Fakulta riadenia a informatiky Žilinskej univerzity
|
|
- Ἀλφαῖος Μαρκόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Fakulta riadenia a informatik Žilinskej univerzit Riaditeľ siete stravovacích zariadení dal pokn, že do každej reštaurácie, v ktorej stúpne počet hostí o viac ako 3 %, musia prijať najmenej dvoch nových čašníkov Sledovali sme vývoj v štroch reštauráciách z tejto siete V ktorej z nich nedodržali riaditeľov pokn? Reštaurácia : Počet hostí stúpol o 6 % a prijali dvoch čašníkov Reštaurácia : Počet hostí stúpol o 3 % a neprijali žiadneho čašníka Reštaurácia 3: Počet hostí stúpol o 3 % a prijali jedného čašníka Reštaurácia : Počet hostí stúpol o 38 % a prijali troch čašníkov Firma Melod si objednala obal na CD Dodávatelia ich priviezli v 6 balíkoch, v ktorých bolo spolu 5 obalov Ktoré z nasledujúcich tvrdení je určite pravdivé? V každom balíku bolo aspoň obalov V niektorom balíku bolo presne 9 obalov spoň v jednom balíku bolo viac ako 9 obalov spoň v jednom balíku bolo menej ako 9 obalov 3 Označme M 8 množinu všetkých prirodzených čísel, ktoré sú deliteľné osemnástimi, M množinu všetkých prirodzených čísel, ktoré sú deliteľné štrmi a M 3 množinu všetkých prirodzených M M? čísel, ktoré sú deliteľné troma Ktoré z uvedených čísel patrí do množin ( ) M3 k pre interval J, K platí J K = 5; ( 3;, potom K = ( ; 3 K = ; 3) K = 5; interval K nie je jednoznačne určený 5 Na obrázku je Vennov diagram troch množín P, Q, R Čísla označujú počt prvkov v jednotlivých oblastiach Ktoré z uvedených tvrdení je pravdivé? Množina Množina Množina P R P R Q R má prvkov má prvkov má 3 prvkov Množina, ktorá je doplnkom množin Q v množine P, má 35 prvkov Q R 35 P 6 k číslo c dáva pri delení piatimi zvšok 3, aký zvšok pri delení piatimi dáva číslo 3c? 3 7 Roman o istom prirodzenom čísle m tvrdil, že je deliteľné dvoma aj piatimi, ale nemal pravdu Z toho vplýva, že m nie je deliteľné dvoma desiatimi piatimi ani dvoma, ani piatimi (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
2 Fakulta riadenia a informatik Žilinskej univerzit 8 Riaditeľka knižnice chce doplniť knižný fond o štri knih Vberá spomedzi siedmich románov a piatich detektívok Nakoniec sa rozhodla, že kúpi dva román a dve detektívk Koľkými rôznmi spôsobmi môže tieto štri knih vbrať? V rovine je daných desať bodov tak, že práve jedna trojica z nich leží na jednej priamke Nazvime trojuholník pekným, ak všetk jeho vrchol ležia v niektorých z týchto desiatich bodov Koľko eistuje pekných trojuholníkov? Na konkurz do istej firm sa prihlásilo 36 uchádzačov: 6 žien, z ktorých 8 ovládalo anglický jazk a mužov, z ktorých 8 malo vodičský preukaz Keb vedenie firm vbralo jedného z uchádzačov úplne náhodne, s akou pravdepodobnosťou b to bola buď žena ovládajúca anglický jazk, alebo muž s vodičským preukazom? Kníhkupectvo robilo štatistiku počtu predaných kníh za prvých sedem mesiacov roku Počt kníh predaných v jednotlivých mesiacoch zaznačili do grafu (pozri obr) Ktoré z nasledujúcich tvrdení o tomto štatistickom súbore je nepravdivé? Kníhkupectvo predalo mesačne v priemere 5 kníh V júni sa predala pätina všetkých predaných kníh Medián tohto súboru je 5 Modus tohto súboru je počet predaných kníh január február marec apríl máj jún júl mesiac m Závislosť hmotnosti m častice od jej rýchlosti v je vjadrená vzťahom m =, kde m je v c pokojová hmotnosť častice, c je rýchlosť svetla Z toho pre rýchlosť v častice platí c v = m m m m v = m m c c v = m m m m v = m m c 3 ( ) ( 6 ) 6 = (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
3 Fakulta riadenia a informatik Žilinskej univerzit 3 Istá firma objednala pre každého z u účastníkov súťaže pero v cene c korún za kus Vzhľadom na to, že objednávka prekročila kusov, dodali im perá so zľavou z korún na každé pero a k tomu ako prémiu pridali p pier zdarma Ktorý z nasledujúcich výrazov vjadruje, na koľko korún všlo firmu jedno dodané pero? ( c z) u u + p c pz + p uc u + pz p ( u + p )( c z ) + p 5 Na obrázku je sieť istého telesa Tvorí ju štvorec so stranou dlhou 6 cm a štri rovnostranné trojuholník kú výšku má toto teleso? cm 3 cm 3 cm 3 3 cm 6 Hrana kock BCDEFGH má dĺžku cm Bod M, K sú stredmi hrán E a GH kú dĺžku má úsečka MK? 5 3 cm 5 5 cm 5 6 cm 6 5 cm E M H D K B F G C 7 Najviac koľko strán môže mať n-uholník, ktorý je rezom kock? Nech BC je trojuholník so stranami dlhými a, b, c, s tupým uhlom pri vrchole C Potom hodnota výrazu je z množin c a + b ; ; { } ( ; ) 9 Na obrázku je rovnostranný trojuholník BC so stranou dlhou 8 cm Bod E je stredom stran C, bod D leží na polpriamke BC, pričom platí BC = CD Polpriamka DE pretína stranu B v bode F kú dĺžku má úsečka F? F E,5 cm,5 cm cm 3 cm B C D Pre dĺžk základní rovnoramenného lichobežníka BCD platí B = CD Kružnica opísaná tomuto lichobežníku má polomer cm a jej stred leží v strede dlhšej základne ký obvod má lichobežník BCD? 36 cm cm cm 5 cm (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
4 Fakulta riadenia a informatik Žilinskej univerzit Do štvrťkruhu s polomerom je vpísaný obdĺžnik s obvodom 6 (pozri obr) ký obvod má útvar KLMN? N 5 π π π π + 7 K L M Bod [ ; 3], B [ ; p], [ ; 3] C ležia na jednej priamke Potom p = 6 p = p = 5 p = 3 p : = + 3t, = t, t R Ktorá z nasledujúcich priamok je s ňou rovno- Daná je priamka bežná? = + 3 = = 3 + = Ktorou z nasledujúcich rovníc je určená rovina prechádzajúca bodom P [ ; ; ] priamku p : = t, =, z = t, t R?, kolmá na z = z + = + z + = + z = 5 Daná je kocka BCDEFGH Ktorý z nasledujúcich vektorov je nulový? B + CG + FD HG + FD ED HD + HF G EC HD + G E H D B F G C 6 Ktorá z nasledujúcich kružníc sa dotýka osi? k : ( 3) + ( ) = 6 l : ( ) + ( + ) = 6 m : ( + ) + ( + 3) = 9 n : ( + ) + ( 3) = 9 7 Na ktorom z nasledujúcich obrázkov je všrafovaná oblasť grafickým znázornením množin všetkých riešení nerovnice +? (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
5 8 Fakulta riadenia a informatik Žilinskej univerzit 5 Po- Priamk s rovnicami a + b = 5, b + 3 = 7, kde, b R, tom pre koeficient a, b musí platiť a majú spoločný bod P [ ; ] 7 a + b = a + b = a + b = a + b = Koľko riešení má rovnica = 3 v množine reálnch čísel? ni jedno Jedno Dve Nekonečne veľa 3 Prijímacie skúšk na istú vsokú školu sa konali v dvoch termínoch Na prvom termíne sa zúčastnilo uchádzačov Z testu z ekonómie získali v priemere 6 bodov Na druhom termíne sa zúčastnilo 8 uchádzačov Ich priemerný bodový zisk z testu z ekonómie bol 5 bodov ký bol výsledný priemerný počet bodov, ktoré získali všetci uchádzači z testu z ekonómie? a paramet- Ktoré z nasledujúcich tvrdení o kvadratickej nerovnici rom p R je pravdivé? + > p s neznámou R Pre p > nerovnica nemá riešenie Pre p = je riešením nerovnice jediné reálne číslo Pre = p je množinou riešení nerovnice interval ( ; ) Pre p < je riešením nerovnice každé reálne číslo 3 Nech M je množina všetkých reálnch čísel, ktoré sú riešením nerovnice Potom = { } M M = ; M = ; ) M = R (Návod: vužite graf príslušných funkcií) 33 V ktorom z uvedených intervalov sa nachádzajú práve štri riešenia rovnice cos =? π; π π; π π; 5π 5 π; π 3 Ktoré slová možno doplniť na zakrté miesto v tete, ab vzniklo pravdivé tvrdenie? ( ) 7 Nerovnica > má v množine Z riešení viac ako v množine N 7 + o päť o šesť o sedem o osem 35 log (log (log )) = (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
6 6 Fakulta riadenia a informatik Žilinskej univerzit 36 Nerovnica má v množine R rovnakú množinu riešení ako nerovnica 37 Na ktorej z uvedených schém je znázornená množina všetkých riešení nerovnice 3 3 < 9? 6 38 Funkcia 6 g : = a + b je 39 rastúca na R práve vted, keď a klesajúca na R práve vted, keď b < konštantná na R práve vted, keď a b = nepárna práve vted, keď b = Na ktorom z nasledujú- Na obrázku vpravo je časť grafu funkcie = f ( ) cich obrázkov je časť grafu funkcie = f ( )? Ktoré z nasledujúcich tvrdení o funkcii f : = + 8 je nepravdivé? Graf funkcie f prechádza bodom [ ; 8] Graf funkcie f je súmerný podľa priamk = Funkcia f nadobúda na intervale ( ; ) 6 iba záporné hodnot Priamka = 9 má s grafom funkcie f práve dva spoločné bod (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
7 Fakulta riadenia a informatik Žilinskej univerzit 7 Na obrázkoch sú graf štroch funkcií Ku ktorej z nich neeistuje inverzná funkcia? Nech D je definičný obor funkcie h : log( 6 3) = Potom = ( ; ) D = ( ; D D = ( ; ) = ( ; ) D 3 f : ras- Nech K je množina tých hodnôt parametra R, túca na celom svojom definičnom obore Potom k pre ktoré je funkcia = ( 6 k ) 3 5 K = ; = ( ; ) K K = ( ; 3) = ( ; 6) K Ktoré z nasledujúcich tvrdení o funkcii g : = 3 je pravdivé? Grafom funkcie g je priamka Graf funkcie g je súmerný podľa priamk = Funkcia g je rastúca na celom svojom definičnom obore Priamka = 3 má s grafom funkcie g práve dva spoločné bod 5 ký obor hodnôt H a periódu p má funkcia f : = + sin? H = 3;, p = π H = 3; H = ;, p = π H = ;, p = π, p = π 6 Na obrázku je časť grafu funkcie = tg = tg = cotg 3π π π 3π = cotg (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
8 8 Fakulta riadenia a informatik Žilinskej univerzit 7 Ktoré z nasledujúcich tvrdení o funkcii f : = + je nepravdivé? 3 Definičným oborom funkcie f je množina { } R Priamka = je asmptotou grafu funkcie f 3 Funkcia f je na celom svojom definičnom obore klesajúca Funkcia f je prostá 8 Označme P povrch kock s hranou dlhou, P povrch kock s hranou dlhou,, P n povrch kock s hranou dlhou n, N P n Postupnosť { } n = je aritmetická s diferenciou 6 je geometrická s kvocientom 6 je geometrická s kvocientom 6 nie je aritmetická ani geometrická n 9 Členmi aritmetickej postupnosti { } n n= a sú iba prirodzené čísla, pričom čísla a 5 sú jej členmi, číslo 5 nie je jej členom ká je diferencia tejto postupnosti? Diferenciu nie je možné jednoznačne určiť 5 Nech { a } n n =, { } n n = b sú dve rôzne geometrické postupnosti Ktorá z nasledujúcich postupností nie je geometrická? { } n = ( a n ) { } n b n n = a an bn n = a + { } n b n n = Koniec testu (5) EXM testing, spol s r o, P O Bo 5, Vranovská 6, 85 Bratislava 5
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Fakulta riadenia a informatiky Žilinskej univerzity
Poznámka k úlohám o funkciách: Ak nie je uvedené inak, je definičným oborom funkcie množina všetkých reálnych čísel, pre ktoré výraz definujúci funkciu má zmysel. 0 Ktorá z nasledujúcich funkcií nie je
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Maturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
4 Reálna funkcia reálnej premennej a jej vlastnosti
Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
stereometria - študuje geometrické útvary v priestore.
Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa
Maturitné úlohy. Matematiky. Pre gymnázium
Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...
2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.
Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16
Goniometrické nerovnice
Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto
FUNKCIE. Funkcia základné pojmy. Graf funkcie
FUNKCIE Funkcia základné pojm. Graf funkcie V prai sa často stretávame so skúmaním závislosti veľkosti niektorých veličín od veľkosti iných veličín, napríklad dĺžka kružnice l závisí od jej priemeru d
MATEMATIKA - úlohy z MONITOROV a MSK
MATEMATIKA - úlohy z MONITOROV a MSK P.č. Tematické celky Strana 1 1.1 - Výroky 1 1.. - Množiny 4 3.1. - Výrazy 6 4 3.1. - Teória čísel 7 5 4.1. - Rovnice 9 6 4.. - Nerovnice 11 7 4.3. - Sústavy rovníc
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Goniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
Test. Matematika. Forma A. Štátny pedagogický ústav, Bratislava NUPSESO. a.s.
Test Matematika Forma A Štátny pedagogický ústav, Bratislava Ò NUPSESO a.s. 1. Koľkokrát je väčší najmenší spoločný násobok čísel 84 a 16 ako ich najväčší spoločný deliteľ. A. B. 3 C. 6 D.1. Koľko záporných
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Matematika test M-1 I. oddiel forma A
Matematika test M- I. oddiel forma A Na obrázku je graf funkcie g : =. Ktoré z tvrdení o funkcii g je nepravdivé? (A) Definičným oborom funkcie g sú všetk reálne čísla. (B) V bode = nadobúda funkcia g
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
1 Logika a dôkazy. 2 Množiny. 3 Teória čísel. 4 Premenné a výrazy. 5 Rovnice, nerovnice a ich sústavy. Pojmy:
1 Logika a dôkazy výrok, axióma, definícia, úsudok, hypotéza, tvrdenie, pravdivostná hodnota, logické spojky, negácia výroku, konjunkcia, disjunkcia, implikácia, ekvivalencia, vyplýva, je ekvivalentné,
1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Ohraničenosť funkcie
VaFu05-T List Ohraničenosť funkcie RNDr. Beáta Vavrinčíková U: V bežnom živote sa často stretávame s funkciami, ktorých hodnot sú určitým spôsobom obmedzené buď na celom definičnom obore D alebo len na
Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty
Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
MONITOR 9 (2007) riešenia úloh testu z matematiky
MONITOR 9 (007) riešenia úloh testu z matematiky Autormi nasledujúcich riešení sú pracovníci spoločnosti EXAM testing Nejde teda o oficiálne riešenia, ktoré môže vydať ia Štátny pedagogický ústav (wwwstatpedusk)
Maturitné otázky z matematiky
Gmnázium Pavla Horova Michalovce Maturitné otázk z matematik školský rok 00 / 00 . VÝROKY A MNOŽINY Maturitné otázk a príklad z matematik, Gmnázium Pavla Horova, Michalovce Výrok a jeho negácia. Kvantifikované
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.
Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B
VaFu18-T List 1. Mocninové funkcie. RNDr. Beáta Vavrinčíková
VaFu8-T List Mocninové funkcie RNDr. Beáta Vavrinčíková U: V tejto téme sa budeme zaoberať jednou celou skupinou funkcií. Pripomeňme si, že funkcia popisuje určitú závislosť medzi dvoma veličinami. Na
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol
II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Matematika NPS. Výraz. je pre všetky xy, R splňujúce podmienky. xy 0 rovný: (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) (E) Také čísla neexistujú.
Mtemtik NPS. n + n ( ) Postupnosť = =, n+ = =, n+ n = n je zhodná s postupnosťou:. Výrz + y y =, n+ = =, n+ = n +. n+ =, = n n Dávid hrá kždý všedný deň futbl v sobotu i v nedeľu chodí do posilňovne. Dnes
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Riešenia. Základy matematiky. 1. a) A = { 4; 3; 2; 1; 0; 1; 2; 3}, b) B = {4; 9; 16}, c) C = {2; 3; 5},
Riešenia Základy matematiky 1. a) A = { ; ; ; 1; 0; 1; ; }, b) B = {; 9; 16}, c) C = {; ; 5}, d) D = { 1}, e) E =.. B, C, D, F (A neobsahuje prvok 1, E obsahuje navyše prvok 1, G neobsahuje prvok 1)..
TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,
TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,
MATEMATICKÁ OLYMPIÁDA
S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n
MATURITA 2007 EXTERNÁ ČASŤ
PRÍLOHA C Test matematik - úroveň A MATURITA 007 EXTERNÁ ČASŤ M A T E M A T I K A úroveň A kód testu: 400 Test obsahuje 0 úloh. NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU! V teste
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY BRATISLAVA 2016 Schválilo Ministerstvo školstva, vedy, výskum a športu Slovenskej republiky dňa 21. 12. 2016 pod číslom 2016-25786/49974:1-10B0
Maturitné úlohy. Matematiky. Pre gymnázium
Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s výberom odpovede) OBSAH ÚVOD K ÚVODU... 4 ÚVOD... 4 1. ZÁKLADY MATEMATIKY... 6 1.1 Logika a množiny... 6 Požiadavky na vedomosti a zručnosti...
SK skmo.sk. 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A
SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A 1. Číslo n je súčinom troch (nie nutne rôznych) prvočísel. Keď zväčšíme každé z nich
Matematika test M-1, 2. časť
M O N I T O R 001 pilotné testovanie maturantov MONITOR 001 Matematika test M-1,. časť forma A Kód školy: Číslo žiaka A B C F H I K L M O P S Kód A B C F H I triedy: 01 0 03 04 05 06 07 08 09 10 11 1 13
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Štátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
Štátny pedagogický ústav, Pluhová 8, 830 00 Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY Bratislava 2008 ÚVOD Cieľové požiadavky z matematiky sú rozdelené vo väčšine kapitol
Úpravy výrazov na daný tvar
DSZŠM Úpravy výrazov na daný tvar. a) Ktoré z nasledujúcich výrazov nie sú druhou mocninou dvojčlena?, 9, 0, b) Zmeňte v nich koeficient pri lineárnom člene tak, aby sa stali druhou mocninou dvojčlena.
Vektorové a skalárne polia
Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá
Analytická geometria
Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
9 Planimetria. 9.1 Uhol. Matematický kufrík
Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných
9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!
Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM (štvorročné štúdium) Vypracoval:
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Ján Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Rovnosť funkcií. Periodická funkcia.
VaFu7-T List Rovnosť funkcií. Periodická funkcia. RNDr. Beáta Vavrinčíková U: Začnem jednoduchou otázkou. Ked sa podľa teba dve funkcie rovnajú? Ž: No čo ja viem, asi keď majú úplne rovnaké graf. U: S
VaFu02-T List 1. Graf funkcie. RNDr. Beáta Vavrinčíková
VaFu0-T List Graf funkcie RNDr. Beáta Vavrinčíková U: Vieme, že funkcia vjadruje určitú závislosť medzi dvoma veličinami. Akým spôsobom b mohla bť funkcia zadaná? Ž: Stretol som sa najmä srovnicami, napríklad
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Kapitola K2 Plochy 1
Kapitola K2 Plochy 1 Plocha je množina bodov v priestore, ktorá vznikne spojitým pohybom čiary u, ktorá nie je dráhou tohto pohybu, pričom tvar čiary u sa počas pohybu môže meniť. Čiara u sa nazýva tvoriaca
SK skmo.sk. 2009/ ročník MO Riešenia úloh domáceho kola kategórie A
SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/2010 59. ročník MO Riešenia úloh domáceho kola kategórie A 1. V obore reálnych čísel riešte sústavu rovníc x2 y = z 1, y2 z = x 1, z2 x = y 1. (Radek Horenský) Riešenie.
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
Učebný zdroj pre žiakov z predmetu Matematika
STREDNÁ ODBORNÁ ŠKOLA Komenského 6, 08 7 Lipany Učebný zdroj pre žiakov z predmetu Matematika Odbor: Kozmetik a Pracovník marketingu Autorka: PaedDr. Iveta Štefančínová, Ph.D. Moderné vzdelávanie pre vedomostnú
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
ZÁKLADY ELEMENTÁRNEJ GEOMETRIE
UNIVERZITA KONŠTANTÍNA FILOZOFA FAKULTA PRÍRODNÝCH VIED ZÁKLADY ELEMENTÁRNEJ GEOMETRIE ŠEDIVÝ ONDREJ VALLO DUŠAN Vydané v Nitre 2009 Fakultou prírodných vied Univerzity Konštantína Filozofa v Nitre s finančnou
Testy a úlohy z matematiky
Testy a úlohy z matematiky Spracovala a zostavila: c Mgr. Hedviga Soósová 008 Vydavateľ: Copyright c VARIA PRINT, s. r. o. 008. Prvé vydanie. Kontakt: VARIA PRINT, s. r. o. Mgr. Marta Varsányiová Ul. františkánov
Zhodné zobrazenia (izometria)
Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných
Stereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2:
Stereometria 1. K úlohe č.1 v príklade vidíte sklenenú kocku, na ktorej je natiahnutý drôt. Vedľa vidíte 3 pohľady na túto kocku zhora, spredu a z pravého boku. Pre ďalšie kocky nakreslite takéto 3 pohľady.