Aminokiseline, peptidi, te primarna struktura proteina

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Aminokiseline, peptidi, te primarna struktura proteina"

Transcript

1 Aminokiseline, peptidi, te primarna struktura proteina Boris Mildner 1 Proteine izgrađuju dvadeset različitih aminokiselina Svaka aminokiselina sadrži ugljikov atom na kojeg je vezana amino skupina, karboksilna skupina, određena bočna skupina (R) i vodikov atom. 2 1

2 Opća struktura aminokiselina Postoje dvije konvencije kako numerirati ugljikove atome u aminokiselinama: - U bočnom ogranku naredni ugljikovi atomi se označavaju grčkim slovima β,γ,δ,ε itd. Ovo je zajednička opća struktura svih aminokiselina, osim za prolin koji je ciklička aminokiselina. Bočni ogranak (R-) kovalentno je vezan za α-c atom. Za svaku pojedinu aminokiselinu, R- je različit. α Za većinu organskih spojeva ugljikovi atomi se broje s jednog kraja, a najveća prednost, (C-1) daje se ugljiku koji ima supstituent s najvećim atomskim brojem. Prema ovoj konvenciji, karboksilna skupina bi bila C-1, a α-c bi bio C-2. U nekim slučajevima kada je R heterociklička skupina (npr. imidazolni prsten histidina), primjenjuje se ovaj sustav brojanja. Za aminokiseline s razgranatim alifatskim lancima ekvivalentnim ugljikovim atomima daju se brojevi nakon grčkih slova. Npr. leucin ima δ1 i δ2 ugljike. 3 Aminokiseline postoje kao enatiomeri (zrcalne slike) U aminokiselinama, ugljikov atom u središtu tetraedra je kiralan (osim kod glicina). U prirodnim proteinima većinom postoje samo L-aminokiseline i većina prirodnih proteina je izgrađena od 20 L-aminokiselina. 4 2

3 Aminokiseline su kiralne molekule L- i D- izomeri su enantiomeri (zrcalne slike) Nema posebnog objašnjenja zašto su u proteinima zastupljene samo L-aminokiselne. Moguće objašnjenje je da kada je Priroda napravila odabir, i odabrala L-aminokiseline rano u evoluciji, svi su ostali procesi slijedili ovaj izbor. U proteinima susrećemo uglavnom 20 različitih aminokiselina. 5 Sve aminokiseline imaju barem dvije nabijene skupine Slobodne aminokiseline u otopini kod neutralnog ph su dipolarne molekule (zwittter ioni). Stupanj ionizacije aminokiseline mijenja se obzirom na ph otopine. 6 3

4 U otopinama, pri neutralnom ph aminokiseline su uglavnom dipolarni ioni, tzv. zwitter ioni. zwitter ioni obje skupine su protonirane Obje skupine su deprotononirane Ionizacijsko stanje aminokiseline je funkcija ph. 7 Aminokiseline razlikujemo po njihovim bočnim (R) skupinama Bočni (R) lanci 20 aminokiselina razlikuju se u veličini, obliku i funkciji. Aminokiseline se mogu podijeliti na osnovi kemijskih svojstava njihovih bočnih skupina: Aminokiseline s hidrofobnim bočnim skupinama (alifatske aminokiseline: glicin, alanin, valin, leucin, izoleucin, metionin, prolin, kao i aromatske aminokiseline: fenilalanin i triptofan); Polarne aminokiseline kojima bočni ogranak nije nabijen (serin, treonin, tirozin, asparagin i glutamin) Pozitivno nabijene aminokiseline (lizin, arginin i histidin) Negativno nabijene aminokiseline (asparaginska kiselina i glutaminska kiselina) 8 4

5 Aminokiseline s nepolarnim alifatskim bočnim ograncima (R-skupinama) Glicin je jedina akirakna aminokiselina R-skupine alanina, valina i leucina su hidrofobne i obično se nakupljaju u unutrašnjosti proteina i time stabiliziraju strukturu proteina. R-skupina glicina je vrlo mala i obično ne doprinosi hidrofobnim interakcijama. glicin alanin prolin valin leucin izoleucin metionin Ciklička skupina prolina (imino skupina) je kruta i time smanjuje strukturnu fleksibilnost polipeptida. Tioeterska skupina metionina je nepolarna. 9 Aromatske skupine ovih aminokiselina su relativno nepolarne (hidrofobne) i sve one mogu sudjelovati u hidrofobnim interakcijama. Hidroksilna skupina tirozina može stvarati vodikove veze. Aminokiseline s aromatskim bočnim organcima (R-skupinama) Tirozin i triptofan su značajno polarniji od fenilalanina. Triptofan, tirozin i u manjoj mjeri fenilalanin apsorbiraju UV svjetlost. To rezultira u karakterističnoj jakoj apsorpciji svjetlosti pri 280 nm. fenilalanin tirozin triptofan 10 5

6 Aromatske aminokiseline apsorbiraju ultraljubičasto svjetlo. Izmjerena apsorbancija triptofana gotovo je 4 puta jača od apsorbancije tirozina. Apsorpcija svjetlosti fenilalanina gotovo ne doprinosi spektroskopskim svojstima proteina. Apsorbancija je maksimalna pri 280 nm. Apsorbancija (A) = log (I o / I) = εcl pri čemu I o = intenzitet ulazne svjetlosti; I = intenzitet prolazne (transmitirane) svjetlosti; ε = množinski (molarni) ekstinkcijski koeficijent; c = množinska koncentracija; l = duljina kivete Intenzitet ulazne svjetlosti I o Intentzitet prolazne svjetlosti, I Kiveta duljine l s uzokom koncentracije c koji apsorbira svjetlost. 11 Aminokiseline kojima su bočni ogranci polarne nenabijene skupine Ove aminokiseline su topljivije u vodi nego nepolarne aminokiseline jer funkcionalne skupine u bočnim ograncima ovih aminokiselina mogu stvarati vodikove veze s vodom. Polarnost ovih bočnih ogranaka potječe od hidroksilnih skupina serina i treonina, od sulfhidrilne skupine cisteina, odnosno od amidnih skupina asparagina i glutamina. HS-skupina cisteina je slaba kiselina i može stvarati vodikove veze s kisikovim i dušikovim atomima. serin treonin cistein asparagin glutamin Asparagin i glutamin su amidi aspartata odnosno glutamata te se djelovanjem kiselina ili baza lagano hidroliziraju. Cistein se lagano oksidira i pri tome mogu nastati kovalentno povezani dimeri ove aminokiseline, tj. nastaje cistin u kojoj su dvije molekule cisteina povezane disulfidnim vezama (mostovima). Ostaci koji su povezani disulfidnim vezama jako su hidrofobni (nepolarni). 12 6

7 Disulfidne veze između dvije molekule cisteina nastaju oksidacijom sulfhidrilnih skupina. Disulfidne veze između cisteinskih ostataka stabiliziraju strukture mnogih proteina. oksidacija redukcija 13 Aminokiseline čiji su bočni ogranci pozitivno nabijeni Aminokiseline s pozitivno ili negativno nabijenim bočnim ograncima su najhidrofilnije. Aminokiseline koje su pri ph = 7,0 pozitivnog naboja: lizin koji ima amino skupinu na ε kraju bočnog ogranka, arginin koji na kraju bočnog ogranka ima gvanidinsku skupinu, te histidin koji u bočnom ogranku ima aromatsku imidazolnu skupinu. lizin arginin histidin pk a imidazolne skupine histidina pk a = 6,0. Zbog toga pri ph = 7,0 imidazolni prsten histidina može biti i pozitivno nabijen (protonirani oblik) i neutralan. 14 7

8 Aminokiseline čiji su bočni ogranci negativno nabijeni asparaginska kiselina (aspartat) glutaminaska kiselina (glutamat) 15 Kratice za uobičajene aminokiseline 16 8

9 Neuobičajene aminokiseline pronađene u proteinima. Dodatne skupine, označene crvenim slovima, modificirane su kemijskim reakcijama. Nađen u staničnoj stijenci biljaka. Sastojci kolagena i proteinskih vlakana. Sastojak miozina Sastojak protrombina i drugih proteina koji vežu kalcij. Dezmozin, nastao je od četiri lizina, a sastojak je elastina. Selenocistein ugrađuje se u proteine tijekom sinteze proteina. Umjesto sumpora, ova aminokiselina sadrži Se. Selenocistein je u stvari derivat serina i nalazi se samo u nekoliko proteina. 17 Reverzibilne modifikacije aminokiselina koje su uključene u regulaciju aktivnosti proteina. Fosforilacija aminokiselina je najčešća modifikacija. 18 9

10 Oko 300 dodatnih aminokiselina je pronađeno u stanici (ali ne kao sastavnice proteina). Sve one imaju različite funkcije, a ornitin i citrulin su ključni metaboliti u biosintezi arginina kao i u ciklusu ureje. 19 Neionski i zwitterionski oblici aminokiselina. Neionski oblici (nenabijene aminokiselina) ne postoje u značajnim količinama u vodenim otopinama. Jednostavna monoamino, monokarboksilna α- aminokiselina, npr. alanin, je diprotična kiselina (kiselina s dva protona) kada je potpuno protonirana. U tom slučaju ona ima - COOH i NH 3 + skupine koje mogu donirati protone. Zwitter ion može biti ili donor ili akceptor protona

11 Aminokiseline imaju karakteristične titracijske krivulje. Prikazana je titracijska krivulja 0,1 mol. dm -3 glicina pri 25 o C. pi = ½ (pk 1 + pk 2 ) Izoelektrična točka, pi aminokiseline, ili izoelektrični ph, je ph vrijednost pri kojoj je neto naboj aminokiseline nula. Točka ekvivalencije je kada je dodan 1 ekvivalent OH Utjecaj kemijske prirode supstituenta na pk a Metil vezan na karboksilnu odnosno na amino skupinu Vezane karboksilna i amino skupina u glicinu octena kiselina, pk a = 4,8 metilamin pk a = 10,6 glicin pk a = 2,34 Odbijanje amino skupine i disociranog protona smanjuje pk a karboksilne skupine. Suprotno nabijene skupine dodatno smanjuju pk a i stabiliziraju nastali zwitter ion. glicin pk a = 9,60 Elektronegativni kisikovi atomi u karboksilnoj skupini odvlače elektrone od amino skupine i time smanjuju pk a amino skupine

12 Iz titracijske krivulje aminokiseline može se predvidjeti električni naboj aminokiseline. neto naboj: pi glutaminske kiseline ½(pK 1 + pk R ) = 3,22 23 Iz titracijske krivulje aminokiseline može se predvidjeti električni naboj aminokiseline. pi histidina ½(pK R + pk 2 ) = 7,

13 Bočni lanci koji se mogu ionizirati povećavaju reaktivnost aminokiselina i omogućavaju stvaranje dodatnih veza Sedam aminokiselina: tirozin, cistein, arginin, lizin, histidin, asparaginska kiselina i glutaminska kiselina imaju bočne lance koji se mogu lagano ionizirati. Ovih sedam aminokiselina, kada su ionizirane, mogu stvarati ionske veze, a mogu i donirati ili prihvaćati (akceptirati) protone kako bi se omogućile kemijske reakcije. Sposobnost da doniraju ili akceptiraju protone naziva se kiselobaznom katalizom i to je važna kemijska reakcija koja se odvija u mnogim enzimima. 25 Tipične pk a vrijednosti ioniziranih skupina u proteinima pk a vrijednosti ovise o temperaturi, ionskoj jakosti kao i o mikro-okruženju ionizirane skupine

14 Esencijalne aminokiseline moramo dobivati hranom Većina mikrorganizama može sintetizirati svih 20 aminokiselina iz jednostavnih preteča (prekursora). Ljudi mogu sintetizirati 11 aminokiselina a 9 se aminokiselina mora dobivati hranom. Devet aminokiselina koje ne možemo sintetizirati nazivamo esencijalnim aminokiselinama budući da su neophodne za normalan rast i razvoj organizma. 27 Esencijalne aminokiseline moramo dobivati hranom (ne možemo ih sami sintetizirati) Aminokiseline koje nisu esencijane (neesencijalne) alanin arginin asparagin aspartat cistein glicin glutamat glutamin prolin serin tirozin Esencijalne aminokiseline fenilalanin histidin izoleucin leucin lizin metionin treonin triptofan valin 28 14

15 Peptidi, proteini te njihove primarne strukture 29 Primarna struktura: aminokiseline se povezuju peptidnim vezama kako bi izgradile polipeptidne lance Aminokiseline u polipeptidnom lancu povezane su amidnim vezama između karboksilne skupine jedne aminokiseline i amino skupine naredne aminokiseline. Svojstva peptidnih veza: Otporna je na hidrolizu, te su proteini kinetički vrlo stabilne molekule. Svaka peptidna veza ima donora (NH skupina) i akceptora za vodikove ione (CO skupina), te može stvarati vodikove veze. Peptidna veza je dipol i svi atomi uključeni u ovu vezu leže u jednoj ravnini 30 15

16 Peptidi su lanci aminokiselina koje su međusobno povezane kovalentnim tzv. peptidnim vezama. Oligopeptid = povezano do 20 aminokiselina. Polipeptid = do M r = Da Protein = M r > Da Mase proteina izražavamo u Daltonima (Da). Jedinica 1 Da = 1/12 mase 12 C. Protein M r = ima masu (m) m = Da = 50 kda Reakcijom kondenzacije, pri čemu dolazi do otpuštanja vode, dvije se aminokiseline povezuju peptidnom vezom. 31 Peptidna veza je dipol Karbonilni kisikov atom je djelomično negativno nabijen a amidni dušikov atom je djelomično pozitivno nabijen pa nastaje dipol u peptidnoj vezi. (zbog toga je moguće stvaranje vodikovih veza, a ujedno osigurava da su šest atoma C α,c,o, N, H i C α u jednoj ravnini) 32 16

17 Slijed aminokiselina je usmjeren postoji amino (N) kraj i karboksilni (C-) kraj peptida Slijed (sekvenca) aminokiselina u proteinu naziva se primarnom strukturom proteina. Prema dogovoru, N-kraj (amino-kraj) peptida je lijevo, a karboksilni kraj (C-kraj) peptida je desno. Nomenklatura: Tirozil-glicil-glicil-fenilalanil-leucin 33 Komponente polipeptidnog lanca Prosječna molekularna masa 20 slobodnih aminokiselina je 128, no u peptidu prosječna molekularna masa aminokiselina je 110 (gubitak vode). Polipeptidni lanac sastoji se od konstantne okosnice, prikazana crnom bojom, i različitih bočnih ogranaka, prikazani zelenom bojom

18 Peptidi se razlikuju prema količini naboja (ionizaciji). Ovaj tetrapeptid ima jednu slobodnu α-amino skupinu, jednu slobodnu α- karboksilnu skupinu i dvije skupine na bočnim ograncima koje se mogu ionizirati. Skupine koje su ionizirane pri ph = 7,0 prikazane su crvenom bojom. Tetrapeptid: alanilglutamilglicillizin (Ala-Glu-Gly-Lys ili ADGK) 35 Peptidna veza je kruta i planarna Rezonancijske strukture peptidne veze Peptidna veza je planarna. U paru povezanih aminokiselina 6 atoma (Cα, C, O, N, H i Cα) leže u ravnini. Bočni ogranci prikazani su zelenom bojom

19 Duljine veza u peptidu Bočne skupine peptida prikazane su u transkonformaciji. 37 Cis - trans konformacije peptidnih veza u proteinima Trans-konformacija bočnih ogranaka svih aminokiselina (osim prolina) prevladava jer u cis-konformaciji dolazi do steričkih smetnji bočnih ogranaka. Cis i trans konformacije prolina. Energije ovih konformera su gotovo jednake jer i u jednom i u drugom pložaju dolazi do steričkih smetnji

20 Rotacije oko veza u polipeptidu Mogućnost (sloboda) rotacije oko ovih veza omogućava proteinima da se nabiru na različite načine. Fi (Φ) je kut rotacije između Cα i dušika, a psi (ψ) je kut rotacije između Cα i karbonilnog ugljika. 39 Tri veze odvajaju susjedne Cα atome. Cα C i N Cα mogu rotirati kako je to opisano dihedralnim kutevima Φ i ψ. Peptidna veza CO NH ne može rotirati. Rotacija jednostrukih veza u peptidnoj okosnici ovisi o veličini i/ili naboju R-skupine

21 G. Ramachandran je prvi prepoznao da nisu moguće mnoge kombinacije dihedralnih kuteva Φ i ψ, pojedine aminokiseline u konformaciji peptida. Konformacije aminokiselina koje su moguće imaju slabe ili nikakve steričke smetnje a to je moguće izračunati iz van der Waalsovih radijusa i dihedralnih kuteve. Prikazan je Ramachandranov dijagram za L-alanin. Ramachandranov dijagram prikazuje vrijednosti Φ i ψ svake pojedinačne aminokiseline u peptidu. Zbog steričke kolizije između atoma neke vrijednosti Φ i ψ nisu dozvoljene. Područja gdje su kombinacije Φ i ψ najpovoljnije prikazane su tamno zeleno a nepovoljnije kombinacije svjetlo zeleno. Struktura prikazana s desne strane dijagrama nije moguća 41 zbog steričkih smetnji između bočne skupine i kisika karbonilne skupine 21

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014 Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz

Διαβάστε περισσότερα

CILJNA MESTA DEJSTVA LEKOVA

CILJNA MESTA DEJSTVA LEKOVA FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Osnove biokemije Seminar 2

Osnove biokemije Seminar 2 Osnove biokemije Seminar 2 B. Mildner Rješenje zadaće 1.(zadaća od 4. 3. 2014) 1. D 11. C 2. C 12. B 3. B 13. C 4. B 14. B 5. C 15. D 6. D 16. A 7. A 17. C 8. B 18. D 9. D 19. A 10. C 20. C 1 1. Za vodu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Sekundarne struktura proteina Fibrilni proteini

Sekundarne struktura proteina Fibrilni proteini Sekundarne struktura proteina Fibrilni proteini Nivoi strukture proteina (strukturna hijerarhija) proteina Nivoi strukture proteina Primarna struktura Sekundarna struktura Super-sekundarna struktura Tercijarnastruktura

Διαβάστε περισσότερα

4. Proteini I: 4.A. Aminokiseline

4. Proteini I: 4.A. Aminokiseline 4. Proteini I: 4.A. Aminokiseline Aminokiselina: organski spoj koji je istovremeno karboksilna kiselina (sadrži karboksilnu skupinu COOH vezanu na ugljikov atom) i amin (sadrži amino skupinu vezanu na

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za biokemiju OSNOVE BIOKEMIJE Mladen Miloš (Skripta za internu upotrebu) Split, 2009.

Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za biokemiju OSNOVE BIOKEMIJE Mladen Miloš (Skripta za internu upotrebu) Split, 2009. Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za biokemiju OSNOVE BIOKEMIJE Mladen Miloš (Skripta za internu upotrebu) Split, 2009. 2 SADRŽAJ... 2 1. POGLAVLJE: ŽIVA STANIA... 6 1.1. Prokariotske

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine

evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine prof.goran Poš AMINOKISELINE elementarne jedinke proteina (belančevina) evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine AMINO-(karboksilne) (karboksilne)-kiseline

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Proteini i njihove trodimenzionalne strukture

Proteini i njihove trodimenzionalne strukture Proteini i njihove trodimenzionalne strukture Boris Mildner 1 Proteine izgrađuju dvadeset različitih aminokiselina Proteini su linearni polimeri a nastaju povezivanjem monomernih jedinica, koje nazivamo

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Proteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI

Proteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI Proteini Uvod aziv PRTEII potiče od Grčke reči proteios, što znači PRVI čine osnovu života, ulaze u sastav svih živih bića emijski, proteini ili belančevine, su prirodni makromolekuli To su poliamidi izgrañeni

Διαβάστε περισσότερα

Kiselo bazni indikatori

Kiselo bazni indikatori Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Fiksacija dušika i biosinteza aminokiselina

Fiksacija dušika i biosinteza aminokiselina Fiksacija dušika i biosinteza aminokiselina Boris Mildner Dušik u aminokiselinama, purinima, pirimidinima i drugim molekulama potječe od atmosferskog dušika, N 2. Biosintetski proces započinje redukcijom

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Funkcije proteina. Boris Mildner Osnove biokemije. Vlaknati i globularni proteini

Funkcije proteina. Boris Mildner Osnove biokemije. Vlaknati i globularni proteini Funkcije proteina Boris Mildner Osnove biokemije Vlaknati i globularni proteini Prema topljivosti, proteine možemo grubo podijeliti u netopljive vlaknate proteine, i globularne topljive proteine. Za razliku

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori

Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Supstituisane k.k. Značaj Sinteza Aminokiseline Biodegradabilni polimeri Peptidi Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Hidroksikiseline Kozmetička industrija kreme Biološki

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

3/25/2016. Hemijske komponente ćelije

3/25/2016. Hemijske komponente ćelije Hemijske komponente ćelije Molekuli u ćeliji Najbitniji molekuli u ćeliji su poznati. Putevi sinteze i razgradnje su poznati za većinu ćelijskih konstituenata. Hemijska energija pokreće biosintezu. Organizacija

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

BIOLOŠKI VAŢNA ORGANSKA JEDINJENJA PROTEINI. AMINOKISELINE. Ključni pojmovi

BIOLOŠKI VAŢNA ORGANSKA JEDINJENJA PROTEINI. AMINOKISELINE. Ključni pojmovi BIOLOŠKI VAŢNA ORGANSKA JEDINJENJA PROTEINI. AMINOKISELINE Ključni pojmovi α - Aminokiseline Peptidna veza Vlaknasti i loptasti proteini Prosti i složeni proteini Piramida ishrane BIOLOŠKI VAŢNA ORGANSKA

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

C kao nukleofil (Organometalni spojevi)

C kao nukleofil (Organometalni spojevi) C kao nukleofil (Organometalni spojevi) 1 Nastajanje nukleofilnih C atoma i njihova adicija na karbonilnu grupu Ukupan proces je jedan od najkorisnijih sintetskih postupaka za stvaranje C-C veze 2 Priroda

Διαβάστε περισσότερα

IMOBILIZACIJA AKTIVNIH TVARI ZA BIOLOŠKO PREPOZNAVANJE

IMOBILIZACIJA AKTIVNIH TVARI ZA BIOLOŠKO PREPOZNAVANJE IMBILIZACIJA AKTIVI TVARI ZA BILŠK PREPZAVAJE EZIMI ATITIJELA RECEPTRI MIKRRGAIZMI ŽIVTIJSKE ILI BILJE STAICE ŽIVTIJSKA I BILJA VLAKA KLJUČI PRCES PRI IZRADI BISEZRA IMBILIZACIJA BILŠKE TVARI - AJČEŠĆE

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα