Optoelektronika a laserová technika
|
|
- Σωστράτη Μοσχοβάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Optoelektronika a laserová technika Úvodná prednáška do OEaLT: Úvod do optoelektroniky, spektrum optického žiarenia, fyzikálna podstata žiarenia, šírenie optickej vlny v rôznych prostrediach
2 Obsah Sylaby predmetu OEaLT Optoelektronika - vymedzenie pojmu, význam a použitie. Spektrum optického žiarenia Fyzikálna podstata žiarenia: vlnová teória kvantová teória. Šírenie optickej vlny v rôznych prostrediach: odraz absorpcia prechod žiarenia Snellov zákon
3 ... Garant predmetu a prednášajúci: Prof. Ing. František Uherek, PhD. miestnosť (E504) E60 Skúška z predmetu OEaLT: Cvičenia z predmetu: 70 bodov 30 bodov Vedúci cvičení: Vedúci cvičení: Ing. Jaroslav Kováč Miestnosť E53 3
4 Sylaby predmetu. Optoelektronika - vymedzenie pojmu, význam a použitie. Spektrum optického žiarenia. Fyzikálna podstata žiarenia, vlnová a kvantová teória. Šírenie optickej vlny v rôznych prostrediach; odraz, absorpcia a prechod žiarenia. Snellov zákon.. Rádiometria a fotometria. Veličiny charakterizujúce optické žiarenie. Žiarenie absolútne čierneho telesa, základné zákony (Kirchhoffov, Stefan-Boltzmanov, Planckov, Wienov). Rozdelenie zdrojov žiarenia podľa charakteru rozloženia žiarivej energie a charakteru jeho vzniku (rovnovážne a nerovnovážne). 3. Rovnovážne a nerovnovážne stavy kvantového systému. Interakcia optického žiarenia a látky, spontánne a indukované prechody, inverzná populácia, Einsteinove koeficienty. Základy teórie kvantových prestupov v polovodičoch a možnosti ich využitia v optoelektronických prvkoch. Priame a nepriame polovodiče. Polovodičové materiály pre OE prvky. 4. Detektory optického žiarenia, ich rozdelenie a charakterizácia. Tepelné fotodetektory (termistory, termočlánky a pyroelektrické fotodetektory), kvantové fotodetektory - fotonásobiče, fotodiódy, fotorezistory a fototranzistory, ich princip činnosti, konštrukcia, základné parametre a použitie. 5. Elektroluminiscenčné diódy - LED. Princip činnosti, konštrukcia (štruktúra), základné parametre a aplikácie. Elektronické obvody s LED. 6. Displeje, rozdelenie, charakterizácia a použitie. Zapojenia s LED a LC displejmi. Optróny a ich použitie. 7. Optické vlákna a ich použitie. Optické vláknové senzory. Principy optického prenosu informácií a jeho aplikácie. Holografia, princip a jej využitie. 8. Základy teórie laserov. Zosilnenie a vznik oscilácií optického žiarenia v aktívnej látke. Dvojhladinové a viachladinové kvantové systémy. Optické rezonančné obvody. Spektrum žiarenia laserov. Selekcia módov. Koherencia, smerovosť a polarizácia laserového žiarenia. 9. Rozdelenie a charakterizácia laserov. Tuhofázové lasery, YAG:Nd a Rubínový laser. Kvapalinové lasery. Plynové lasery, He-Ne, CO a argónový laser. Polovodičové lasery, princip činnosti, konštrukcia rôznych typov, základné charakteristiky a parametre. Aplikácie polovodičových laserov. 0. Priemyselné aplikácie laserov - charakterizácia, základné výhody a nevýhody. Fyzikálne procesy pri interakcii laserového žiarenia a látky Opracovanie materiálov laserom - tepelné spracovanie, zváranie, rezanie, vŕtanie a popisovanie.. Aplikácie laserov vo výrobnej metrológii a diagnostike. Laserové nastavovanie, meranie rozmerov, vzdialeností, rýchlosti, zrýchlenia a vibrácií. Laserová holografická a spekl (speckle) interferometria.. Súčasné trendy rozvoja optoelektroniky a laserovej techniky v nádväznosti na rozvoj automobilového priemyslu. 4
5 OPTOELEKTRONIKA Optoelektronika je vedný a technický odbor zaoberajúci sa interakciou optického žiarenia a látky (interakcia medzi fotónmi a elektrónmi) v rôznych prostrediach a možnosťami využitia tejto interakcie na generáciu, prenos, spracovanie, uchovanie a detekciu optického žiarenia. elektrické pole (napätie, prúd,...) zdroj žiarenia (LED, LD) detektor žiarenia (fotodióda) optické komunikačné systémy, optočleny modulátor, spínač, prepínač optické žiarenie (výkon, vlnová dĺžka,...) 5
6 Význam optoelektroniky OPTOELEKTRONIKA Systémy, zariadenia a prístroje pracujúce na základe optoelektronických technológií zohrávajú neustále sa zväčšujúcu úlohu v globálnej ekonomike. Viacerí analytici označujú očakávaný význam optoelektroniky pre storočie obdobný aký mala elektronika v 0 storočí. Svetová produkcia OE komponentov dosiahla v r. 995 objem 6,4 bilióna USD, v r. 00 prekročil hranicu biliónov USD a je reálny predpoklad, že v r. 006 prekročí hranicu 4 biliónov USD. 6
7 Polovodičové materiály používané pre optoelektronické súčiastky Elementárne polovodiče: Si, Ge - nevyužívajú sa pre zdroje Binárne polovodiče: dva komponenty: GaAs, InP, GaP (III-V), (II- VI) Ternárne zlúčeniny: Al x Ga -x As (III-V) III IV V VI B C N O II Al Si P S Zn Ga Ge As Se Cd In Sn Sb Te 7
8 Typické aplikácie optoelektroniky v praxi Typické aplikácie: optické komunikácie displeje, indikátory použitie v metrológii spotrebná elektronika optické vláknové senzory solárne články lasery a ich aplikácie holografia automobilový priemysel čítanie čiarových kódov tlačiarne... 8
9 Elektromagnetické spektrum 0,3nm 0,3µm 0,3mm 30cm 300m 300km kozmické žiarenie röntgenove vlny viditeľné žiarenie stredné vlny gama žiarenie ultrafialová oblasť (UF - UV) infračervená oblasť (IČ -IR) mikrovlny VKV krátke vlny dlhé vlny 0 8 Hz 0 5 Hz 0 Hz GHz MHz khz Spektrum optického žiarenia Elektromagnetické vlny od 00 nm po 00 µm 9
10 Rozdelenia spektra optického žiarenia ultrafialová oblasť UV viditeľná oblasť VIS infračervená oblasť IR 00nm 370nm 760nm 00µm Ultrafialové žiarenie: Infračervené žiarenie: krátkovlnné pásmo UV-A nm krátkovlnné pásmo IR-A 0,76,6µm stredné pásmo UV-B 35 80nm stredné pásmo IR-B,6 3,0µm dlhovlnné pásmo UV-C 80 00nm dlhovlnné pásmo IR-C 3,0 00µm Viditeľné žiarenie (svetlo): Červená 760-6nm Oranžová 6-597nm Žltá nm Zelená nm Modrá nm Fialová nm 0
11 Svetlo viditeľná časť optického žiarenia optické žiarenie nie je jednoduchým prírodným javom sú potrebné dva modely na jeho popis: vlnová teória (Fresnel, Huygens, Hook, Maxwell) kvantová teória (Planck, Einstein, de Broglie, Schrödinger) Maxwell v roku 864 určil vzťah pre matematické vyjadrenie rýchlosti svetla c µ 8 0 ε m s µ 0 permeabilita ε 0 permitivita
12 Vlnová teória optické žiarenie má charakter elektromagnetického vlnenia Predpokladá spojitý prenos energie elektromagnetická vlna má časovo premennú E elektrickú E zložku magnetickú H zložku vektory E a H sú navzájom kolmé, kmitajú priečne na smer šírenia vlny, pričom rovina kmitania vektorov sa neustále mení. podľa Maxwella platí vzťah: ( ) ( ) E H E, H, c t tento vzťah sa volá vlnová rovnica pomocou vlnovej teórie môžme popísať: šírenie optického žiarenia v rôznych prostrediach difrakciu interferenciu polarizáciu H smer šírenia vlny
13 λ vlnová dĺžka f frekvencia vo vákuu platí pre reálne prostredie: c v n n pre vlnočet platí: Vlnová teória m c f. λ 0 ;, m s s µ ε r f.λ r ν λ A kde n je index lomu (materiálová konštanta charakterizujúca dané prostredie, popisujúca o koľko sa zníži rýchlosť svetla v prostredí voči rýchlosti šírenia vo vákuu, udáva možnosť polarizovateľnosti materiálu pri interakcii elektromagnetického poľa s dipólom materiálu) µ r relatívna permeabilita ε r relatívna premitivita ν rýchlosť svetla v reálnom prostredí λ 3
14 Kvantová teória Einstein rozvinul hypotézy Plancka a sformuloval základy kvantovej teórie kvantová teória dopĺňa vlnovú teóriu popisuje svetlo optické žiarenie ako tok elementárnych častíc optická energia je vyžarovaná po malých dávkach kvantách kvantum optického žiarenia sa nazýva fotón Energia fotónu závisí od frekvencie (vlnovej dĺžky) E h f h [] J h 6,66x0-34 J.s Planckova konštanta pomocou kvantovej teórie môžme popísať: absorpciu emisiu fotoelektrický jav c λ fotón c 4
15 Kvantová teória Akú energiu má fotón s vlnovou dĺžkou 780nm? Energia fotónu E h c λ 6, ms m Pri vyjadrení energie fotónu v Jouloch dostávame veľmi malé hodnoty, preto zavedieme energiu v elektrónvoltoch označujeme ev energiu ev dosiahne elektrón ak je urýchlený potenciálnym rozdielom V platí: ev, J Js Potom pre energiu fotónu s λ 780nm platí, že E,59eV. [ ] E ev λ[ µ m] J Energia fotónov na hranici optického žiarenia: λ 00nm (f998thz) E,4eV UV oblasť λ 00µm (f,998thz) E 0,04eV,4meV IR oblasť 5
16 Interakcia optického žiarenia s látkami Pri interakcii môže dosť k mnohým procesom, ktoré môžme zadeliť do troch skupín, pri ktorých dochádza: k zachovaniu fotónu, k neionizujúcej premene fotónu, k ionizujúcej premene fotónu. 6
17 Interakcia optického žiarenia a látky Fakulta Elektrotechniky a Informatiky STU Katedra Mikroele Zachovanie fotónu Neionizujúca premena fotónu Ionizujúca premena fotónu hf hf hω hf hf hω hf e hf > hf priepustnosť fotoluminiscencia fotoemisia hf hf hf hω hf e hω q hω q rozptyl absorpcia fotoelektrická vodivosť hf hf e - h + hf e - hf odraz vznik excitónu generácia páru e-h hω q h + hω q 7
18 Šírenie optického žiarenia v prostredí Po dopade žiarivého toku Φ e na povrch látky dochádza k nasledovným procesom: časť : Φ r sa odráža od povrchu časť : Φ a sa pohlcuje v látke časť : Φ t prechádza látkou Pre celkový dopadajúci žiarivý tok platí: Φ Φ Φ Φ Φ Φ r e a e t e R( λ) A( λ) T ( λ) činiteľ odrazivosti (reflektivita) činiteľ pohltenia (absorpcia) činiteľ priepustnosti (transmisia) R Φ Φ r e + Φ Φ a e + Φ Φ t e ( λ) + A( λ) + T ( λ) Φ r Φ a Φ t Φ e n n 8
19 Šírenie optického žiarenia v reálnom prostredí - zákon odrazu a lomu pri kolmom dopade žiarenia činiteľ odrazivosti (reflektivita) R ( λ) ( n n ) + ( κ ) ( n + n ) + ( κ ) činiteľ pohltenia (absorpcia) ak κ 0, potom: ( ) ( n n ) R λ n + n koeficient extinkcie κ súvisí s koeficientom absorpcie α: 4. π. κ α λ činiteľ priepustnosti (transmisia, κ 0) T ( λ) 4. n. n ( n + n ) ( ) R T Φ e n n 9
20 Praktické aplikácie antireflexná vrstva: d n n n 3 d n λ 0 A B n n n3 povrch antireflexná vrstva polovodičová súčiastka dielektrické zrkadlo: d λ /4 d λ /4 odrazivosť λ 0 d n d n λ 0 4 A B C 0 λ (nm) n n n n (viacnásobná interferencia a optické rezonátory: Fabry - Perot) λ 0 0
21 Šírenie optického žiarenia na rozhraní dvoch prostredí Snellov zákon Popis správania žiarenia na rozhraní dvoch materiálov s rôznym indexom lomu pri nekolmom dopade BB' v t AA' v t ct n platí (Snellov zákon): Index lomu vákua n ct n AB AB' AB' BB' AA' v t v t sinθ sinθ ' sinθ sinθ i i t v v sinθ i sinθ t n n t A i y z B O n λ dopadajúce žiarenie prepustené žiarenie A B i θ t θ i θ r k i A A B λ t θ i A r θ t θ r k r A t k t n λ B t B r odrazené žiarenie
22 Šírenie optického žiarenia na rozhraní dvoch prostredí Fresnelove vzťahy Es E p α α 3 E 3p E 3s E E 3 p 3s E p Es tg tg sin sin ( α α ) ( α + α ) ( α α ) ( α + α ) Fresnelove vzťahy udávajú veľkosť intenzity (amplitúdu) a fázy elektrického poľa pri odraze a priepustnosti v závislosti od intenzity dopadajúceho optického žiarenia: α α 3, α < α pre n > n α E s E p E p E p sin sinα cosα ( α + α ) cos( α α ) E s Es sinα cosα sin ( α + α )
23 Úplný odraz na rozhraní dvoch prostredí ak n > n potom optické žiarenie prechádzajúce do prostredia s indexom lomu n sa láme pod väčším uhlom ako je uhol dopadu keď tento uhol sa rovná 90, hovoríme o medznom (kritickom) uhle ak uhol dopadu bude väčší ako θ K, dôjde k úplnému odrazu n n n θ K sinθt sinθ i sinθ K sin 90 n n arcsin n k i dopadajúce žiarenie θ t θ r prechádzajúce žiarenie k t n θ i n > n k r odrazené žiarenie θ K θ K θ i > θ K úplný odraz a) b) c) princíp vedenia optického signálu (optické vlnovody, optické vlákna) 3
24 Brewsterov uhol polarizačný uhol Brewsterov uhol: ak n > n potom pre tento uhol platí, že dochádza k polarizácii žiarenia odrazí sa iba kolmá zložka elektrického poľa α -α π/; E 3p 0 α Β α Β π/ n n r s r p E E E E 3s s 3 p p tg tg sin sin r reflexný koeficient α B ( α α ) ( α + α ) ( α α ) ( α + α ) n arctg n koeficient odrazivosti R (a) r θ B θ K r // uhol dopadu θ i fáza úplný odraz (b) φ θ B θ K φ // uhol dopadu θ i 4
25 Ďakujem za pozornosť 5
Fyzika atómu. 1. Kvantové vlastnosti častíc
Fyzika atómu 1. Kvantové vlastnosti častíc Veličiny a jednotky Energiu budeme často merať v elektrónvoltoch (ev, kev, MeV...) 1 ev = 1,602 176.10-19 C. 1 V = 1,602 176.10-19 J Hmotnosť sa dá premeniť na
Integrovaná optika a. Zimný semester 2017
Inegrovaná opka a opoelekronka Zmný semeser 07 Inegrovaná opka a opoelekronka Skladba predmeu Prednášky Výpočové cvčena ( písomky, max. 40b) Skúška (max. 60b) Leraúra Marnček I., Káčk D., Tarjány N., Foonka
Vzorce a definície z fyziky 3. ročník
1 VZORCE 1.1 Postupné mechanické vlnenie Rovnica postupného mechanického vlnenia,=2 (1) Fáza postupného mechanického vlnenia 2 (2) Vlnová dĺžka postupného mechanického vlnenia λ =.= (3) 1.2 Stojaté vlnenie
Vlnová optika. Doplnkové materiály k prednáškam z Fyziky III pre EF Dušan PUDIŠ (2010)
Vlnová optika Fyzikálna podstata svetla. Svetlo ako elektromagnetické vlnenie. Základné zákony geometrickej optiky. Inde lomu. Fermatov princíp. Snellov zákon. Ohyb svetla na jednoduchej štrbine a na mriežke.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Elektromagnetické pole
Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie
Princip činnosti, rozdelenie a charakterizácia laserov. AOEaL
Princip činnosti, rozdelenie a charakterizácia laserov AOEaL Konštrukcia laserov Každý laser (optický kvantový generátor) pozostáva z troch základných častí: - aktívnej látky - optického rezonátora - čerpacieho
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Elektromagnetické vlnenie
1. Vznik elektromagnetického vlnenia Elektrické pole Zdrojom elektrického poľa sú elektrické náboje. Elektrická siločiara začína v kladnom náboji a končí v zápornom náboji. Magnetické pole neexistujú osamotené
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Zložky elektromagnetického vlnenia
Prednáška 02: ŠÍRENIE ELEKTROMAGNETICKÝCH VĹN doc. Ing. Ľuboš Ovseník, PhD. (lubos.ovsenik lubos.ovsenik@tuke.sk tuke.sk, tel. 421 55 602 4336) http://kemt-old.fei.tuke.sk/predmety/evaa/_materialy/ p y
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Elektromagnetické žiarenie a jeho spektrum
Elektromagnetické žiarenie a jeho spektrum Elektromagnetické žiarenie je prenos energie v podobe elektromagnetického vlnenia. Elektromagnetické vlnenie alebo elektromagnetická vlna je lokálne vzniknutá
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.
ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,
(kvalitatívna, kvantitatívna).
3. FUNKČNÁ ANALÝZA (kvalitatívna, kvantitatívna). Inštrumentálne analytické metódy: Infračervená a Ramanova spektrometria. UV/VIS molekulová absorpčná spektrometria. Röntgenová spektrometria. Spektrálne
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
VYŠETROVANIE VONKAJŠIEHO FOTOELEKTRICKÉHO JAVU A URČENIE PLANCKOVEJ KONŠTANTY
45 VYŠETROVANE VONKAJŠEHO FOTOELEKTRCKÉHO JAV A RČENE PLANCKOVEJ KONŠTANTY doc. RNDr. Drahoslav Vajda, CSc. Teoretický úvod: Vonkajší fotoelektrický jav je veľmi presvedčivým dôkazom kvantovej povahy elektromagnetického
Geometrická optika. Konštruovanie a dizajn svietidiel, prednášky Ing. Róbert Fric, PhD., Katedra mechaniky FEI STU Bratislava, 2008
Geometrická optika 2 Základné hypotézy geometrickej optiky Vhomogénnom prostredí sa svetlo šíri priamočiaro Daným bodom priestoru môže súčasne prechádzať ľubovoľné množstvo svetelných lúčov bez toho, aby
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
OPTIKA. obsah prednášok EMO
OPTIKA obsah prednášok EMO Peter Markoš zimný semester 208/209 Obsah Prednáška 5. Elektromagnetické vlny vo vákuu I........................ 5 2 Prednáška 2 7 2. Elektromagnetické pole vo vákuu II.......................
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach. Vysokoškolské učebné texty. Fotonika. Gregor Bánó. Košice, 2017
Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Vysokoškolské učebné texty Fotonika Gregor Bánó Košice, 2017 FOTONIKA Učebné texty predmetu Fotonika pre poslucháčov 1. ročníka magisterského
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
Hlbšie vedomosti o optických vláknach, optických komunikáciách a ich využití v predmete Optické komunikačné systémy v inžinierskom štúdiu.
Hlbšie vedomosti o optických vláknach, optických komunikáciách a ich využití v predmete Optické komunikačné systémy v inžinierskom štúdiu. OPTOELEKTRONIKA Obsah: Prednáška OVS a OKS Optické komunikačné
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
8 Elektromagnetické vlny a základy vlnovej optiky
8 Elektromagnetické vlny a základy vlnovej optiky 8. Úvod Zo vzájomnej väzby a vzťahov medzi vektormi elektrickej intenzity a intenzity magnetického poľa vyjadrených Mawellovými rovnicami vyplývajú vlnové
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
17 Optika. 1 princípom: Každý bod vlnoplochy predstavuje nový zdroj. 1 CHRISTIAN HUYGENS ( ) holandský matematik a fyzik, zakladateľ vlnovej
259 17 Optika V tejto časti sa budeme zaoberať šírením svetla v optických sústavách. Svetlo je elektromagnetické žiarenie, ktorého spektrum zahrňuje veľmi širokú oblasť vlnových dĺžok od γ-žiarenia až
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
10 Základy kvantovej fyziky
1 Základy kvantovej fyziky 1.1 Úvod Žiarenie absolútne čierneo telesa Látky všetkýc skupenstiev zoriate na istú teplotu vyžarujú elektromagnetické vlnenie, ktoré má pôvod v tepelnýc poyboc (kmitoc) ic
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED KVANTUM. Aba Teleki Boris Lacsny ¼ubomir Zelenicky N I T R A
UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED KVANTUM Aba Teleki Boris Lacsny ¼ubomir Zelenicky N I T R A 2010 Aba Teleki Boris Lacsný Ľubomír Zelenický KVANTUM KEGA 03/6472/08 Nitra,
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
3. VYUŽITIE ELEKTROMAGNETICKÉHO ŽIARENIA V ANALYTICKEJ CHÉMII
3. VYUŽITIE ELEKTROMAGNETICKÉHO ŽIARENIA V ANALYTICKEJ CHÉMII 3.1. ELEKTROMAGNETICKÉ ŽIARENIE A JEHO VLASTNOSTI Elektromagnetické žiarenie je druh energie, ktorá sa šíri priestorom postupným periodickým
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Testové otázky ku skúške z predmetu Fyzika pre chemikov
Očakávaná odpoveď: (s) slovná matematická vzorec (s,m) kombinovaná (g) grafická - obrázok Testové otázky ku skúške z predmetu Fyzika pre chemikov 1. Vysvetlite fyzikálny zmysel diferenciálu funkcie jednej
Vysvetliť rozdiel medzi kmitaním a vlnením Definovať vlnenie, opísať spôsob jeho vzniku Vysvetliť vznik postupného priečneho a pozdĺžneho vlnenia
V L N E N I E Vysvetliť rozdiel medzi kmitaním a vlnením Definovať vlnenie, opísať spôsob jeho vznik Vysvetliť vznik postpného priečneho a pozdĺžneho vlnenia Vysvetliť pojmy vlnoplocha a lúč Formljte a
Tabuľková príloha. Tabuľka 1. Niektoré fyzikálne veličiny a ich jednotky. Tabuľka 2. - Predpony a označenie násobkov a dielov východiskovej jednotky
Tabuľková príloha Tabuľka 1. Niektoré fyzikálne veličiny a ich jednotky Veličina Symbol Zvláštny názov Frekvencia f hertz Sila F newton Tlak p pascal Energia, práca, teplo E, W, Q joule Výkon P watt Elektrický
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Materiály pro vakuové aparatury
Materiály pro vakuové aparatury nízká tenze par malá desorpce plynu tepelná odolnost (odplyňování) mechanické vlastnosti způsoby opracování a spojování elektrické a chemické vlastnosti Vakuová fyzika 2
21. Planckova konštanta Autor pôvodného textu: Ondrej Foltin
. Planckova konštanta Autor pôvodného textu: Ondrej Foltin Úloha: Určiť Planckovu konštantu pomocou vonkajšieho fotoelektrického javu Teoretický úvod Pri vonkajšom fotoelektrickom jave sa uvolňujú elektróny
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500
Milan Dado Ivan Turek. Ladislav Bitterer Stanislav Turek Eduard Grolmus Patrick Stibor
Milan Dado Ivan Turek Július Štelina Ladislav Bitterer Stanislav Turek Eduard Grolmus Patrick Stibor Vydala Žilinská univerzita v Žiline 998 Recenzenti: Doc. RNDr. Stanislav Kolník, CSc. Ing. Štefan Sivák,
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
POLOVODIČOVÉ LASERY- 2
POLOVODIČOVÉ LASERY-. 3 Vlastnosti emitovaného žiarenia polovodičových laserov Laserová dióda emituje eliptický profil zväzku s rôznym uhlom divergencie pre rovinu rovnobežnú s p-n priechodom Θ 10 a kolmú
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Fotonika. Dr.h.c. Prof. Ing. RNDr. Ján Turán, DrSc. 1. kap. FO KEMT FEI TU Košice
Dr.h.c. Prof. Ing. RNDr. Ján Turán, DrSc. 1 1 Úvod Fotonika Lasery - kvantové generátory (zosilňovače) Využívajú stimulovanú emisiu žiarenia Vlnová dĺžka od 200 do 13000 nm LASER - Light Amplification
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Uhol, pod ktorým sa lúč láme závisí len od relatívnych indexov lomu dvojice prostredí a od uhla dopadu podľa Snellovho zákona. n =
Lom svetla. Lom svetla hraolom, optickým kliom a plaparalelou doštičkou Záko lomu Na rozhraí dvoch prostredí sa svetelý lúč láme tak, aby prešiel dráhu z bodu A do bodu B za ajkratší možý čas. Teda v opticky
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Geometrická a fyzikálna optika
Geometrická a fyzikála optika Fyzikála podstata svetla. Svetlo ako elektromagetické vleie. Základé zákoy geometrickej optiky. Idex lomu. Fermatov pricíp. Sellov záko. Ohyb svetla a jedoduchej štrbie a
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Elektrický prúd v kovoch
Vznik jednosmerného prúdu: Elektrický prúd v kovoch. Usporiadaný pohyb voľných častíc s elektrickým nábojom sa nazýva elektrický prúd. Podmienkou vzniku elektrického prúdu v látke je prítomnosť voľných
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Odrušenie motorových vozidiel. Rušenie a jeho príčiny
Odrušenie motorových vozidiel Každé elektrické zariadenie je prijímačom rušivých vplyvov a taktiež sa môže stať zdrojom rušenia. Stupne odrušenia: Základné odrušenie I. stupňa Základné odrušenie II. stupňa
ZÁKLADNÉ POJMY. Svetlo. Svetlo ako vlnenie, vlnová dĺžka
ÚVOD Laser sa v dnešnej dobe využíva v rôznych oblastiach ľudskej činnosti, vo vede, technike, strojárenstve, biológii, geodézii, holografii, medicíne atď. Za štvrťstoročie sa stal z laboratórneho systému
BEZPEČNOSTNÉ PREDPISY PRE PRÁCU S LASERMI
MLC Bratislava 1 PRÍLOHA 2 BEZPEČNOSTNÉ PREDPISY PRE PRÁCU S LASERMI Zabezpečenie ochrany zdravia pred nepriaznivými účinkami laserov, ktorých vlnová dĺžka sa pohybuje v rozmedzí 200 13 000 nm. Zdroj :
Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie
Strana 1/5 Rozsah akreditácie Názov akreditovaného subjektu: CHIRANALAB, s.r.o., Kalibračné laboratórium Nám. Dr. A. Schweitzera 194, 916 01 Stará Turá IČO: 36 331864 Kalibračné laboratórium s fixným rozsahom
Meranie šírky drážky na CD laserovým ukazovátkom Soňa Gažáková a Ján Pišút FMFI UK
Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: 11230100112 Meranie šírky drážky na CD laserovým ukazovátkom Soňa Gažáková a Ján Pišút FMFI UK Meranie
Maturitné otázky z fyziky
Maturitné otázky z fyziky 1. Fyzikálne veličiny a ich jednotky Fyzikálne veličiny a ich jednotky, Medzinárodná sústava jednotiek SI, skalárne a vektorové veličiny, meranie fyzikálnych veličín, chyby merania.
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K PRAKTIKM III Úloha č.: 07 Název: Overenie Frenelových vzorcov Vypracoval: Viktor Babjak...tud. k. F 11...dne: 11. 04. 006 Odevzdal dne:...
2.5 Vlnové vlastnosti svetla
Námety na samostatnú prácu študentov 1. Nájdite si v literatúre, alebo na webe podrobnejšie vysvetlenie vzniku dúhy, pripravte o tom ilustrovaný výklad pre celú triedu. 2. Nájdite si v literatúre z histórie
SVETLO a FARBY. doc. Ing. Branislav Sobota, PhD. Katedra počítačov a informatiky FEI TU Košice. Systémy Virtuálnej Reality
2016 SVETLO a FARBY doc. Ing. Branislav Sobota, PhD. Katedra počítačov a informatiky FEI TU Košice Systémy Virtuálnej Reality KPI FEI TU Košice SVR - Svetlo a farby 2 Svetlo Dve reprezentácie svetla vlnová
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
0-2-0 Literatúra: Poznámky z prednášok Teplička I.: Fyzika ( pre maturantov ). Enigma, Nitra 1998
F Y Z I K A P R E C H E M I KOV 0-2-0 Literatúra: Poznámky z prednášok Teplička I.: Fyzika ( pre maturantov ). Enigma, Nitra 1998 Zámečník J.: Prehľad fyziky 1, 2. SPN Bratislava 2000, 2002. FYZIKA = príroda
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Bezpečnosť práce v laboratóriu biológie
Bezpečnosť práce v laboratóriu biológie Riziká: chemické (slabé roztoky kyselín a lúhov) biologické rastlinné pletivá/ infikované umyť si ruky el. prúd len obsluha zariadení, nie ich oprava Ochrana: 1.
Στοιχεία Φυσικής Ημιαγωγών (ΕΤΥ481)
Στοιχεία Φυσικής Ημιαγωγών (ΕΤΥ48) Διδάσκων Ν. Πελεκάνος ( pelekano@materials.uoc.gr ) Περιεχόμενα. Ενεργειακές ζώνες. Στατιστική φορέων 3. Μεταφορά φορτίου 4. Δίοδος p n 5. Οπτικές μεταβάσεις 6. Κβαντικά
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
Opakovanie zo 4. lekcie Elektróny v nanoštruktúrach
Opakovanie zo 4. lekcie Elektróny v nanoštruktúrach Ako sa nazýva atómový orbitál, ktorý je najviac zodpovedný za jeho chemické a magnetické vlastnosti? Čo majú spoločné atómy v jednotlivých stĺpcoch periodickej
Svetlo encyklopedické heslo
Svetlo encyklopedické heslo Svetlo je elektromagnetické žiarenie, na ktoré je citlivé ľudské oko. Preto ho nazývame aj viditeľným, prípadne optickým žiarením. Rozsah vlnových dĺžok svetla je v rozmedzí
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Meranie pre potreby riadenia. Snímače a prevodníky
Meranie pre potreby riadenia Snímače a prevodníky Meranie teploty Uskutočňuje sa nepriamo cez zmenu vlastností teplomernej látky Snímač je umiestnený v ochrannom puzdre oneskorenie prechodu tepla 2 Meranie
UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA. Dátum:
ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA 1. Priraď k optickým prostrediam správnu charakteristiku tak, že ich spojíš čiarami. Ku každému druhu doplň konkrétny príklad. PRIEHĽADNÉ... PRIESVITNÉ...
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový