primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2
|
|
- Φῆστος Δαγκλής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Neurčitý integrál. Primitívna funkcia a neurčitý integrál Funkcia F(x)sanazývaprimitívnoufunkcioukfunkcii f(x)naintervale(a,b),akpre každé x (a,b)platí F (x)=f(x). Z definície vidíme, že pojem primitívnej funkcie je opačný k pojmu derivácie. Teda pri hľadaní primitívnej funkcie k funkcii f(x) si kladieme otázku Akú funkciu je potrebné derivovať, aby výsledkombolafunkcia f(x)? Príklad..Dokážte,žefunkcia F(x)=ln ( x+ +x ) jeprimitívnoufunkcioukfunkcii f(x)=. +x Stačíukázať,že F (x)=f(x). F (x)= x+ +x [ ln ( x+ +x )] = x+ +x ( + ) +x x = x+ +x +x +x +x x+ +x = [ x+ +x ] = ( + +x = f(x) ) x = +x Príklad.. Nájdite primitívnu funkciu k funkcii f(x) = x na množine reálnych čísel. Ľahkovidieť,žederivácioufunkcie x x dostávamefunkciu x.tedafunkcia [ ] je x primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj + = x, tedaajfunkcia x +jeprimitívnoufunkcioukfunkcii f(x)=x.podobnekaždáfunkcia tvaru x +C,preľubovoľné C Rjeprimitívnoufunkcioukfunkcii f(x)=x. Vo všeobecnosti k danej funkcii existuje nekonečne veľa primitívnych funkcií, ktoré sa navzajom líšia iba reálnou konštantou. Množinu všetkých primitívnych funkcií F(x) k funkcii f(x) na intervale(a, b) nazývame neurčitým integrálom funkcie f(x) na intervale(a, b) a označujeme f(x)dx=f(x)+c. Metódu, ako nájsť k danej funkcii neurčitý integrál, nazývame integrovaním.
2 . Všeobecné pravidlá integrovania funkcií Nasledujúce pravidlá integrovania sú dôsledkom pravidiel pre derivovanie funkcií. ) c f(x)dx=c f(x)dx ) (f(x)±g(x))dx= f(x)dx± g(x) dx ) f (x) f(x) dx=ln f(x) +C. Integračné vzorce: dx=x+c x α dx= xα+ +C,pre α α+ a x dx= ax +C,pre a lna x dx=ln x +C cosxdx=sinx+c sinxdx= cosx+c cos x dx=tgx+c sin x dx= cotgx+c { dx a x,dx= arcsin x+c a arccos x+c a dx a x = a ln a+x a x x+c { dx arctg x+c a +x = a a arccotg x+c a a dx x+ x +k =ln x +k +C Príklad.. Vypočítajte neurčitý integrál (x x+4cosx e x ) dx Na výpočet tohto integrálu použijeme všeobecné pravidlá integrovania ) a ). (x ) x+4cosx e x dx= xdx x dx+ 4cosxdx e x dx= xdx x dx+4 cosxdx e x dx= x x x x +4sinx e x +C +4sinx e x +C=
3 Príklad.4. Vypočítajte neurčitý integrál tan xdx Keďžetanx= sinx cosx aplatívzťah=sin x+cos x,danýintegrálmôžemevypočítať nasledovne: sin tan x cos xdx= cos x dx= x cos x.4 Substitučná metóda cos x dx dx= dx=tanx x+c ( ) x cos x cos cos x dx= Hlavnou myšlienkou substitučnej metódy je vo výpočte ekvivalentne nahradiť pôvodný integrál takým integrálom, ktorý sa ľahšie vypočíta. Táto metóda je odvodená od vzťahu pre deriváciu zloženej funkcie a jej princíp ukážeme v nasledujúcich príkladoch. Príklad.5. Vypočítajte neurčitý integrál x e x dx x e x dx= Často je vhodné zvoliť do substitúcie vnutornú zložku zloženej funkcie x = u derivujeme xdx = du xdx = du = e x xdx }{{} du Substitúciajevtedy dobrá,akpojejzavedenísavovýrazenevyskytujepremenná x. e u du = e u du= eu +C= e x +C
4 Príklad.6. Vypočítajte neurčitý integrál (x+) x +6x+dx Substitúcia: (x+) x +6x+dx= x +6x+ = t (x+6)dx = dt (x+)dx = dt (x+)dx = dt = x +6x+(x+)dx= tdt= }{{} dt t t dt= +C= (x +6x+) +C Príklad.7. Vypočítajte neurčitý integrál dx xlnx Substitúcia: dx xlnx = lnx = u dx = du x = lnx x dx = }{{} du u du=ln u +C=ln lnx +C 4
5 .5 Integrovanie racionálnych funkcií, rozklad na parciálne zlomky Funkciu, ktorá je podielom dvoch polynómov nazývame racionálnou funkciou. Ak stupeň polynómu v čitateli je ostro menší ako stupeň polynómu v menovateli, hovoríme o rýdzoracionálnej funkcii. Každú racionálnu funkciu možno vyjadriť ako súčet polynómu a rýdzoracionálnej funkcie(v prípade, ak daná funkcia je rýdzoracionálna príslušný polynóm je rovný 0). Každú rýdzoracionálnu funkciu možno rozložiť na súčet tzv. parciálnych(elementárnych) zlomkov. Pod parciálnymi zlomkami rozumieme zlomky tvaru kde A,a Ralebozlomkytvaru A x a, A (x a),..., A (x a) n, Ax+B x +bx+c, Ax+B Ax+B (x +bx+c),..., (x +bx+c) n, kde A,B,b,c Rakvadratickýtrojčlen x + bx+cnemáreálnekorene,t.j.,platí D= b 4c <0. Neurčitý integrál z racionálnej funkcie počítame tak, že funkciu vyjadríme ako súčet polynómu a rýdzoracionálnej funkcie, ktorú nasledne rozložíme na súčet parciálnych zlomkov. Týmto sa problém integrovania racionálnej funkcie redukuje na integrovanie polynómov a parciálnych zlomkov. V nasledujúcej časti demonštrujeme túto metódu na niekoľkých príkladoch. Príklad.8. Vypočítajte neurčitý integrál x+5 x x dx x+5 x x dx Daná funkcie je racionálna. V čitateli aj v menovateli tohto zlomku sa nachádza polynóm. Hovoríme, že funkcia je rýdzoracionálna, ak stupeň polynómu v čitateli je ostro menší ako stupeň polynómu v menovateli. Keďže v čitateli daného zlomku je polynóm prvého stupňa a v menovateli je polynóm druhého stupňa, táto funkcia je rýdzoracionálna. Túto funkciu rozložíme na súčet parciálnych zlomkov. x+5 x x = x+5 (x )(x+) = A (x ) + B (x+) x+5 x x = A(x+) B(x ) (x )(x+) = (A+B)x+A B x x Tieto zlomky sa rovnajú vtedy, ak sa rovnajú polynómy v čitateli: x+5=(a+b)x+a B 5
6 Dva polynómy sa rovnajú vtedy, ak sa rovnajú koeficienty pri rovnakých mocninách premennej x. Teda: koeficientpri x : = A+B x 0 : 5 = A B Riešenímsústavyrovnícje: A=aB= x+5 x x dx= (x ) dx (x+) dx= (x ) dx (x+) dx= ln x ln x+ +C=ln ( x ) x+ +C Príklad.9. Vypočítajte neurčitý integrál (x )(x +4) dx Funkcia (x )(x +4) jerýdzoracionálna,keďževčitatelijepolynómnultéhostupňaa v menovateli polynóm tretieho stupňa. Polynóm x +4jeireducibilnýnad R(nerozložiteľnýnasúčinpolynómovprvéhostupňa s reálnymi koeficientami). Preto v menovateli druhého zlomku vystupuje on sám a v čitateli vystupuje všeobecný tvar polynómu prvého stupňa. Teda hľadáme nasledujúci rozklad na parciálne zlomky: (x )(x +4) = A x + Bx+C x +4 A x + Bx+C x +4 = A(x +4)+(Bx+C)(x ) (x )(x +4) Aby sa zlomky rovnali musí platiť: = Ax +4A+Bx Bx+Cx C (x )(x +4) = Ax +4A+Bx Bx+Cx C = (A+B)x +(C B)x+(4A C) Riešime sústavy lineárnych rovníc(troch rovníc o troch neznámych). 6
7 koeficientpri x : A+B = 0 x : C B = 0 x 0 :4A C = A= 5 B= 5 C= 5 (x )(x +4) dx= 5 x dx+ 5 x 5 x +4 dx= 5 5 x dx 5 x x +4 dx 5 x+ x dx 5 x +4 dx= x +4 dx= 5 ln x 0 ln x +4 0 arctan x +C Príklad.0. Vypočítajte neurčitý integrál x +7x+8 x +4x +4x dx x +7x+8 x +4x +4x = x +7x+8 x(x+) = A x + B x+ + C (x+) A x + B x+ + C A(x+) +Bx(x+)+Cx (x+) = x(x+) = Ax +4Ax+4A+Bx +Bx+Cx x(x+) Porovnaním koeficientov pri rovnakých mocninách x dostávame sústavu troch rovníc o troch neznámych: x dx x +7x+8 x +4x +4x dx= x+ dx+ x : A+B = x : 4A+B+C = 7 x 0 : 4A = 8 A= B= C= A x dx+ B x+ dx+ C (x+) dx= (x+) dx=ln x ln x+ x +C 7
8 Príklad.. Vypočítajte neurčitý integrál x +5x +8 x +7x 5 dx Funkcia x +5x +8 x +7x 5 niejerýdzoracionálna. Najprv vydelíme polynóm z čitateľa funkcie polynómom z jej menovateľa. Zvyšok po tomto podiele je už rýdzoracionálnou funkciou. x +5x +8 x +7x 5 =(x +5x +8):(x x 7 +7x 5)=x + x +7x 5 x +5x +8 x +7x 5 = x + x 7 x +7x 5 x +5x +8 x +7x 5 dx= xdx dx+ ( x + x 7 x +7x 5 x 7 x +7x 5 dx ) dx= x 7 Funkcia x +7x 5 jerýdzoracionálna,tedanavýpočetintegrálumožemepoužiťmetódu: rozklad na parciálne zlomky; x 7 x +7x 5 = x 7 (x )(x+5) = A x + B x+5 x 7 x +7x 5 = A(x+5)+B(x ) (x )(x+5) x 7=A(x+5)+B(x )=(A+B)x+(5A B) koeficientpri x : = A+B x 0 : 7 = 5A B A=4 B=9 x +5x +8 x +7x 5 dx= xdx dx+ x 7 x +7x 5 dx= 8
9 xdx dx+ 4 x + 9 x+5 dx= x x+ln x +9ln x+5 +C.6 Metóda PER PARTES Metóda per partes sa využíva pri integrovaní súčinu funkcií. Vzorec(4), ktorý sa pri tejto metóde využíva, je odvodený z pravidla o derivovaní súčinu dvoch funkcií. u(x) v (x)dx=u(x) v(x) u (x) v(x)dx (4) Uvádzame niekoľko typov funkcií, ktoré sa najčastejšie integrujú pomocou tejto metódy.. typ: P(x) e x dx P(x) sinxdx P(x) cosxdx Funkcia P(x) je polynomickou funkciou, ktorá sa derivovaním zmení na polynóm o jednotku nižšieho stupňa a integrovaním sa zmení na polynóm o jednotku vyššieho stupňa. Príklad.. Vypočítajte neurčitý integrál x cosxdx x cosxdx Zvoľme: Využijeme vzťah(4) u(x)=x v (x)=cosx u (x)=x v(x)=sinx x cosxdx=x sinx x sinxdx 9
10 Na výpočet integrálu Zvoľme: x sinxdxznovapoužujememetóduperpartes. u(x)=x v (x)=sinx u (x)= v(x)= cosx x sinxdx=x ( cosx) ( cosx)dx=x ( cosx)+ cosxdx= x cosx+sinx+c Záver: x cosxdx=x sinx (x )sinx+xcosx+c x sinxdx=x sinx+x cosx sinx+c=. typ: P(x) lnxdx Je vhodné zvoliť u(x)=lnx v (x)=p(x) u (x)= x v(x)= P(x)dx P(x) arctanxdx u(x)=arctanx v (x)=p(x) u (x)= v(x)= P(x)dx +x P(x) arcsinxdx u(x)=arcsinx v (x)=p(x) u (x)= v(x)= P(x)dx x Príklad.. Vypočítajte neurčitý integrál lnxdx Danýintegrálvýpočítamepomocoumetódyperpartes.Keďželnx= lnx,v tomto prípade číslo považujeme za polynóm nultého stupňa. lnxdx= lnxdx= v (x)= u(x)=lnx v(x)=x u (x)= x = xlnx x x dx=xlnx x+c. 0
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11
Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3
Ολοκλήρωση. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι
Ολοκλήρωση Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι Το ζητούμενο Είδαμε μεθόδους υπολογισμού για το πώς μεταβάλλονται οι συναρτήσεις στιγμιαία. Αν αθροίσουμε αυτές τις στιγμιαίες μεταβολές θα έχουμε ένα
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43
Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
MATEMATIKA II ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA KATEDRA MATEMATIKY A DESKRIPTÍVNEJ GEOMETRIE RNDr. Pavol PURCZ, PhD. RNDr. Martina RÉVAYOVÁ MATEMATIKA II ZBIERKA ÚLOH KOŠICE 6 Copyright c 6, RNDr. Pavol
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Ακ. Ετος 2018-2019 Θεωρούµε µια συνάρτηση f : I R, όπου το I είναι διάστηµα του R. Ορισµός Μια συνάρτηση F : I R λέγεται αντιπαράγωγος ή αρχική συνάρτηση
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17
Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Numerické metódy Zbierka úloh
Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií
Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie
Základy automatického riadenia
Základy automatického riadenia Prednáška 1 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita
Obyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-
Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
Výrazy a ich úpravy. -17x 6 : -17 koeficient; x premenná; 6 exponent premennej x. 23xy 3 z 5 = 23x 1 y 3 z 5 : 23 koeficient; x; y; z premenné;
Výrazy a ich úpravy Počtový výraz je matematický zápis, ktorým vyjadrujeme počtové operácie s číslami a poradie v akom majú byť prevedené. Napr.: ( (5 1,76)+5):0,4. Počtové výrazy sa pomenovávajú podľa
x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)
x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).
a (x)y a (x)y a (x)y' a (x)y 0
Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef
Σάββατο, 24 Μαΐου 2008 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. f (x) = ln x, x R* είναι παραγωγίσιµη στο R* και
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 8 Σάββατο, 4 Μαΐου 8 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.. Να αποδειχθεί ότι η συνάρτηση ισχύει: f (x) = ln x, x R* είναι παραγωγίσιµη στο R* και (ln x )ʹ= Μονάδες Α.. Πότε µία
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)
Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy
3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.
3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ., x 1
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Τρόποι ολοκλήρωσης-θεµελειώδες θεώρηµα Θέµα lnx+, x > x ίνεται η συνάρτηση f(x) =. Να αποδειχθεί ότι η f είναι x, x x + ολοκληρώσιµη στο διάστηµα [,] και να υπολογιστεί
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Σ.Δ.Ε. γραμμικές 1 ης τάξης, Σ.Δ.Ε. Bernoulli και Riccatti Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό
22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte
Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál
Integrali Materijali za nastavu iz Matematike 1
Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)
EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ
EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) Να ϐρεθεί το πεδίο ορισµού των συναρτήσεων :. f (x) = log x (5x + 3) + sin x. f (x) = (x + ) sin x 3. f 3 (x) = 3 sin
PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Strojnícka fakulta Andrea Feňovčíková Gabriela Ižaríková aaaa aaaa Táto
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
Polynómy. Hornerova schéma. Algebrické rovnice
Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x
Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2
NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
Zložené funkcie a substitúcia
3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi
298 Appendix A Selected Answers
A Selected Answers 1.1.1. (/3)x +(1/3) 1.1.. y = x 1.1.3. ( /3)x +(1/3) 1.1.4. y = x+,, 1.1.5. y = x+6, 6, 6 1.1.6. y = x/+1/, 1/, 1.1.7. y = 3/, y-intercept: 3/, no x-intercept 1.1.8. y = ( /3)x,, 3 1.1.9.
Základné vzťahy medzi hodnotami goniometrických funkcií
Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
Θέματα. Α1. Να δώσετε τον ορισμό της συχνότητας και της σχετικής συχνότητας μιας παρατήρησης x i. Σ Λ
Θέματα ΘΕΜΑ Α Α. Να δώσετε τον ορισμό της συχνότητας και της σχετικής συχνότητας μιας παρατήρησης x i. (7 Μονάδες) Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
STREDOŠKOLSKÁ MATEMATIKA
TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA MATEMATIKY A TEORETICKEJ INFORMATIKY STREDOŠKOLSKÁ MATEMATIKA pre študentov FEI TU v Košiciach Ján BUŠA Štefan SCHRÖTTER Košice
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
9 Neurčitý integrál. 9.1 Primitívna funkcia a neurčitý integrál. sa nazýva primitívnou funkciou k funkcii f ( x) každé x ( a,
Hí, P Pokorný, M: Maemaika pre informaikov a prírodné vedy 9 Neurčiý inegrál 9 Primiívna funkia a neurčiý inegrál Funkia F sa nazýva primiívnou funkiou k funkii f na inervale ( b) každé ( a, b) plaí F
p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie
1. Rychlá Fourierová transformácia Budeme značiť teleso T a ω jeho prvok. Veta 1.1 (o interpolácií). Nech α 0, α 1,..., α n sú po dvoch rôzne prvky telesa T[x]. Potom pre každé u 0, u 1,..., u n T existuje
ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov
ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/52 Metódy minimalizácie funkcie jednej premennej Metódy minimalizácie funkcie jednej premennej p. 2/52 Metódy minimalizácie funkcie jednej
4 Reálna funkcia reálnej premennej a jej vlastnosti
Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Ολοκληρώµατα ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 85 3 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των ολοκληρωµάτων πραγµατικών συναρτήσεων
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α
Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α β xdx Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΝΤΙΠΑΡΑΓΩΓΟΙ Έστω συνάρτηση y=f(x) Ορίζουμε την παράγωγο της f(x)
Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák
Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
MATEMATIKA I ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA
1 Σύντομη επανάληψη βασικών εννοιών
Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Μέθοδος προσδιορισμού συντελεστών Euler
Μέθοδος προσδιορισμού συντελεστών Euler Η προηγούμενη μέθοδος αν και δεν έχει κανένα περιορισμό για το είδος συνάρτησης του μη ογενούς όρου, μπορεί να οδηγήσει σε πολύπλοκες ολοκληρώσεις, πολλές φορές
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemnn Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).
% APPM$1235$Final$Exam$$Fall$2016$
Name Section APPM$1235$Final$Exam$$Fall$2016$ Page Score December13,2016 ATTHETOPOFTHEPAGEpleasewriteyournameandyoursectionnumber.The followingitemsarenotpermittedtobeusedduringthisexam:textbooks,class
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Εργασία Παραγωγίζοντας και ολοκληρώνοντας
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Παραγωγίζοντας και ολοκληρώνοντας 1 1 Ακρότατα συνάρτησης Οι εντολές και Plot[x Cos[x],{x,0,20}] O ut[2 ]= FindMinimum[x Cos[x],{x,2}] {-3.28837,{x 3.42562}}
Homework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I 1-cos(x-a) 1.Hasildari lim =. x a (x-a)sin3(x-a) 2.Jumlahnsukupertamaderetaritmetikaadalah Sn =5 n 2-7n. Jikaasukupertamadanbbedaderettersebut,maka13a+3b=.
f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f.
ΣΕΙΡΕΣ FOURIER Θεωρία (σειρές Fourier) Εάν μιά συνάρτηση f ορίζεται σε όλο το και υάρχει αριθμός λ> τέτοιος ώστε να ισχύει: f(x)f(x+λ), x Τότε η συνάρτηση καλείται εριοδική, ο δε ελάχιστος αριθμός λ για
Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Φυσικής 1ο Σετ Ασκήσεων Γενικών Μαθηματικών ΙΙ Author : Βρετινάρης Γεώργιος Πιθανώς έχει κάποιο λάθος Supervisor : Χ.Τσάγκας 19 Φεβρουαρίου 217 ΑΕΜ: 14638 Πιθανώς
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),