHRANI
MASTI U HRANI I ISHRANI Predavač: prof. dr Slañana Šobajić Liebig je 1842. godine utvrdio postojanje tri glavne grupe sastojaka živog sveta: proteina, ugljenih hidrata i masti MAKROMOLEKULE OSNOVNI HRANLJIVI
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Masti 3/15/2016. Lipidi (masti) Osnovne funkcije masti (lipida) Elementarni sastav masti i skroba, %
Lipidi (masti) Masti grupa materija koja se međusobno može bitno razlikovati u pogledu hemijskih svojstava, ali za sve je zajedničko rastvaranje u organskim rastvaračima (etar, CCl 3, hloroformu, aceton)
LIPIDI IN LIPIDNE MEMBRANE
LIPIDI IN LIPIDNE MEMBRANE Maščobne kisline Sestavljeni lipidi (mašč.kisline + alkohol) Triacilgliceroli Glicerofosfatidi Sfingolipidi Voski Enostavni lipidi (vsi so izoprenski derivati) Terpeni Steroidi
MASTI U HRANI I ISHRANI. Predavač: prof. dr Slađana Šobajić
p r o t e i n a, u g l j e n i h h i d r a t a i m a s t i MASTI U HRANI I ISHRANI Predavač: prof. dr Slađana Šobajić Liebig je 1842. godine utvrdio postojanje tri glavne grupe sastojaka ži v o g s v e
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
MASTI U HRANI I ISHRANI. Predavač: prof. dr Slađana Šobajić MAKROMOLEKULE OSNOVNI HRANLJIVI SASTOJCI MAKRONUTRIMENTI
MASTI U HRANI I ISHRANI Predavač: prof. dr Slađana Šobajić MAKROMOLEKULE OSNOVNI HRANLJIVI SASTOJCI MAKRONUTRIMENTI 1 Lipidos (grč.) = mastan Chevreul (XIX vek) otkrio buternu, valerijansku, kapronsku,
BIOFIZIKA BIOFIZIČKE OSOBINE ĆELIJSKE MEMBRANE. Aleksandar Tomić maj 2007
BIOFIZIKA BIOFIZIČKE OSOBINE ĆELIJSKE MEMBRANE Aleksandar Tomić maj 2007 O čemu je reč? STRUKTURA I GRADIVNI ELEMENTI ĆELIJSKE MEMBRANE BIOFIZIČKE KARAKTERISTIKE MEMBRANE IZVEDENE IZ STRUKTURE MEMBRANE
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
STVARANJE VEZE C-C POMO]U ORGANOBORANA
STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *
Ispitna pitanja za teorijski deo ispita. Pitanja iz neorganske hemije
Ispitna pitanja za teorijski deo ispita Pitanja iz neorganske hemije 1. Struktura atoma. Protoni, neutroni i elektroni. Atomske i molekulske mase.izotopi. 2. Elektronska konfiguracija. Atomske s, p i d
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Lipidi? sva jedinjenja nerastvorljiva u vodi, a rastvorljiva u organskim rastvaračima 1. Slobodne masne kiseline 2. Triacilgliceridi -masti -ulja 3. Voskovi 4. Fosfolipidi 5. Steroli -glikolipidi -sfingolipidi
Biohemijski i mikrobiološki principi I DEO
Biohemijski i mikrobiološki principi I DEO Prof.dr Danijela Kojić uvod biomolekuli ugljeni hidrati aminokiseline i proteini lipidi nukleinske kiseline enzimi i regulacija enzimske aktivnosti bioenergetika
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Uloga lipida u organizmu
Metabolizma lipida Uloga lipida u organizmu LIPIDI Depo energije Strukturni elementi Specijalne funkcije Trigliceridi Fosfolipidi Steroidni hormoni Glikolipidi Prostaglandini Holesterol Vitamini A, D,
RESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml)
RESOURCE JUNIOR ČOKOLADA NestleHealthScience RESOURCE JUNIOR Okus čokolade: ACBL 198-1 Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) */200 ml Hrana za posebne medicinske potrebe Prehrambeno cjelovita
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
REAKCIJE ELIMINACIJE
REAKIJE ELIMINAIJE 1 . DEIDROALOGENAIJA (-X) i DEIDRATAIJA (- 2 O) su najčešći tipovi eliminacionih reakcija X Y + X Y 2 Dehidrohalogenacija (-X) X strong base + " X " X = l, Br, I 3 E 2 Mehanizam Ova
ODJEL ZA ZDRAVSTVENE STUDIJE SVEUČILIŠTA U ZADRU
Masti/lipidi doc. dr. sc. Marijana Matek Sarić ODJEL ZA ZDRAVSTVENE STUDIJE SVEUČILIŠTA U ZADRU Dijetetetika Usta su mala, ali gutaju brda! Talijanska poslovica Grčki: Lípos = mast Masti/Lipidi grupa biomolekula
ZNAČAJ I ULOGA HRANE U ORGANIZMU
13.2.2018 ZNAČAJ I ULOGA HRANE U ORGANIZMU 1 Hranom se nazivaju sve materije biljnog, životinjskog i mineralnog porekla, koje služe za odvijanje odredjenih funkcija u čovečijem organizmu (fizički i umni
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Proteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI
Proteini Uvod aziv PRTEII potiče od Grčke reči proteios, što znači PRVI čine osnovu života, ulaze u sastav svih živih bića emijski, proteini ili belančevine, su prirodni makromolekuli To su poliamidi izgrañeni
LANCI & ELEMENTI ZA KAČENJE
LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
VODA ELEKTROLITI I ACIDO-BAZNA RAVNOTEŽA...
SADRŽAJ UVOD 1 1. BIOHEMIJA ĆELIJE... 1-1 1.1 UVOD... 1-2 1.2 ĆELIJA KAO OSNOVNA ŽIVA JEDINICA TELA... 1-2 1.3 VANĆELIJSKA TEČNOST UNUTRAŠNJA OKOLINA... 1-2 1.4 BIOELEMENTI I BIOMOLEKULI... 1-3 1.5 ĆELIJA
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore OLIMPIJADA ZNANJA 2018. Rješenja zadataka iz HEMIJE za IX razred osnovne škole 1. Koju zapreminu, pri standardnim uslovima, zauzimaju
Ο H C C H HC5 3CH \ / \ 4 /
1 RUDARSKI ODSEK-Eksploatacija tečnih i gasovitih mineralnih sirovina i gasna tehnika PREDMET: EMIJA I PRERADA NAFTE I GASA (za studente VI semestra) Prof. dr Slobodanka Marinković (21.3.2008) AROMATIČNI
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
CILJNA MESTA DEJSTVA LEKOVA
FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači
MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE
MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
GLAZBENA UMJETNOST. Rezultati državne mature 2010.
GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Dominantna riblja vrsta na ribnjacima u Srbiji je šaran, sa značajnim udelom biljojednih riba.
Dominantna riblja vrsta na ribnjacima u Srbiji je šaran, sa značajnim udelom biljojednih riba. Cenjenost šarana se značajno razlikuje u različitim delovima sveta. Prema velikom broju autora on je simbol
evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine
prof.goran Poš AMINOKISELINE elementarne jedinke proteina (belančevina) evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine AMINO-(karboksilne) (karboksilne)-kiseline
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
PRSKALICA - LELA 5 L / 10 L
PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,
Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori
Supstituisane k.k. Značaj Sinteza Aminokiseline Biodegradabilni polimeri Peptidi Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Hidroksikiseline Kozmetička industrija kreme Biološki
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 3.
Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa Presentation 3. ACIKLIČNI UGLJOVODONICI Alkeni (nezasićeni ugljovodonici, olefini) Alkeni su aciklični nezasideni ugljovodonici u čijim molekulima je prisutna
4. razred gimnazije- opšti i prirodno-matematički smer VITAMINI VITAMINI RASTVORLJIVI U LIPIDIMA VITAMIN A (RETINOL)
VITAMII VITAMII Složena organska jedinjenja koja služe za regulisanje hemijskih procesa u organizmu. Unose se putem hrane iz razloga što ih čovek ne može sintetisati. aziv potiče od latinskih reči vita
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože