Deformacija trdnih snovi
|
|
- Θυώνη Κητώ Δημαράς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Defomcij tdnih snovi Mežne točke (vozlišč) v kistlni meži tdne snovi definijo smo povpečno lego posmeznih tomov, ki sestvljjo kistl tdne snovi. Tko kot v plinu, tudi v kistlu tomi ne miujejo, mpk se temično gibljejo okog svoje vnovesne lege. Amplitude odmik so večje pi večji bsolutni tempetui T. il med sosednjim tomom tdne snovi v kistlni meži je odvisn od zdlje med njim in nšč z zdljo. podnj slik shemtsko pikzuje potencilno enegijo med dvem Wp tomom in ustezno silo =. Celotn sil je sestvljen iz pivlčneg in odbojneg del. Pivlčn sil med tomom je lhko n pime Coulombsk pivlčn sil med pozitivnim in negtivnim tomom, tko kot je to v kistlu NCl. Odbojn sil p je posledic Puli-jeveg izključitveneg nčel. Elektoni z enkimi kvntnimi števili gedo n višje enegijske nivoje, ko se dv tom pibližt. Posledično se med pibliževnjem dveh tomov njun enegij več, sil p postne odbojn (glejte sliko). W p odbojn sil pivlčn sil slik
2 Pi mjhnih odmikih od vnovesne lege ( << ) lhko potencilno enegijo med tomom v kistlni meži v okolici vnovesne zdlje poksimimo s pbolo (glejte še st. ): W p= k C, () kje je zdlj med dvem sosednjim tomom v kistlni meži (glejte sliko). Ustezn sil med tomom v bližini vnovesne zdlje je potem: W p = = k () Vidimo, d je v okolici vnovesne zdlje med sosednjimi tomi sil med sosednjim tomom lineno odvisn od zdlje med njim, zto lhko tomske sile med sosednjimi tomi kistlne meže tdne snovi ponzoimo z vijčnimi vzmetmi, ki povezujejo tome med seboj. slik Potencilno enegijo med dvem sosednjim tomom v kistlni meži p vzpoedimo s požnostno enegijo vzmeti. Model vijčnih vzmeti med tomi kistl pojsni tudi Hook-ov zkon. Ko nmeč n mkoskopsko telo deluje zunnj sil, se telo defomi, vnovesn (popečn) zdlj med sosednjimi tomi v kistlni meži ( ) p se zto spemeni n vednost. V novem vnovesju se zto sile med tomi kistl spemenijo. Linen spememb sile med tomi (enčb ()) = k () n mikoskopskem nivoju se odž tudi n mkoskopskem nivoju v lineni zvezi med ntezno (kompesijsko) silo in podljškom (skčkom) teles : σ = = E, (3)
3 kje je ε = eltivni podljšek (skček), σ = ntezn li kompesijsk npetost in povšin pesek n kteeg deluje v pvokotni smei sil. ozmenostni koeficient E (Youngov modul) je sozmeen mikoskopski konstnti k v enčbi (). Enčbo (3) imenujemo po Newtonovem sodobniku Robetu Hooku Hookov zkon. slik 3 Območje veljvnosti Hookoveg zkon območje požnosti območje plstičnosti območje sozmenosti (Hookov zkon) mej požnosti mej ntezne tdnosti mej sozmenosti slik V ndljevnju nštejemo poleg zgoj opisne ntezne (kompesijske) vzdolžne defomcije še nektee duge kkteistične defomcije z ktee velj linen zvez med npetostjo in defomcijo. 3
4 tižn defomcij ϑ V pimeu stižne defomcije deluje sil n zgonjo in spodnjo ploskev vzdolž ploskve, to je v smei pvokotno n nomlo ploskve: τ= = G ϑ, () kje je τ stižn npetost, G stižni modul, pomen defomcijskeg kot ϑ in povšine p je zviden iz zgonje slike. Vsestnsko stisknje (zpenjnje) slik 5 V = χ, (5) V V kje p= spememb tlk, ki deluje n povšino teles, eltivn spememb V volumn in χ stisljivost. Obtno vednost stisljivosti χ imenujemo stisljivostni modul.
5 Tozij ϕ= ϑ ϑ= ϕ d = π d ϕ d ϑ R slik 6 Tozij je poseben pime stižne defomcije (glejte sliko): d d = G ϑ, (6) kje je d= π d, ϑ= ϕ in G stižni modul, od kode sledi: d = Gϕ, (7) π d oziom: d πgϕ = d. (8) Izčunjmo nvo dm s kteim deluje sil d n cevsti izez plice s polmeom : π Gϕ M= = 3 d d d (9) Celoten nvo je potem: R π ϕ 3 M M G π Gϕ R = d = d =. () Vidimo toej, d je nvo, ki je poteben z tozijski zsuk plice z kot ϕ sozmeen kotu zsuk: M = Dϕ, () 5
6 kje je π G R D=. () Vednosti elstičnih konstnt z nektee tdne snovi in kpljevine * : NOV N m E(Young-ov modul) N m G (stižni modul) N m χ luminij jeklo 8. 6 vod - -. steklo živo sebo * kpljevine se zlikujejo od tdne snovi po tem, d ne penšjo stižnih npetosti Upogib nosilc Poznvnje defomcij in npetosti pi upogibu nosilcev je zelo pomembno pi konstukciji stojev in zgdb. Rvni nosilci (peklde) n vhodih, vtih in oknih so izpostvljeni velikim upogibnim npetostim, zto so že v ntičnih čsih pekldo ndomestili z lokom (obokom): pekld v Mikenh (st Gčij) sto imski lok gotski lok tudoski lok slik 7 Pi čistem upogibu nosilc obstj tko imenovn nevtln vnin, ki pi upogibni defomciji ohni svojo povšino. Nd nevtlno vnino se nosilec zteguje, pod nevtlno vnino p je izpostvljen stisknju. Pojv lhko opzujemo tudi pi upognjeni leskovi plici, kje se n notnji stni lok lubje ngub, n zunnji stni p npne. RAZTEGOVANJE TIKANJE slik 8 NEVTRALNA RAVNINA 6
7 Kot pime v ndljevnju nlizimo npetosti in defomcije v zelo lhkem nosilcu s kožnim pesekom s polmeom, ki je n levem koncu vpet v steno, n desnem koncu nosilc p je z lhko žico pitjen svetilk z mso m. nosilec sten svetilk slik 9 Izhodišče koodintneg sistem postvimo v sedišče. il teže svetilke nosilec. Vpliv lstne teže nosilc n njegov upogib znemimo. Zdi sile upogne v vnini, y izbneg koodintneg sistem. m g = m g upogib s s nosilec A l sten z y s lik = mg y Zto se zlični deli nosilc vzdolž osi y zlično ztegujejo. Znotj nosilc obstj n os y pvokotn plst, ki se ne ztegne li skči. Kot že omenjeno jo imenujemo nevtln plst (vnin). Vzdolž te vnine (plsti) meimo od koodinte odvisnost ukivljenost (glejte sliko ): C=, (3) R kje je R kivinski dij nevtlne vnine n mestu. Nd nevtlno plstjo se elementi vzdolžne plsti zdi nvo sile s ztegnejo (li skčijo), pod to plstjo p se skčijo (li ztegnejo), odvisno pč od pedznk ukivljenosti C( ) (glejte še sliko ): 7
8 ( R ) ϑ R dϑ ds ds + d d dϑ ε = =, () ds R R toej: ε = d = C d, (5) kje je d zdlj obvnvneg element nosilc od nevtlne vnine, ds in ds dolžini teg element ped oziom po upogibu nosilc, pomen kotov ϑ in dϑ p je zviden iz slike. Vednost d n sliki je pozitivn, če se vnin nhj pod nevtlno vnino in negtivn, če se obvnvn vnin nhj nd nevtlno vnino. Pi upogibu nosilc pod vplivom sile so od nič zlične tudi nektee stižne defomcije, ki p jih bomo v tej fzi npetostne nlize nosilc znemili. V ndljnji nlizi npetosti v nosilcu bomo pedpostvili, d Hookov zkon v obliki enčbe (3) velj tudi z posmezne zelo tnke elemente vzdolžnih plsti v nosilcu n izbni zdlji d od efeenčne plsti. Toej, če vstvimo ε iz enčbe (5) v Hookov zkon σ = Eε dobimo: σ = Eε = E C d, (6) kje je d pozitiven z plsti, ki se pi upogibu ztegnejo in negtiven z plsti, ki se pi upogibu skčijo. R dϑ ϑ d < d > ϑ d ds d s d dδ d s = R dϑ dδ tgϑ= d ( d s ) = ( d) + ( dδ) nevtln vnin slik Zdi upogib nosilc pod vplivom nvo sile se element nosilc z dolžino ds n zdlji d od nevtlne vnine ztegne n dolžino ds. imbol R oznčuje kivinski dij nevtlne vnine v izbni točki, δ p je vetiklni odmik izbne točke v nevtlni vnini od stnj v kteem je nvo sile s enk nič. 8
9 V vnovesju se mojo v vskem delu nosilc sile zdi notnjih npetosti uvnovesiti z zunnjimi silmi. Ke v smei -osi n nosilec ne deluje noben sil, mo biti vsot vseh sil zdi notnjih npetosti po peezu nosilc enk nič: σ d =, (7) kje je d infinitezimlni element povšine pesek nosilc v vnini y, z (glejte še sliko ): dy z z y d z dy z = y = slik Če vstvimo izz z σ iz enčbe (6) v enčbo (7) dobimo: d E C d = (8) s Iz enčbe (8) d d =. (9) Ob upoštevnju definicije d-j in definicije pedznk kivinskeg di R (glejte sliko ) tko iz enčbe (9) sledi: d = y, () sj zdi simetije velj (glejte sliki in ) y d =, () pi čeme se nevtln vnin ujem, z vnino. Elstične sile v pečnem peezu nosilc s povšino povzočjo nvo, ki im od nič zlično komponento smo v smei z-osi. Nvo elstičnih sil nmeč nspotuje zkivljnju nosilc zdi nvo sile, ki im tudi smo z-komponento zlično od nič. Nvo 9
10 elstičnih sil M skuš nosilec izvnti, zto g imenujejo tudi upogibni nvo elstičnih sil. pomočjo enčb (6) in () dobimo: d () σ d M = y A = y E C y = E C I kje smo upoštevli enčbo () in kje je = (3) I y d upogibni vztjnostni moment peez nosilc. Ke se ukivljenost nosilc vzdolž osi speminj, je tudi elstični upogibni nvo funkcij koodinte. Pečni pesek nosilc im obliko kog z diem, kteeg sedišče pvokotno pebd -os izbneg koodintneg sistem (glejte še sliki in ). Toej: + + I= y = y z y= y y y= π d d d. () Če iz enčbe () izženo ukivljenost M C =, (5) E I vstvimo v enčbo (6) te upoštevmo identiteto () dobimo: M σ = y. (6) I Poiščimo še eksplicitni izz z ukivljenost C( ). slike je zvidno, d je ds = R dϑ, (7') od kode sledi: dϑ C = =. (7) R s d Ke je = tgϑ in ( ds ) = d + dδ, iz enčbe (7) sledi d C = d dδ + d 3 (8)
11 Ke je ukivljenost nosilc zdi nvo sile s pi vseh zelo mjhn pibližno velj C = (9) d Dokz elcije (8) (glejte še sliko ): o ( δ) dδ ds= d + d = d + d dδ dδ = = d d d o tgϑ d( tgδ) (9) V izz dϑ C = s d dϑ= d cos ϑ d d dϑ= cos ϑ d d d d d dϑ= = + tg ϑ dδ + d (9b) vstvimo enčbi (9) in (9b) in dobimo enčbo (8): dϑ d C = = d s dδ + d 3 (8) Če kombinimo enčbi (5) in (9) dobimo: M =. (3) d E I Iz enčbe (3) izžen M z vstvimo v enčbo (6). Tko dobimo:
12 σ = E y. (3) d Ke je elstični upogibni nvo M funkcij koodinte se v peezu nosilc poleg ntezne sile pojvi tudi ezultntn stižn sil V, sj mo biti v vnovesju vsot nvoov, ki delujejo n izbn element nosilc dolžine d enk nič: M M + d + V d=, (3') d M M M + d + V d=, (3) d dm M + = M + d. d kje smo upoštevli ( d ) M( ) M( + d) V ( d ) V = V + = V= konst. d slik 3 Tudi vsot vseh sil v smei y osi mo biti enk nič, toej V = konst. (33) Iz enčbe (3) dobimo zvezo med V in M, dm V= (3) d pomočjo enčb (3), (33) in (3) p dobimo 3 dδ V= E I (35) 3 d in d E I δ =, (36) d kje smo upoštevli d V =, ke je V konstnt. Difeencilno enčbo (36) ešujemo z pime d pedstvljen n slikh 9 in. Enčbo (36) štiikt integimo n obeh stneh enčj: EIδ= α + α + α + α (37) 3 3
13 kje so α, α, α3 inα konstnte, ki jih določimo iz obnih pogojev. Iz obnih pogojev pi = : dδ δ ( = ) =, ( = ) =, (38) d sledi: α3= α= (39) Iz obneg pogoj pi =l, V = l + s =, () sledi: α s =. () 6 Levi pitjeni del nosilc pek peez deluje n desni del z nvoom M= E I d (enčb (3) in g skuš zvteti nvzgo. il ( l ) s : s p g želi zvteti nvzdol z nvoom + ( ) = M l s. () ( l ) s slik V enčbo () vstvimo M = E I iz enčbe (3) in dobimo: d E I + ( l ) s = (3) d Vstvimo δ iz enčbe (37) v enčbo (3): 3
14 6α α+ l s =, () z α vstvimo izz α s = (enčb ()) in dobimo: 6 α + l =, s oziom: α = s l (5) edj ko poznmo konstnte α, α, α3 inα lhko zpišemo celotno ešitev (enčb (37): δ s + l 6 = EI 3 s Od tod lhko izčunmo s pomočjo enčbe (3): s. (6) M = l (7) in s pomočjo enčbe (3): σ s y = I ( ) l, (8) kje je π I=. σ NATEGOVANJE TIKANJE s y
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka
B) VEKTORSKI PRODUKT 1 1) Prvilo desneg vijk Vsi smo že videli vijk, nekteri kkšneg privili, tisti, ki teg še niste storili, p prosite kog, ki se n vijke spozn, d vm pokže privijnje vijk. Večin vijkov
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Dani vektor lahko ponazorimo z usmerjeno daljico, ki se začne v poljubni točki - pravimo tudi, da vektor vzporedno premaknemo v dano začetno točko.
Vektoji Usejen dlji ozio oientin dlji je dlji ki ji piedio useitev oientijo. To nedio tko d se odločio kteo od kjišč je zčetn točk in kteo končn točk te dljie. Usejeno dljio z zčetno točko A in končno
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
MATEMATIKA III Zapiski za ustni izpit
MATEMATIKA III Zpiski z ustni izpit 2 UNI Šolsko leto 2011/2012 Izvjlec Gregor olinr Avtor dokument Jernej Podlipnik mjn Sirnik UREJANJE OKUMENTA VERZIJA 01.01 ATUM 12.02.2012 OPOMBE Priprv n ustni izpit
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
A MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.
1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA
Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi
Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim
Statično in kinetično trenje
Sila enja Sila enja: povzoči paske na koži, vpliva na speminjanje oblike elesa,... Po dugi sani pa nam omogoči, da hodimo po povšini, vozimo avomobile, plezamo po vveh,... Lasnosi sile enja: Sila enja
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β
TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
DOMAČA NALOGA pri predmetu Statika in Kinematika
kultet z strojništvo Univerz v Ljubljni STTIK I KIETIK DOČ LOG ri redmetu Sttik in Kinemtik Domč nlog zjem vje iz odročij: osnove vektorskeg rčun, obremenitve, rekcije in odore konstrukcij Študent: Boštjn
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
II. ŠTEVILSKE IN FUNKCIJSKE VRSTE
II. ŠTEVILSKE IN FUNKCIJSKE VRSTE. Številske vrste Poleg zporedij relnih števil lhko o konvergenci govorimo tudi pri t.i. številskih vrsth. Formlno gledno je številsk vrst neskončn vsot relnih števil;
LESARSKA ŠOLA MARIBOR M A T E M A T I K A USTNA VPRAŠANJA S PRIMERI ZA POKLICNO MATURO 2009/2010
M A T E M A T I K A USTNA VPRAŠANJA S PRIMERI ZA POKLICNO MATURO 009/00 NARAVNA ŠTEVILA. Kter števil imenujemo nrvn števil? Nštejte osnovne rčunske opercije, ki so definirne v množici nrvnih števil in
III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE
III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE 1. Odvjnje funkcij ene spremenljivke Odvjnje je en njpomembnejši opercij n funkcij. Z uporbo odvod, kdr le-t obstj, lko veliko bolje spoznmo vedenje funkcje
Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.
Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu
4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2
Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala
II. ANALITIČKA GEOMETRIJA PROSTORA
II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v
Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a
Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni
Slika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
21. Dielektrik v električnem polju
DIELEKTRIK()doc Dec-7 Dielektik v elektičnem polju Vsebina poglavlja: elativna dielektičnost, povečanje kapacitivnosti z upoabo dielektika, vezan in posti naboj, vekto polaizacije, povšinska gostota vezanega
Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.
šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Mtemtik Gbrijel Tomšič Bojn Orel Než Mrmor Kost. pril 008 50 Poglvje 5 Integrl 5. Nedoločeni in določeni integrl Nedoločeni integrl V poglvju o odvjnju funkcij smo se nučili dni funkciji f poiskti njen
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Matematika I. NTF Načrtovanje tekstilij in oblačil Zapiski ob predavanjih v šolskem letu 2006/07
Mtemtik I Mtjž Željko NTF Nčrtovnje tekstilij in oblčil Zpiski ob predvnjih v šolskem letu 006/07 Izpis: mrec 009 Kzlo Množice in števil 4 Množice 4 Reln števil 8 3 Podmnožice relnih števil 0 4 Kompleksn
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču
PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
F(x) = f(x) dx. Nedoločenega integrala velikokrat ne moremo zapisati kot kombinacijo elementarnih funkcij, kot na primer integrale sin x
Poglvje 5 Numeričn integrcij 5.1 Uvod Pojm odvod in določeneg integrl smo že srečli pri mtemtiki. Vemo, d je odvjnje rzmerom enostvn opercij in d lko vski funkciji, ki jo lko zpišemo kot kombincijo elementrni
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: objavljeno na vratih in na internetu pisarna: FS - 414 telefon: 01/4771-414
Matematika 4 Zapiski s predavanj prof. Petra Legiše
Mtemtik 4 Zpiski s predvnj prof. Petr Legiše Mih Čnčul 9. julij Kzlo Vricijski rčun 3. Osnovni vricijski problem............................. 3. Prmetričn rešitev................................. 6.3 Višji
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Analiza I. Josip Globevnik Miha Brojan
Anliz I Josip Globevnik Mih Brojn 27. pril 2012 2 Predgovor Pred vmi je prv verzij skript z predmet Anliz 1, nmenjenih študentom univerzitetneg študij mtemtike n Univerzi v Ljubljni. Upv, d bodo skript
Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.
Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
PREMIKI V TEMELJNIH TLEH
PMIKI V TMLJNIH TLH Pemike, ki jih v polposo povočijo gibke obežbe n povšj l, ičnmo ko, pobimo ešiev Boses (enčbe ičn pemikov v polposo pime, je povšje l obemenjeno s očkovno silo in iveemo sene inegcije.
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
POGLAVJE 7. Nedoločeni integral. 1. Definicija, enoličnost, obstoj
Del 3 Integrli POGLAVJE 7 Nedoločeni integrl. Definicij, enoličnost, obstoj Prvimo, d je funkcij F (x) nedoločeni integrl funkcije f(x) (in pišemo F (x) = f(x) dx), če velj F (x) = f(x) z vsk x D(f).
STATISTIKO UNIVERZITETNA ŠTUDIJSKA PROGRAMA LABORATORIJSKA BIOMEDICINA IN KOZMETOLOGIJA 1. LETNIK
MATEMATIKA bc α S STATISTIKO UNIVERZITETNA ŠTUDIJSKA PROGRAMA LABORATORIJSKA BIOMEDICINA IN KOZMETOLOGIJA. LETNIK PRIMITIVNA FUNKCIJA INTEGRAL Rešujemo nlogo: Dn je funkcij f. Poišči funkcijo F, ktere
Državni izpitni center *M * SPOMLADANSKI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sobota, 9. junij 2007 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M0774* SPOMLDNSKI ROK MEHNIK NVODIL Z OCENJEVNJE Sobota, 9. junij 007 SPLOŠN MTUR RIC 007 M07-74-- PODROČJE PREVERJNJ Navedene vrednosti veličin pretvorite
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Neodreeni integrali. Glava Teorijski uvod
Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f
1.1. Primerjava dometa vrvične in brezvrvične komunikacijske zveze
. Uvod v vvične komunikcije Telekomunikcijske zveze vednotit dv pomembn pmet. vi je domet telekomunikcijske zveze, ki g podjmo v dolžinskih enoth. Dugi pmete je zmogljivost zveze, ki ovednoti količino
Za boljšo komunikacijo s študenti in med študenti se poslužujte Foruma, ki smo ga odprli posebno v ta namen:
Spoštovani študenti! Ped vami je skipta, ki jo lahko upoabljate za lažje spemljanje pedavanj pi pedmetu Osnove elektotehnike 1 na visokošolskem študiju na Fakulteti za elektotehniko, Univeza v Ljubljani
1 Ponovitev matematike za kemijske inženirje
1 Ponovitev mtemtike z kemijske inženirje 1.1 Vektorji Vektor v 3-rzsežnem prostoru lhko npišemo kot trojico števil: = 1,, 3. Števil 1,, 3 po vrsti oznčujejo komponente vektorj v, y in z smeri krtezičneg
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
ZBIRKA REŠENIH NALOG IZ SATELITSKIH KOMUNIKACIJ
BIRK REŠENIH NLOG I ELIKIH KOMUNIKCIJ Boštjn Btgelj, Mtjž Vidm ve.. edgovo: Dgi študentje, ped vmi je osnutek knjige bik ešenih nlog iz stelitskih komunikcij, ki p n žlost ni bez npk. vse moebitne pipombe,
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2
Snov v lktričnm polju lktrično polj ipola (prvi način) P P - Prvi način: z r = r Δr r = r Δr Δr Δ r - r r r r r r Δr rδr =, = 4πε r r 4πε r r r r = r cos, r r r = r cos. r Vlja: = cos, r r r r r = cos,
Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,
Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA
OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)
TEKSTOV ZADATAKA (2. kolokvijum) iz Elektomgnetike (stuijski pogm EEN, 22/). Oeiti silu koj eluje n tčksto opteećenje Q smešteno izn polusfeične povone izočine nultog potencijl. 2. Oeiti elimične kpcitivnosti
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)
386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
PRIMENA INTEGRALA
www.mtmtinj.com PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nđmo
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
FKKT Matematika 2. shxdx = chx+c. chxdx = shx+c. tanxdx = ln cosx +C. cotxdx = ln sinx +C. sin 2 x = cotx+c. cos 2 x = tanx+c. = 1 2 2a ln a+x a x
FKKT Mtemtik Integrlni rčun Nedoločeni integrl Definicij. Nj bo dn funkcij f : D R R. Funkcij F, z ktero v vski točki iz x D velj F (x) = f(x) se imenuje nedoločeni integrl funkcije f. f(x). Izrek. Če
ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.
Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi
Izbrana poglavja iz matematike
Izbrn poglvj iz mtemtike BF Biologij Mtjž Željko Zpiski ob predvnjih v šolskem letu 009/00 Izpis: 9 jnur 00 KAZALO Kzlo Števil 5 Nrvn števil 5 Cel števil 6 3 Rcionln števil 6 4 Reln števil 7 5 Urejenost
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
1. Newtonovi zakoni in aksiomi o silah:
1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni