Ugljikohidrati. Boris Mildner

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ugljikohidrati. Boris Mildner"

Transcript

1 Ugljikohidrati Boris Mildner Ugljikohidrati Ugljikohidrati su najzastupljenije biomolekule na Zemlji. Svake godine fotosintezom se pretvara 100x10 9 tona CO 2 i H 2 O u celulozu i druge biljne proizvode. Šećer i škrob su osnovne životne namirnice u najvećem dijelu svijeta i oksidacija ugljikohidrata je središnji metabolički proces u većini ne-fotosintetskih organizama. Polimeri ugljikohidrata, koje nazivamo glikanima, strukturni su i zaštitni elementi u staničnim zidovima bakterija, biljaka i vezivnom tkivu životinja. Postoje i polimeri ugljikohidrata koji smanjuju trenje u zglobovima a služe i za prepoznavanje i adheziju stanica. Kompleksni ugljikohidratni polimeri povezuju se s proteinima i/ili lipidima. Ovi glikokonjugati služe i kao stanične signalne molekule. 1

2 Ugljikohidrati Ugljikohidrati su polihidroksi aldehidi ili ketoni, odnosno spojevi čijom hidrolizom nastaju aldehidi ili ketoni. Većinu, iako ne sve, ugljikohidrate možemo prikazati empirijskom formulom (CH 2 O) n ; Neki ugljikohidrati dodatno sadrže dušik, fosfor ili sumpor, te ih ne možemo prikazati gornjom empirijskom formulom. Ugljikohidrati Tri su osnovne vrste ugljikohidrata: monosaharidi, oligosaharidi i polisaharidi. Monosaharidi sadrže ili jednu aldehidnu ili jednu ketonsku skupinu. Najzastupljeniji monosaharid je glukoza. Monosaharidi s četiri ili više ugljikova atoma imaju prstenaste (cikličke) strukture. Oligosaharidi su izgrađeni od kratkih lanaca monosaharida koji se međusobno povezuju glikozidnom vezom. Najzastupljeniji oligosaharidi su disaharidi. Svi monosaharidi i disaharidi u nastavku imena imaju oza. Polisaharidi su polimeri šećera koji imaju najmanje dvadeset povezanih monosaharidnih jedinica, a neki mogu imati i do tisuću ili više mosaharidnih jedinica. Mogu biti linearni, npr. celuloza, ili razgranani, npr. glikogen. I celuloza i glikogen izgrađeni su od D-glukoznih jedinica, ali povezivanje monosaharidnih jedinica glikozidnim vezama je različito u ova dva polimera. 2

3 Monosaharidi Monosaharidi, najjednostavniji šećeri, su aldehidi ili ketoni koji imaju dvije ili više hidroksilnih skupina. Najednostavniji monosaharidi su trioze. Dihidroksiaceton je ketoza jer sadrži keto skupinu, a gliceraldehid je aldoza, jer sadrži aldehidnu skupinu. Gliceraldehid ima jedan asimetrični C-atom, te postoje dva stereoizomera koji su si enantiomeri. Načini prikazivanja struktura Fischerovim projekcijskim formulama Stereokemijski prikaz Fischerove projekcijske formule 3

4 Enantiomeri su zrcalne slike jednog oblika. Općenito, molekula s n kiralniih središta može imati 2 n stereoizomera. D-aldoze s tri, četiri, pet i šest ugljikova atoma. D-aldoza ima aldehidnu skupinu (plavo) i apsolutni oblik D- gliceraldehida u asimetričnom središtu (crveno) koji je najudaljeniji od aldehidne skupine. Brojevi označavaju broj ugljikovih atoma pojedine aldoze. 4

5 D-ketoze s tri, četiri, pet i šest ugljikova atoma. Keto skupina je prikazana plavom bojom. Asimetrični ugljikov atom najudaljeniji od keto skupine određuje D-oblik. Aldehidi s alkoholima tvore polu (hemi) acetale, a ketoni s alkoholima tvore polu (hemi) ketale U otopinama, šećeri nisu u obliku otvorenih lanaca, već tvore cikličke (prstenaste) strukture. Osnova za stvaranje prstenaste strukture su mogućnosti nastajanja intramolekularnih poluacetala odnosno poluketala. Prstenasta struktura i hemi-acetala i hemi-ketala energetski je povoljnija od otvorene jednolančane strukture. 5

6 Piranozni i furanozni prsteni monosaharida Monosaharidi s pet ili šest ugljikova atoma mogu stvarati piranozni odnosno furanozni prsten. Prsteni su dobili imena prema piranu, odnosno furanu. piran furan Nastajanje piranoze. Otvoreni lanac glukoze stvara prsten kada C-5 hidroksilna skupina napadne C-1 aldehidnu skupinu te nastaje intramolekularni polu-acetal. Dva anomerna oblika, označeni kao α- iβ-, mogući su prilikom ove intramolekularne pregradnje. Prstenasti oblici prikazani su Haworthovim projekcijskim formulama. U ravnoteži, glukoza je smjesa 1/3 α- anomera, 2/3 β anomera i <1% je u obliku otvorenog lanca. α-označava da je hidroksilna skupina vezana na C-1 na suprotnoj strani prstena od CH 2 OH skupine koja je vezana na ugljikov atom koji određuje da li je šećer D- ili L-oblika; β znači da je hidroksilna skupina na istoj strani prstena kao i CH 2 OH skupina vezana za kiralni atom. Tijekom intramolekularne pregradnje nastaje dodatni asimetrični C-atom. C-1, karbonilni ugljikov atom u otvorenom lancu glukoze postaje asimetrično središte kada glukoza prelazi u prstenastu strukturu. Zbog toga su moguća dva oblika koja se označavaju kao α-d-glukopiranoza i β-d-glukopiranoza. 6

7 Nastajanje furanoze. Otvoreni lanac fruktoze stvara peteročlani prsten kada C-5 hidroksilna skupina napadne C-2 keto skupinu te nastaje intramolekularni polu-acetal. Tijekom ove pregradnje moguće je da nastanu dva anomera, ali na slici je prikazan samo α-anomer. Nomenklatura koja se koristi za piranoze primjenjuje se i za furanozni prsten fruktoze. Izomerne oblike monosaharida čija se struktura razlikuje samo na hemiacetalnom ili hemiketalnom ugljikovom atomu nazivamo anomerima. Ugljikov atom polu-acetala ili polu-ketala, nazivamo anomernim ugljikovim atomom. U procesu mutarotacije, α i β oblici glukoze prelaze iz jednog anomernog oblika u drugi. Fruktoza može tvoriti i furanozne i piranozne prstene. Furanozni oblik fruktoze nalazi se kod mnogih derivata fruktoze. Prstenasti oblici fruktoze (furanoze i piranoze) mogu stvarati α i β anomere. 7

8 Pentoze kao što su D-riboza i 2-deoksi-D-riboza tvore furanozne prstene. Prsten piranoze nije planaran, pa piranoza može biti u dvije konformacije, tj. konformaciji stolca ili konformaciji kolijevke (lađice). Konformacija stolice Konformacije kolijevke (lađice) 8

9 Furanozni prsteni također nisu planarni. Četiri atoma su obično u ravnini, a peti atom je oko 0,5 Å izvan ravnine. Ova konformacija se naziva konformacija kuverte. U ribozi ili C-2 ili C-3 su izvan ravnine ali na istoj strani kao i C-5, te se te konformacije nazivaju ili C-3 endo ili C-2 endo. Reakcije monosaharida Monosaharidi se povezuju s alkoholima ili aminima glikozidnim vezama. Povezivanje alkohola ili amina sa šećerom odvija se na anomerinim ugljikovim atomima. 9

10 Monosaharidi reagiraju s alkoholima. Anomerni atom šećera reagira s hidroksilnom skupinom alkohola te nastaje O-glikozidna veza. Na sličan način anomerni C-atom šećera reagira s aminima, te nastaju konjugati povezani N-glikozidnim vezama. Derivati nastali reakcijama s alkoholom (metanolom) Derivat nastao reakcijom s aminom. Monosaharidi su reducirajući spojevi. Anomerna (aldehidna) skupina glukoze oksidira se u aldonsku kiselinu (glukonsku kiselinu) tijekom redukcije Cu 2+ u Cu + (Fehlingova reakcija). Glukozu i druge šećere koji mogu reducirati Cu 2+ nazivamo reducirajućim šećerima. Glikozidi, npr. metil glukopiranozid ne može reducirati Cu 2+ jer se ne može prevesti u oblik koji ima slobodnu aldehidnu skupinu. Šećere koji ne mogu reducirati Cu 2+ nazivamo nereducirajućim šećerima. 10

11 Modificirani monosaharidi Osim na anomernom C-atomu, monosaharidi se mogu modificirati i na drugim C-atomima. Modificirani monosaharidi. Ugljikohidrati se mogu modificirati dodatkom različitih supstituenata. Modificirane ugljikohidrate često nalazimo na površini stanica. 11

12 Fosforilirani šećeri ključni su međuprodukti metabolizma. Fosforilacijom šećeri postaju anioni, te negativni naboji ne dozvoljavaju da šećer difuzijom izlazi iz stanice. Fosforilacijom nastaju i reaktivni međuprodukti koji lakše stvaraju veze s drugim molekulama. Ne-enzimska glikacija proteina. Primjer reakcije hemoglobina sa šećerima u dijabetesu. Ne-ezimski dodatak šećera na protein(e) nazivamo glikacijom, za razliku od enzimom katalizirane reakcije koju nazivamo glikozilacijom. AGE = advanced glycation end products 12

13 Kompleksni ugljikohidrati Šećeri se međusobno povezuju u disaharide, oligosaharide ili polisaharide. Složeniji ugljikohidrati nastaju povezivanjem monosaharida. Oligosaharidi nastaju povezivanjem dva ili više monosaharida putem O-glikozidne veze. Maltoza je disaharid gdje su dvije glukoze povezane α (1 4) vezama. α-d-glukopiranozil-(1 4)-α-D-glukopiranoza 13

14 Disaharide saharozu, laktozu i maltozu često konzumiramo. Saharoza nije reducirajući šećer jer su dva anomerna ugljikova atoma međusobno povezana. Disaharide cijepaju hidrolitički enzimi koji se nalaze u mikrovilusima plazmatskih membrana epitelnih stanica tankog crijeva. Saharozu cijepa saharaza, laktozu laktaza, a maltozu maltaza. U bakterijama laktozu razlaže β-galaktozidaza. 14

15 Polisaharidi, koje nazivamo i glikanima, međusobno se razlikuju po monosaharidima koji su u njih ugrađeni, po dužini lanaca, po vrsti veza kojima su monosaharidi međusobno povezani kao i po stupnju granananja lanaca. Homopolisaharidi izgrađeni su od istovrsnih monosaharida, a mogu graditi ravne lance ili biti razgranani. Heteropolisaharidi su izgrađeni od dva ili više različita monosaharida, a mogu graditi ravne ili razgranane lance. Najvažniji homopolisaharidi koji služe kao energetske rezerve su škrob kod biljaka i glikogen kod životinja. Škrob se sastoji od dvije vrste glukoznih polimera: amiloze i amilopektina. Amiloza je linearan polisaharid koji je izgrađen od molekula glukoze povezanih (α1 4) vezama. M r lanaca varira od nekoliko tisuća do više od

16 Amilopektin, kao i glikogen, imaju razgranane lance. M r amilopektina je vrlo velika i može biti i do 200x10 6. U amilopektinu, molekule glukoze u lancu povezuju se (α1 4) vezama, a grane, koje se javljaju nakon svakih molekula glukoze povezuju se s osnovnim lancem (α1 6) vezama. U granulama škroba amilopektinski lanci tvore dvostruku zavojnicu (crveno), a u to su upleteni i lanci amiloze (plavo). Glikogen ima sličnu strukturu amilopektinu, ali je još razgranatiji i trodimenzionalna struktura je kompaktnija. Glikogen je polisaharid koji se pohranjuje u stanicama životinja. Kao i u amilopektinu, u osnovnom lancu glukoze su povezane (α1 4) vezama, a grane s osnovnim lancem (α1 6) vezama. Grane se pojavljuju nakon svakih 10 jedinica glukoze. Izračunato je da glikogen u hepatocitima pohranjuje ekvivalent od 0,4 mol. dm -3 glukoze. Koncentracija glikogena, koji je netopljiv i koji ne utječe na osmolarnost stanice je 0,01 µmol. dm

17 Strukturni polisaradi. Celuloza je glavni polisaharid biljaka i služi za održavanje strukture, a ne kao energetska rezerva. Celuloza je jedan od najrasprostranjenijih organskih spojeva u biosferi. Oko kg celuloze se sintetizira i razgradi svake godine. Glukoza je u celulozi povezana (β1 4) vezama i to omogućava celulozi da gradi duge ravne lance. Relativno krute strukture stolica mogu se međusobno povezivati vodikovim vezama. Škrob i glikogen razgrađuju α-amilaze u slini i glikozidaze u probavnom traktu. Ovi enzimi lako hidroliziraju (α1 4) veze kojima su ovi polisaharidi povezani. Za razliku od toga, celuloza je neprobavljiva jer većini životinja ne dostaju enzimi koji bi mogli hidrolizirati (β1 4) veze. Termiti, kao i preživači, mogu probavljati celulozu, ali samo zahvaljujući tome što je u njihovom probavnom traktu simbiotski mikroorganizmi koji luče celulazu koja razgrađuje (β1 4) veze. Ravni lanci celuloze tvore vodikove veze između lanaca, te nastaju celulozna vlakna. 17

18 Strukturni polisaradi. Hitin je linearni homopolisaharid kojeg izgrađuju jedinice N- acetilglukozamina povezane (β1 4) vezama. Jedina razlika između hitina i celuloze je što je hidroksilna skupina na C-2 zamijenjena s acetiliranom amino skupinom. Hitin, kao i celuloza gradi duge polimere koji nisu probavljivi. To je glavni sastojak tvrdog egzoskeleta artropoda i drugi je najzastupljeniji polisaharid (iza celuloze). Strukture i funkcije nekih polisaharida 18

19 Glikozaminoglikani su anionski polisaharidni lanci izgrađeni od ponavljajućih disaharidnih jedinica. Proteoglikani su proteini koji su povezani na određenu vrstu glikozaminoglikana. Proteoglikani sliče više glikozaminoglikanima nego proteinima jer ukupna masa glikozaminoglikana čini 95% mase proteoglikana. Proteoglikani služe kao maziva u zglobovima i kao strukturne komponente u vezivnim tkivima. U drugim stanicama služe za adheziju stanica na ekstracelularni matriks a imaju i druge funkcije jer vežu čimbenike koje stimuliraju staničnu proliferaciju. Jedan od najbolje proučenih proteoglikana je proteoglikan u ekstracelularnom matriksu hrskavice. Proteoglikan agrekan i kolagen ključni su proteini hrskavice. Kolagen daje čvrstoću, a agrekan služi kao amortizer udaraca. Agrekan apsorbira mnogo molekula vode i voda na agrekanu amortizira udarce koje prima zglob. Proteoglikani se sastoje uglavnom od glikozaminoglikana koji su povezani na pojedini protein. 19

20 Glikoziltransferaze, odgovorne su za slijed i sastav šećernih jedinica polisaharida. Svaki enzim je specifičan za određenu vrstu šećera koji se povezuju. Zbog toga je potrebno mnogo različitih glikoziltransferaza kako bi nastale različite glikozidne veze između različitih monosaharida. Glikoziltransferaze kataliziraju povezivanje monosaharida, tj. povezivanje aktivirinaih šećernih nukleotida s monosaharidima ili nadodavanje (produženje) monosaharida u lancu. Specifičnost i funkciju glikoziltransferaza ilustrira sinteza krvnih grupa na površini eritrocita. Specifične glikoziltransferaze dodaju po jedan šećer na 0-antigen i svaka osoba nasljeđuje gen od roditelja koji je specifičan za određenu glikoziltransferazu. 0-fenotip je rezultat mutacija ili galaktozil-transferaze ili N-acetilgalaktozamin-transferaze, te se na 0- antigen ne vežu dodatni ugljikohidrati (N-acetilgalaktozamin (A-antigen) ili galktoza (B-antigen)). 20

21 Glikoproteini Ugljikohidrati se vežu na proteine kako bi nastali glikoproteini. Specifični enzimi povezuju jedinice oligosaharida na proteine i to ili na hidroksilne kisikove atome serina ili treonina ili na amidni dušik asparagina. Glikoproteini. Ugljikohidratna skupina može se povezati na protein. U glikoproteinu, za razliku od proteoglikana, ugljikohidratni dio je znatno manji od proteinskog dijela glikoproteina. Asparaginski bočni ostatak proteina može se glikozilirati samo ako je u sekvenciji Asn-X-Ser ili u sekvenciji Asn-X-Thr. X može biti bilo koja aminokiselina osim prolina. 21

22 Eritropoietin (EPO) je glikoprotein kojeg luče bubrezi i potiče sintezu eritrocita. Aktivni EPO ima 40% ugljikohidrata. Glikozilacija stabilizira protein u krvi. Ne glikozilirani protein ima samo 10% biološke aktivnosti glikoziliranog proteina jer se ne glikozilirani protein uklanja iz krvotoka (filtracija bubrega). Glikozilacija proteina odvija se u lumenu endoplazmatskog retikula (ER) kao i u Golgijevim tjelešcima. Proteini se sintetiziraju na ribosomima koji su na citosolnoj strani ER. Novo sintetizirani protein odlazi u ER. N-glikozilacija proteina započinje u ER a nastavlja se u Golgijevim tjelešcima. O-glikozilacija odvija se isključivo u Golgijevim tjelešcima. 22

23 Golgijevo tjelešce je mjesto razvrstavanja proteina. Iz Golgijevog tjelešca proteini odlaze u lizozome, sekrecijske vesikule ili direktno na plazmatske membrane. Lektini su specifični proteini koji raspoznavaju i specifično vežu određene šećere 23

24 Ugljikohidrati dodaju proteinima dodatnu kompleksnost, te možemo govoriti i o šećernom kodu. Proteini koji specifično raspoznavaju oligosaharidne ligande nazivamo lektinima. Neki od lektina i ligandi koje ovi lektini specifično raspoznaju Selektini su porodica lektina plazmatske membrane koji reguliraju prepoznavanje stanica kao i adheziju stanica u različitim procesima 24

25 Receptori virusa su lektini Virus influenzae, napada stanicu tako da se veže za sijalinske ostatke koje se nalaze na krajevima glikoproteina i glikolipida plazmatske membrane (ljubičasti kvadrati). Ugljikohidrati na vanjskoj strani plazmatske membrane vežu se za hemaglutinin (lektin) koji je jedan od najzastupljenijih proteina virusne ovojnice (zaokruženo). Na virusnoj ovojnici eksprimirana je i neuraminidaza koja cijepa oligosaharidne lance plazmatske membrane kako bi virusu omogućilaulaz ustanicu tijekom kasnije faze infekcije. Metode u analizi ugljikohidrata. Ugljikohidrat koji je pročišćen u prvom koraku, često je potrebno analizirati svim navedenim metodama kako bi se u potpunosti karakterizirao. 25

26 Sekvenciranje oligosaharida masenom spektrometrijom Fetuin, glikoprotein u goveđem serumu cijepan je u (A) N- glikozidazom F i neuraminidazom, a u (B) s N-glikozidazom F, neuraminidazom i β-1,4- galaktozidazom. Mase oligosaharida određene su MALDI-TOF spektrometrijom. Poznavajući specifičnosti enzima i mase produkata moguće je karakterizirati oligosaharid. 26

Ugljeni hidrati. Uvod. masti, belančevine CO 2. O + hν + hlorofil fotosinteza + H 2. glukoza. skrob. ishrana. ishrana glikogen. celuloza.

Ugljeni hidrati. Uvod. masti, belančevine CO 2. O + hν + hlorofil fotosinteza + H 2. glukoza. skrob. ishrana. ishrana glikogen. celuloza. Ugljeni hidrati Uvod C 2 + 2 + hν + hlorofil fotosinteza glukoza skrob ishrana celuloza ishrana glikogen masti, belančevine glukoza C 2 + 2 + energija 1 Definicija Ugljeni hidrati su polihidroksi aldehidi,

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

4. razred gimnazije - opšti i prirodno-matematički smer UGLJENI HIDRATI

4. razred gimnazije - opšti i prirodno-matematički smer UGLJENI HIDRATI . razred gimnazije - opšti i prirodno-matematički smer 07 UGLJENI IDRATI Ugljeni hidrati su najrasprostranjenija jedinjenja u živom svetu. rganska jedinjenja ugljenika, vodonika i kiseonika u kojima je

Διαβάστε περισσότερα

4. Koji od navedenih enzima pripada vrsti hidroksilaza? a) heksokinaza; b) kimotripsin; c) glikogen fosforilaza; d) trioza fosfat izomeraza.

4. Koji od navedenih enzima pripada vrsti hidroksilaza? a) heksokinaza; b) kimotripsin; c) glikogen fosforilaza; d) trioza fosfat izomeraza. Osnove biokemije zadaća 7. 1. Što je točno o zimogenima? a) protoproteini su jedna vrsta zimogena; b) zimogene inhibiraju inhibitori proteina; c) zimogeni su enzimski neaktivni; d) zimogeni cijepaju proteaze.

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

fotosinteza CO 2 + H 2 soli vinske kiseline). sunceva svetlost

fotosinteza CO 2 + H 2 soli vinske kiseline). sunceva svetlost UGLJENI IDRATI (U) ( n n n ) + katalizator fotosinteza sunceva svetlost zelene biljke (hlorofil) molekuli (+)-glukoze povezuju se u velike molekule skroba i celuloze celuloza (potporni skelet biljke) masti,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Ugljikohidrati i glikoliza

Ugljikohidrati i glikoliza Ugljikohidrati i glikoliza Seminar 11b 1 1. Suspenzija stanica kvasca uzgajana je u anaerobnim uvjetima te se glukoza fermentirala u etanol i O 2. Ako se želi promatrati količina 14 O 2, na kojem mjestu

Διαβάστε περισσότερα

OGLJIKOVI HIDRATI MONOSAHARIDI. Monosaharidi (enostavni sladkorji): ni jih mogoče razgraditiv milih pogojih

OGLJIKOVI HIDRATI MONOSAHARIDI. Monosaharidi (enostavni sladkorji): ni jih mogoče razgraditiv milih pogojih OGLJIKOVI HIDRATI Monosaharidi (enostavni sladkorji): ni jih mogoče razgraditiv milih pogojih Oligosaharidi -običajno 2-10 monosaharidnih ostankov Polisaharidi: polimeri iz monosaharidov (glikozidna vez)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Put pentoza fosfata. B. Mildner. Put pentoza fosfata

Put pentoza fosfata. B. Mildner. Put pentoza fosfata Put pentoza fosfata B. Mildner Put pentoza fosfata Svrha ovog puta je: A) da se stanici omogući dovoljno NADPH, koji služi kao reducens u biosintetskim reakcijama kao i u zaštiti stanica od kisikovih radikala.

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

OGLJIKOVI HIDRATI. Ogljikovi hidrati...

OGLJIKOVI HIDRATI. Ogljikovi hidrati... OGLJIKOVI HIDRATI Vloga: 1. Vloga v energijskem metabolizmu- neposredno kot metabolno "gorivo" ali kot rezervne spojine 2. Strukturna vloga- gradniki bakterijskih, glivnih in rastlinskih celičnih sten,

Διαβάστε περισσότερα

Biohemija I

Biohemija I Biohemija I 17.11.2015. Šećerni alkoholi. U monosaharidnim derivatima poznatim kao šećerni alkoholi, karbonilni oksigen se reducira u hidroksilnu grupu. Npr. D-gliceraldehid može se reducirati u glicerol.

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

UGLJENI HIDRATI U ISHRANI

UGLJENI HIDRATI U ISHRANI UGLJENI HIDRATI U ISHRANI Ugljeni hidrati značaj i uloge sastoje se iz atoma C, H i O nastaju u procesu fotosinteze u biljkama ili glikoneogeneze u humanom organizmu najvažniji su izvori energije za čoveka

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU GRAFIČKI FAKULTET KATEDRA ZA KEMIJU U GRAFIČKOJ TEHNOLOGIJI

SVEUČILIŠTE U ZAGREBU GRAFIČKI FAKULTET KATEDRA ZA KEMIJU U GRAFIČKOJ TEHNOLOGIJI SVEUČILIŠTE U ZAGREBU GRAFIČKI FAKULTET KATEDRA ZA KEMIJU U GRAFIČKOJ TEHNOLOGIJI INTERNA SKRIPTA Priredili: Doc. dr.sc. Mirela Rožić Doc. dr.sc. Željka Barbarić-Mikočević Ivana Plazonić, asistent Zagreb

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola)

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) 1 Adicija alkohola 2 AETALI I PLUAETAL AETALI 3 Adicijom jednog mola alkohola na mol aldehida ili ketona nastaje poluacetal

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju

Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

ORGANIZACIJA BILJNE STANICE

ORGANIZACIJA BILJNE STANICE NEŢIVI DIO STANICE ORGANIZACIJA BILJNE STANICE A. PROTOPLAST HIJALOPLAZMA (MATRIKS, CITOSOL) STANIČNI ORGANELI PLAZMALEMA LIZOSOMI ENDOPLAZMATSKI RETIKULUM GOLGIJEV APARAT RIBOSOMI SFEROSOMI CITOPLAZMA

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

AMILAZE. Encimi, ki hidrolizirajo ogljikove hidrate. struktura škroba

AMILAZE. Encimi, ki hidrolizirajo ogljikove hidrate. struktura škroba Encimi, ki hidrolizirajo ogljikove hidrate substrati: ogljikovi hidrati (škrob, celuloza, poli in oligosaharidi) encimi: glikozidaze glikozidna vez encimska specifičnost konfiguracija glikozidne vezi kemijska

Διαβάστε περισσότερα

UGLJENI HIDRATI. Definicija. Ugljeni hidrati su

UGLJENI HIDRATI. Definicija. Ugljeni hidrati su UGLJENI HIDRATI Definicija Ugljeni hidrati su polihidroksi aldehidi, polihidroksi ketoni ili jedinjenja čijom hidrolizom se dobijaju polihidroksi aldehidi i polihidroksi ketoni 1 Podela Prosti ugljeni

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Molekulska Pregradjivanja

Molekulska Pregradjivanja Molekulska Pregradjivanja 1 1. Pregradjivanje na elektronom osiromasenom atomu 2. Slobodni radikali i anionska pregradjivanja 2 Pregradjivanje na elektronom osiromasenom atomu Migracija prema karbokationu

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα