TALLINNA TEHNIKAÜLIKOOL, FÜÜSIKAINSTITUUT 14. NEWTONI RÕNGAD

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TALLINNA TEHNIKAÜLIKOOL, FÜÜSIKAINSTITUUT 14. NEWTONI RÕNGAD"

Transcript

1 4. NEWTONI RÕNGAD. Töö eesmäk Tasakumea läätse kõveusaadiuse määamine.. Töövahendid Mõõtemikoskoop, suue kõveusaadiusega tasakume lääts, monokomaatiline valgusallikas. 3. Töö teoeetilised alused Valguse intefeentsiks nimetatakse nähtust, mille koal kahest või enamast valgusallikast kiiatud valguslainete liitumisel toimub valgusenegia ümbeaotumine, mille tulemusena ühtedes uumipunktides valguse intensiivsus kasvab, teistes kahaneb. Valguse tugevnemine või nõgenemine oleneb liituvate valguslainete faasivahest. Tugevnemine on maksimaalne nendes uumipunktides, kuhu samasihilise valgusvektoiga valguslained õuavad samas faasis st faasivahe on null või täisav koda π. Minimaalse intensiivsuse saame seal, kus lained liituvad vastasfaasis s.o faasivahega paaitu av koda π. Kui lainete faasivahe igas uumipunktis on aas ääv, siis on tegemist koheentsete lainetega, mis tekitavad püsiva intefeentsipildi. Tavaliste valgusallikate, näiteks elektilampide poolt kiiatud valguslained ei ole koheentsed. Üksikud aatomid a molekulid kiigavad 9 valgust katkendlikult. Üks kiigusakt, mille ooksul kiiatakse üksik laineada, kestab ligikaudu 8 sekundit. Sellele ägneb mõne aa möödudes uus, mis pole eelmisega faasiliselt seotud a mille E -vekto on teisesihiline. Niisuguste valguslainete liitumisel tekkiv intefeentsipilt muutub niisama kiiesti, kui üks laineada antud uumiosas asendub teisega. Püsivat intefeentsipilti ei teki. Meie silm a iga füüsikaline mõõteiist egisteeib ühtlase valgustatuse kogu vaadeldavas uumiosas. Koheentne on laineada, mida kiigab üks a sama aatom ühe a sama kiigusaktiga. Valgusallikas kiigab väga palu selliseid adasid. Jaotades kõik laineadad ealdatud osadeks a tekitades nende vahel optilise käiguvahe ning viies iga laineada osad hilem kokku, tekib püsiv intefeentsipilt. Paktiliselt aotatakse kõik laineadad, mida aatomid antud valgusallikas kiigavad, uumiliselt ealdatud osadeks kahel viisil. Esimesel uhul aotatakse ühest valgusallikast päinev valgus kaheks valguskimbuks, lastes ta läbi lähestikku asetsevate avade ekaanis. Avasid läbinud valguslained on koheentsed. See on lainefondi aotamise meetod. Teisel uhul aotatakse valgusallikast välunud laineada kaheks osaliselt peegeldavate a osaliselt läbilaskvate pindadega. Niisugust ealdamisviisi nimetatakse amplituudi aotamise meetodiks. Nagu selgus, tuleb valguse intefeentsi tekitamiseks uumiliselt ealdatud laineada osad (osalained) hilem kokku uhtida. Osalainete faasivahe ääb aas alati muutumatuks, kui nad on päit aatomi ühest a samast kiigusaktist. Selleks ei tohi osalainete optiline käiguvahe enne liitumist (agunemiskohast vaadeldavasse uumipunkti) olla liiga suu, sest suue käiguvahe koal liituksid aatomi einevatest kiigusaktidest päinevad lained. Sama geomeetilise käiguvahe koal on faasivahe eineva lainepikkusega valguse aoks einev. Kui antud kohas ühe lainepikkusega (ühte vävi) valguse koal tekib võnkumiste kustumine, siis teise lainepikkusega (teist vävi) valguse koal võib toimuda tugevnemine. Seetõttu on intensiivsuse aotumine intefeentsipildis eineva lainepikkusega valguse koal einev. Küllalt laia lainepikkuste vahemiku kasutamisel on intefeentsipildi teavus väike või pilti ei teki üldse saame ühtlase

2 valgustatuse. Seepäast tuleb hea intefeentsipildi saamiseks kasutada monokomaatilist (ühevävilist) valgust. Klassikaliseks näiteks koheentsete valguslainete a nende abil püsiva intefeentsipildi tekitamise kohta on nn Newtoni õngad. Need tekivad intefeentsi tulemusena tasapaalleelsest klaasplaadist a suue kõveusaadiusega tasakumeast läätsest koosnevas süsteemis. Kui asetada suue kõveusaadiusega lääts klaasplaadile nii, nagu näidatud oonisel 4., siis tekib plaadi a läätse vahele kokkupuutepunkti ümbusesse üliõhuke õhukiht, mille paksus on võeldav valguse lainepikkusega. Joonis 4. Mida suuema kõveusaadiusega lääts, seda ulatuslikum on see üliõhuke kiht. Juhtides läätsele monokomaatilise valguse, näeme kokkupuutepunkti ümbuses vaheldumisi tumedaid a heledaid kontsentilisi õngaid. Neid nimetatakse Newtoni õngasteks. Valge valguse koal tekivad mitmevävilised õngad. Nähtuse lähemaks seletamiseks kasutame oonist 4.. Sellel kuutatud lääts on küll väikese kõveusaadiusega ega vasta katsetingimusele, kuid kiite käigu vaatlemiseks on selline süsteem sobivam. Langegu tasakumeale läätsele pinnanomaali suunas monokomaatne kiitekimp, millest oonisel on näidatud vaid üks, punkti B langev kii. Osa valgusest peegeldub punktist B tagasi, osa aga läbib õhuvahe ning langeb klaasplaadile punktis C. Siin aguneb kii ällegi kaheks: osa mudub klaasplaati, teine osa aga peegeldub läätse suunas tagasi. Kui õhuvahe läätse a plaadi vahel on väike, siis on punktidest B a C peegeldunud lained koheentsed a nende liitumisel tekib intefeentsipilt. Avestades, et suue kõveusaadiusega läätse koal peegeldub valgus punktist B a C paktiliselt samas suunas tagasi, võime õhukihi ülemiselt a alumiselt pinnalt peegeldunud kiite optilise käiguvahe avaldada ägmiselt: λ = n BC+, kus λ on valguse lainepikkus vaakumis a n õhu mudumisnäitaa. λ lisandub seetõttu, et peegeldumisel klaasplaadilt kui õhust optiliselt tihedamalt keskkonnalt muutub laine faas 8 o võa, mis on samavääne käiguvahe muutumisega poole lainepikkuse võa punktis C. Peegeldumisel punktis B faas ei muutu. Kui tähistada õhukihi paksus punktide B a C vahel d -ga a avestada, et õhu mudumisnäitaa n, siis saab käiguvahe avaldada kuul: λ = d +.

3 Valguse kustumine õhukihi ülemisel pinnal toimub kohtades, kus valguslained kohtuvad vastasfaasides. See tähendab, et kiite käiguvahe peab olema paaitu av poollainepikkusi: kus k =,,,... = d + λ = ( k+ ) λ, () Siit leiame õhuvahe paksuse d, mille koal valgustatus on minimaalne: λ d = k. () Maksimumid on älgitavad kohtades, kus valguslained liituvad samas faasis. Seal peab kiite käiguvahe olema täisav lainepikkusi: kus k =,, 3,... = d + λ = k λ, (3) Saadud miinimumi a maksimumi tingimused () a (3) näitavad, et antud katses on peegeldunud kiite summaane intensiivsus vaadeldavas kohas määatud klaasplaadi a läätse vahelise õhukihi paksusega d. See tähendab, et võdse paksusega õhuvahele vastab valguse ühesugune intensiivsus. Tekivad ühesuguselt valgustatud õngad. Selliseid kuundeid, mis tekivad intefeentsi tõttu sama paksusega kohtades, nimetatakse füüsikas samapaksusibadeks. (Geomeetiliselt ei puugi nad alati ibad olla.) Vastavat intefeentsinähtust nimetatakse samapaksusintefeentsiks. Sfääilise läätse koal kuutavad samapaksusibad endast kontsentilisi õngaid, mille tsentiks on läätse a plaadipinna puutepunkt. Intefeentsipildis vaheldub valguse intensiivsus koos õhukihi paksuse muutumisega. Viimane toimub ingi aadiuse sihis. Nii tekivadki vaadeldavas süsteemis heledad a tumedad kontsentilised õngad Newtoni õngad. Leiame seose läätse kõveusaadiuse R a mingi Newtoni õnga aadiuse vahel. Selleks vaatleme oonisel 4. kolmnuka AOB. Sellest täisnuksest kolmnugast saame kaateti AB = aoks kiutada: Avestades, et OB = R a OA = R d, saame: Suue kõveusaadiusega läätse koal on = OB OA. ( R d) = Rd d = R. d << Rd. Seepäast võime kiutada: Rd. (4) Asetades seosesse (4) miinimumi tingimusele () vastava d väätuse, saame tumedate Newtoni õngaste aadiuste k leidmiseks valemi: k = Rkλ, (5) kus k =,,,... Maksimumi tingimus (3) annab analoogiliselt heledate õngaste aoks: k = R k λ, (6) kus k =,, 3,.... Võttes valemis (5) k =, st d =, saame, et. Plaadi a läätse kokkupuutekohas on = peegeldunud valguses miinimum (ümmagune tume laik). Esimene tume õngas tekib kaugusel 3

4 = Rλ, teine kaugusel = Rλ ne. Heledate õngaste aoks saame valemist (6), et esimene Rλ Rλ hele õngas tekib kaugusel = ( k =), teine kaugusel = ne. Siit on näha, et < < <..., st heledad a tumedad õngad vahelduvad tõepoolest. Antud töö ülesandeks on tasakumea läätse kõveusaadiuse määamine Newtoni õngaste mõõtmise kaudu. Selleks asetatakse klaasplaat a lääts või aamis asuv plaadi a läätse komplekt mõõtemikoskoobi lauale nii nagu oonisel 4. ning teavustatakse mikoskoop õhukihi ülemisele pinnale, st läätse sfääilisele pinnale. Valguse uhtimiseks õhukihile on mikoskoobi obektiivi a uuitava läätse vahele asetatud 45 o nuga all vaatesihi suhtes tasapaalleelne klaasplaat P. Valgusallikast tulnud kiied peegelduvad plaadilt P läätsele. Sealt tagasi peegeldunud kiitest satub osa läbi plaadi P mikoskoobi obektiivi ning seetõttu on mikoskoobis näha tugevalt suuendatud Newtoni õngaste kuutised. Mõõtemikoskoopi (või tema alust) saab nihutada hoisontaalsihis kuviku abil ning sel teel mõõta suue täpsusega kas heledate või tumedate õngaste aadiused. 3 või: Joonis 4. Vastavalt valemile (5) a (6) on uuitava läätse kõveusaadius R avutatav seosest: k R= (tume õngas) (7) kλ k R=. (hele õngas) (8) k λ Ülaltoodud valemeid saame R -i avutamiseks otseselt kasutada uhul, kui lääts on plaadiga vahetus kokkupuutes. Ent meil pole see teada. Jäelikult on teadmata ka k (või k ) avuline väätus iga üksiku õnga kohta. Me teame aga, et igas ägmises õngas on k (või k ) eelmisest ühe võa suuem. Seega on teada k (või k ) muutus (uudekasv). Suuenegu nüüd k mingist algväätusest k m -ini. Juudekasv on siis m k. Vastavalt valemile (5) võime k -le a m -indale intefeentsiägule vastava tumeda õnga aoks kiutada: k =, k Rλ m = mrλ. Lahutades kahe viimase võduse vastavad pooled, saame: m ( m k) R. k = λ 4

5 Siit ( m k ) R m = λ + k. (9) Seame nüüd intefeentsiägule vastavusse õnga äekoanumbi, loendades õngaid tsentist välapoole. Kuigi intefeentsiäk, nagu öeldud, ääb meil teadmata, on selle muutus ilmselt võdne õnga äekoanumbi muutusega. Vastaku intefeentsiägule k tume õngas numbiga a intefeentsiägule m tume õngas numbiga. On selge, et m k =. Teades seda, võime seose (9) ümbe kiutada ägmisel kuul: ( ) R = λ +. () Siit on näha, et tumeda õnga aadiuse uut on tema äekoanumbi lineaane funktsioon = f( ), mille tõusuks on R λ. Määates gaafiliselt tõusu a teades lainepikkust λ, on läätse kõveusaadiust R lihtne leida. Kuid kõveusaadiust R saab avutada ka vahetult, avaldades ta valemist (): R=. () λ ( ) -ks loeme siin väikseima mõõdetava õnga äekoanumbi, on ooksva õnga numbe. Analoogiliselt autledes saab näidata, et ka heledate õngaste koal osutub sige = f( ) tõusuks R λ ( on siin heleda õnga äekoanumbe) a seega kehtib nende puhul ka valem (). 4. Töö käik. Tutvuge mõõtemikoskoobi ning selle eguleeimisvõimalustega.. Lülitage valgusallikas sisse. Veenduge, et klaasplaat on (vt oonist 4.) valguskiite suhtes ca 45 o nuga all. Kui see nii ei ole, siis tuleb klaasplaat vastavasse asendisse pööata silma ägi. Jälgige, et klaasplaadilt peegeldunud valgus satuks mõõtemikoskoobi lauale kohas, mis asub otse obektiivi all. 3. Teavustage niitisti kuutis okulaai nihutamise või keeamisega. 4. Asetage mõõtemikoskoobi aluslauale tükk millimeetipabeit ning teavustage mikoskoop sellele obektiivi pööamisega või mikoskoobi tou nihutamisega. Hilem peavad umbes samas tasapinnas tekkima Newtoni õngad. 5. Eemaldage millimeetipabe ning asetage mõõtemikoskoobi lauale uhendaa poolt antud komplekt (klaasplaat + lääts). Komplekti nihutamisega mikoskoobi laual püüdke leida asend, kus on näha Newtoni õngad. 6. Kuvinihuti (kuviku) keeamisega viige niitist õngaste tsenti kohale, kontollides ühtlasi, kas niitisti vetikaalne oon liigub paalleelselt ingide tsentit läbiva püstsigega. Kui ei, siis saavutage see komplekti (klaasplaat + lääts) nihutamise a niitisti pööamisega. 7. Kui seade on väla eguleeitud, siis paluge uhendaal saadud pilt kontollida ning küsige, milliseid õngaid tuleb mõõta. Mõõdetavate õngaste av peab olema vähemalt 6. Mõõtmisi teostage selliselt, et mikoskoobi alus liiguks kogu aeg ainult ühes suunas. See võimaldab vältida kuvinihuti vabakäigust tekkivat mõõtehälvet. Näiteks viige alus algul nii palu paemale, et mikoskoobi niitist ääks vasakule kõigist mõõdetavatest õngastest. Seeäel hakake alust kuvinihuti abil nihutama tagasi vasakule ning viige niitist esmalt kohakuti kõige suuema mõõdetava õnga vasakpoolse ääega (oonis 4.3). Lugege kuvinihuti (kuviku) mõõteskaala 5

6 näit. Nihutades niitisti ingide tsentile äest lähemale, määake ka kõigi üleäänud mõõdetavate õngaste vasakpoolsetele äätele vastavad näidud. Joonis Nihutades alust kuviku pööamisega ainult vasakule, viige niitist üle tsenti kõige väiksema mõõdetava õnga paempoolsele ääele. Selliselt määake ka kõigi üleäänud mõõdetavate õngaste paempoolsetele äätele vastavad näidud. Mõõtmine lõpeb kõige suuema mõõdetava õnga paempoolsel ääel. 9. Mõõtmistulemused kandke tabelisse 4., mäkides ühtlasi äa, kas mõõdetud on heledaid või tumedaid õngaid. Avutage diameetite kaudu Newtoni õngaste aadiused a seeäel nende uudud. (Raadiuste otsene mõõtmine oleks ebatäpne, sest tsentaalne laik on küllalt suu ning seepäast on tsenti asukoha määamine askendatud.) Rõnga k n Newtoni õngaste mõõtmine Mõõteskaala lugem l p Vasak ää Paem ää = l l v p l v Tabel Mõõtmistel kasutatud valguse lainepikkus λ =.... Kandke koodinaattelestikule funktsiooni = f( ) väätustele vastavad punktid (y-telel on x-telel ). Lähendage punktipave sigega. Kui mõõtmised on õigesti tehtud, asetsevad katsepunktid sige lähemas ümbuses. Leidke vähimuutude meetodil sige tõus R λ koos A-tüüpi laiendmääamatusega usaldusnivool 95%. (Soovitame nii tõusu kui tema määamatuse leidmiseks kasutada füüsika II paktikumi avutites olevat pogammi Lineaane egessioon. Selle kasutusuhendi leiate töö n 6 lisast.) Lähtudes tõusust, avutage väla läätse kõveusaadius. Hinnake tema laiendatud liitmääamatus., 6

7 5. Küsimused a ülesanded. Defineeige käiguvahe a koheentsuse mõisted.. Milline nähtus on valguse intefeents a millal on intefeentsipilt älgitav? 3. Millal on tegu samapaksus-, millal samakaldeintefeentsiga? 4. Kuidas tekivad Newtoni õngad? 5. Millest sõltub Newtoni õngaste aadius? 6. Miks ei avestata läätse ülemiselt a klaasplaadi alumiselt pinnalt peegeldunud valgust? 7. Miks peab lääts olema suue kõveusaadiusega? 8. Milline on intefeentsipilt läätse a selle alusplaati läbivas valguses? 9. Miks tekib peegeldunud valguses õngaste keskele tume laik? Kas alati?. Kus on intefeentsioonte tihedus suuem, kas keskel või äätel? Miks?. Milline intefeentsipilt tekib valge valguse koal?. Kuidas muutub intefeentsipilt, kui läätse a plaadi vahel on vesi? 3. Kuidas sõltub älgitavate õngaste av läätse aadiusest? 4. Milliseid intefeentsi akendusi teate? 6. Kiandus. Savelev, I. Füüsika üldkusus III. Tln, Valgus, , 9.. Ude, Ü. Füüsika II. Tln, Halliday, D., Resnick, R., Walke, J. Fundamentals of Physics. 6th ed. New Yok,, John Wiley & Sons, Inc.,

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

INTERFERENTS. Saateks. 1. Teoreetilised alused

INTERFERENTS. Saateks. 1. Teoreetilised alused INTERFERENTS Saateks Eeline interferentsialaseid praktikuitöid sisaldav õppevahend Optika praktiku VI on pärit 989. aastast. Möödunud aja jooksul on uutunud oluliselt andetöötluse vahendid ning õningal

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

Fotomeetria. Laineoptika

Fotomeetria. Laineoptika Fotomeetria 1. Päikese ja Maa vaheline kaugus on 1,5 10 8 km. Kui kaua tuleb valgus Päikeselt Maale? (Vastus: 500 s) 2. Fizeau ajaloolises katses valguse kiiruse määramiseks oli 720 hambaga hammasratta

Διαβάστε περισσότερα

λ ). Seetõttu on tsoonide mõju paarikaupa vastastikku

λ ). Seetõttu on tsoonide mõju paarikaupa vastastikku LABORATOORNE TÖÖ NR. 3 VALGUSE DIFRAKTSIOON TEOREETILINE OSA Lainete, sealhulgas valguslainete difraktsioon tekib valguslaine ja tõkke äärte vastastikuse mõju tulemusena ning on seda tugevam, mida lähedasemad

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

TEOREETILINE OSA. Joonis 5.1. Valguse levimissuuna ning vektori E r ja magnetvälja vektori H r perioodiline muutumine.

TEOREETILINE OSA. Joonis 5.1. Valguse levimissuuna ning vektori E r ja magnetvälja vektori H r perioodiline muutumine. LABORATOORNE TÖÖ NR. 5 VALGUSE POLARISATSIOON TEOREETILINE OSA Valgusel on lainelised ja korpuskulaarsed omadused. Laineoptika põhinähtused on interferents, difraktsioon, dispersioon ja polarisatsioon.

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

O15. Prisma aine dispersiooni määramine goniomeetri abil.

O15. Prisma aine dispersiooni määramine goniomeetri abil. O. Prisma aine dispersiooni määramine goniomeetri abil. 1.VALGUSE DISPERSIOON 1.1. Teoreetilised alused Prisma abil saame lahutada uuritava valguse spektriks ning määrata murdumisnäitaja n sõltuvuse lainepikkusest.

Διαβάστε περισσότερα

TARTU ÜLIKOOL LOTE FI KOOLIFÜÜSIKA KESKUS

TARTU ÜLIKOOL LOTE FI KOOLIFÜÜSIKA KESKUS TARTU ÜLIKOOL LOTE FI KOOLIFÜÜSIKA KESKUS H. VOOLAID OPTIKA LOENGUKURSUSE LOFY.01.089 KONSPEKT TARTU 2012 1 1. Sissejuhatus... 3 1.1. Optika aine ja mudelid... 3 Ülevaade optika ajaloo tähtsündmustest...

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Valguse polarisatsioon

Valguse polarisatsioon TARTU ÜLIKOOL Teaduskool Valguse polarisatsioon Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

Newtoni seadused on klassikalise mehaanika põhialuseks. Neist lähtuvalt saab kehale mõjuvate jõudude kaudu arvutada keha liikumise.

Newtoni seadused on klassikalise mehaanika põhialuseks. Neist lähtuvalt saab kehale mõjuvate jõudude kaudu arvutada keha liikumise. KOOLIÜÜSIKA: MEHAANIKA (kaugõppele). DÜNAAMIKA. Newtoni seadused. Newtoni seadused on klassikalise mehaanika põhialuseks. Neist lähtuvalt saab kehale mõjuvate jõudude kaudu avutada keha liikumise. Newtoni

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397 Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil.

1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. LABORATOORNE TÖÖ NR. 1 STEFAN-BOLTZMANNI SEADUS I TÖÖ EESMÄRGID 1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. TÖÖVAHENDID Infrapunase

Διαβάστε περισσότερα

2. Optilised instrumendid

2. Optilised instrumendid Sisukord 2. Optilised instrumendid... 2 2.0 Tutvumine mikroskoobiga... 2 2.0.1 Sissejuhatus ja teoreetiline ülevaade... 2 2.1 Pikksilma suurendus, vaateväli ja lahutusvõime... 7 2.1.1 Tööülesanne... 7

Διαβάστε περισσότερα

Sild, mis ühendab uurimistööd tänapäeva füüsikas ja ettevõtlust nanotehnoloogias. Kvantfüüsika

Sild, mis ühendab uurimistööd tänapäeva füüsikas ja ettevõtlust nanotehnoloogias. Kvantfüüsika Sild, mis ühendab uurimistööd tänapäeva füüsikas ja ettevõtlust nanotehnoloogias Kvantfüüsika Tillukeste asjade füüsika, millel on hiiglaslikud rakendusvõimalused 2. osa KVANTOMADUSED JA TEHNOLOOGIA VI

Διαβάστε περισσότερα

Ecophon Square 43 LED

Ecophon Square 43 LED Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,

Διαβάστε περισσότερα

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Sissejuhatus optilisse spektroskoopiasse

Sissejuhatus optilisse spektroskoopiasse Sissejuhatus optilisse spektroskoopiasse Prof. Jüri Krustok 1 Elektromagnetlainete skaala 2 Üldised spektroskoopilised meetodid, mis kasutavad elektromagnetlaineid Meetod Kasutatav lainepikkuste vahemik

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha

Διαβάστε περισσότερα

ANTENNID JA RF ELEKTROONIKA

ANTENNID JA RF ELEKTROONIKA TALLINNA TEHNIKAÜLIKOOL Mikrolainetehnika õppetool Laboratoorne töö aines ANTENNID JA RF ELEKTROONIKA Antenni sisendtakistuse määramine Tallinn 2005 1 Eesmärk Käesoleva laboratoorse töö eesmärgiks on tutvuda

Διαβάστε περισσότερα

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),

Διαβάστε περισσότερα

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.

Διαβάστε περισσότερα

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,

Διαβάστε περισσότερα

I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt?

I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? (Sündmused tekitavad signaale, mida me oma meeleorganitega aistingutena

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

2 tähendab siin ühikuid siduvat

2 tähendab siin ühikuid siduvat 5. Eneia 5.1. Eneia ja eneia jäävuse seadus Eneia (k. k. eneos: aktiivne) on füüsika keskne mõiste, mis ühendab kõiki füüsika valdkondi. Tänu Newtoni autoiteedile oli sellel väljapaistval positsioonil

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

3. Peatükk. KLASSIKALISE ÜLDFÜÜSIKA MÕISTED LIIKUMINE: KINEMAATIKA

3. Peatükk. KLASSIKALISE ÜLDFÜÜSIKA MÕISTED LIIKUMINE: KINEMAATIKA 3. Peatükk. KLASSIKALISE ÜLDFÜÜSIKA MÕISTED LIIKUMINE: KINEMAATIKA Füüsika osa nimega mehaanika on teadus mis käsitleb kehade liikumist ja tasakaalu jõudude mõjul. Klassikaline mehaanika põhilähendused:

Διαβάστε περισσότερα

(Raud)betoonkonstruktsioonide üldkursus 33

(Raud)betoonkonstruktsioonide üldkursus 33 (Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

1. Õppida tundma kalorimeetriliste mõõtmiste põhimõtteid ja kalorimeetri ehitust.

1. Õppida tundma kalorimeetriliste mõõtmiste põhimõtteid ja kalorimeetri ehitust. Kaorimeetriised mõõtmised LABORATOORNE TÖÖ NR. 3 KALORIMEETRILISED MÕÕTMISED TÖÖ EESMÄRGID 1. Õppida tundma aorimeetriiste mõõtmiste põhimõtteid ja aorimeetri ehitust. 2. Määrata jää suamissoojus aorimeetriise

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

Fotosüntees. Peatükk 3.

Fotosüntees. Peatükk 3. Fotosüntees. Peatükk 3. Fotosünteesiprotsess on keerulisem kui lihtne üldvõrrand, sest valguse energiat ei saa otse H 2 O seose-elektronidele anda ja neid otse CO 2 -le üle kanda. Seetõttu vaadeldakse

Διαβάστε περισσότερα

MATEMAATILISEST LOOGIKAST (Lausearvutus)

MATEMAATILISEST LOOGIKAST (Lausearvutus) TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

Eesti koolinoorte 65. füüsikaolumpiaad

Eesti koolinoorte 65. füüsikaolumpiaad Eesti oolinoorte 65. füüsiaolumpiaad 14. aprill 018. a. Vabariili voor. Gümnaasiumi ülesannete lahendused 1. (POOLITATUD LÄÄTS) (6 p.) Autor: Hans Daniel Kaimre Ülesande püstituses on öeldud, et esialgse

Διαβάστε περισσότερα

Veaarvutus ja määramatus

Veaarvutus ja määramatus TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted

Διαβάστε περισσότερα

5. OPTIMEERIMISÜLESANDED MAJANDUSES

5. OPTIMEERIMISÜLESANDED MAJANDUSES 5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

Eesti LIV matemaatikaolümpiaad

Eesti LIV matemaatikaolümpiaad Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit

Διαβάστε περισσότερα

2. HULGATEOORIA ELEMENTE

2. HULGATEOORIA ELEMENTE 2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

Eesti koolinoorte 51. täppisteaduste olümpiaad

Eesti koolinoorte 51. täppisteaduste olümpiaad Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba

Διαβάστε περισσότερα

KESKKONNA- JA MEDITSIINIFÜÜSIKA ALUSED

KESKKONNA- JA MEDITSIINIFÜÜSIKA ALUSED TARTU ÜLIKOOL KESKKONNAFÜÜSIKA INSTITUUT KESKKONNA- JA MEDITSIINIFÜÜSIKA ALUSED OPTIKA I osa Loengukonspekt farmaatsia, geograafia, geoloogia ja keskkonnatehnoloogia eriala üliõpilastele Koostanud H. Ohvril

Διαβάστε περισσότερα

LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP)

LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) LOFY.01.087 Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) Sissejuhatus... 1 1. Füüsika kui loodusteadus... 2 1.1. Loodus... 2 1.2. Füüsika... 3 1.3. Teaduse meetod... 4 2. Universumiõpetus... 7 3. Liikumine

Διαβάστε περισσότερα

Sissejuhatus. Kinemaatika

Sissejuhatus. Kinemaatika Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida

Διαβάστε περισσότερα

TTÜ VIRUMAA KOLLEDŽ. Mõõteriistad ja mõõtevahendid:...

TTÜ VIRUMAA KOLLEDŽ. Mõõteriistad ja mõõtevahendid:... TTÜ VIRUMAA KOLLEDŽ Ehitus ja Tootmistehika lektorat Tehilie füüsika Üliõpilae: Õpperühm: Töö r. ja imetus: Ülmõõtmise Tehtu: Arvestatu: Mõõteriista ja mõõtevahei:...... Joois Kruvik: -ka (пята); -seaekaliiber

Διαβάστε περισσότερα

1 MTMM Kõrgem matemaatika, eksamiteemad 2014

1 MTMM Kõrgem matemaatika, eksamiteemad 2014 1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded

Διαβάστε περισσότερα

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega

Διαβάστε περισσότερα

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a. Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2010

KATEGOORIATEOORIA. Kevad 2010 KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα