Osnove diferencijalnog računa
|
|
- Ἀληκτώ Παυλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Osnoe diferencijalnog računa September 15, Uod 1.1 Problem brzine želimo izračunati brzinu tijela ako put koji je tijelo prešlo možemo izraziti kao funkciju remena s = s(t), (1) onda je prosječna brzina na interalu [t 0, t 1 ] kocijent prijed enog puta i duljine remenskog interala = s(t 1) s(t 0 ) t 1 t 0 (2) Primjer 1: ertikalni hitac tijelu ispaljenom ertikalno uis mjerimo položaj u odred enim remenskim interalima rezultati mjerenja naedeni su u tablici 1.1 t (s) h (m) t (s) h (m) Tablica 1: Visina tijela u oisnosti o remenu. 1
2 1 UVOD 2 želimo izračunati prosječnu brzinu tijela na interalu [t 0, t 1 ] (t 0, t 1 ) = h 1 h 0 t 1 t 0 (3) na sljedeće četiri slike prikazane su srednje brzine za rijednosti interala t = 0.5, 0.25, 0.20, 0.10 s srednju brzinu na slikama uspored ujemo s praom brzinom tijelo se giba jednoliko ubrzano pa rijedi (t) = 0 gt (4) (t) (t) t t Slika 1: Prosječna brzina za interale t = 0.5s (lijeo) i t = 0.25s (desno). Za usporedbu je nacrtana i praa brzina (crna linija). (t) (t) t t Slika 2: Prosječna brzina za interale t = 0.2s (lijeo) i t = 0.1s (desno). Za usporedbu je nacrtana i praa brzina (crna linija).
3 1 UVOD 3 sa slika je očito da se smanjianjem interala približaamo praoj brzini na sljedećoj slici je prikazana prosječna brzina u trenutku t 0 = 2s u oisnosti o duljini interala t = s(t = 2s + t) s(t = 2s) t (5) (t = 2s) t Slika 3: Prosječna brzina u trenutku t = 2s u oisnosti o duljini interala t. Za usporedbu je horizontalnom linijom označena i praa brzina u trenutku t = 2s. možemo zaključiti da je praa brzina granični slučaj prosječne brzine (t) = lim t 0 s(t + t) s(t) t (6) oznaka lim f() = a (7) 0 znači da se funkcija f() približaa rijednosti a (po olji blizu) kada se argument približaa rijednosti 0 dakle, ako se remenski interal t približaa nuli (postaje po olji mali) onda se rijednost omjera s/ t približaa brzini čestice 1.2 Problem tangente želimo nacrtati tangentu na graf funkcije f() u točki T(, y)
4 1 UVOD 4 pro crtamo sekantu tj. praac koji siječe kriulju u točkama T(, f()) i T 2 ( +, f( + )) y T 2 y T β Slika 4: Sekanta koja prolazi kroz točke T i T 2. nagib sekante možemo odrediti iz praokutnog trokuta na sl. 4 tan β = f( + ) f() + = f( + ) f() (8) ako točku T 2 približaamo točki T (tj. ako smanjujemo rijednost ), kao na sl. 5, sekanta se približaa tangenti
5 1 UVOD 5 y T 2 T y β Slika 5: Približaanjem točke T 2 točki T sekanta se približaa tangenti. konačno, ako 0 sekanta prelazi u tangentu prikazanu na sl. 6 y T β Slika 6: Tangenta na graf funkcije f() u točki T(, f()) primjeri na slikama odgoaraju tangenti na graf funkcije f() = u točki = 3.5 u tablici 1.2 naedene su rijednosti kuta β za nekoliko razmaka točaka T i T 2
6 2 POJAM DERIVACIJE β Tablica 2: Vrijednosti nagiba sekante za nekoliko razmaka med u točkama T i T 2. 2 Pojam deriacije 2.1 Prirast funkcije neka su 1 i 2 rijednosti argumenta, a y 1 = y( 1 ) i y 2 = y( 2 ) odgoarajuće rijednosti funkcije y = f() prirast argumenta u interalu [ 1, 2 ] definiramo kao a prirast funkcije y kao = 2 1, (9) y = y 2 y 1 = f( 2 ) f( 1 ) = f( 1 + ) f( 1 ) (10) prirast funkcije oisi o točki 1, prirastu argumenta i samoj funkciji f kocijent y/ predstalja srednju brzinu promjene funkcije y u interalu [ 1, 1 + ] omjer prirasta funkcije i prirasta argumenta odgoara koeficijentu smjera sekante TT 2 grafa funkcije y = f() tan β = y (11)
7 2 POJAM DERIVACIJE 7 y T 2 y T β Slika 7: Koefinicijent smjera sekante jednak je omjeru prirasta funkcije i prirasta argumenta. Primjer: računamo prirast funkcije f() = (12) u točki 1 = 3 f = f( + ) f() = 1 2 ( + )2 3( + ) = ( )2 3 (13) sada možemo izračunati prirast u bilo kojoj točki npr., urstimo = 3.5 u jedn. (13) f =3.5 = 1 2 ( )2 + 1 (14) 2 promotrimo nekoliko konkretnih rijednosti prirasta funkcije f i nagiba sekante β u točki = 3.5
8 2 POJAM DERIVACIJE f β Tablica 3: Prirast funkcije f i nagibi sekanata grafa funkcije u točki = 3.5 za funkciju definiranu u jedn. (12) u oisnosti o prirastu argumenta. ako smanjujemo prirast argumenta, prirast funkcije se takod er smanjuje dok se nagib sekante približaa rijednosti β Deriacija funkcije deriaciju funkcije f u točki definiramo kao graničnu rijednost df d = lim f( + ) f() 0 (15) za deriaciju funkcije u upotrebi su još neke oznake oznaku f obično koristimo u mehanici df d f () f() (16) Primjer: deriacija funkcije f() = prirast oe funkcije smo eć izračunali u prošlom odjeljku f = ( )2 3 (17) podijelimo prirast funkcije s prirastom argumenta f = (18) 2 konačno, odredimo graničnu rijednost ( ) f 1 lim 0 = lim = 3 (19)
9 3 OSNOVNA PRAVILA DERIVIRANJA 9 deriacija funkcije f() = glasi df d = 3 (20) nagib tangente u točki = 3.5 tanβ = df d = ( 3) =3.5 = 0.5 = β = (21) =3.5 nagibi sekanata naedeni u tablici 2.1 približaaju se uprao gornjoj rijednosti β = pre primjene deriacija koje susrećemo u fizici su brzina i akceleracija čestice brzina odgoara deriaciji puta po remenu (t) = lim t 0 s(t + t) s(t) t = ds dt (22) akceleracija odgoara deriaciji brzine po remenu (t + t) (t) a(t) = lim = d t 0 t dt (23) 3 Osnona praila deriiranja 3.1 Suma i razlika funkcija deriacija sume jednaka je sumi deriacija (f + g) () = f () + g () (24) označimo sumu funkcija f i g s h h() = f() + g() (25) prirast funkcije h() h = (f + g)( + ) (f + g)() = f( + ) f() + g( + ) g() = f + g (26)
10 3 OSNOVNA PRAVILA DERIVIRANJA 10 kocijent prirasta tražimo graničnu rijednost h h () = lim 0 h = f + g f g (27) = lim 0 + lim 0 = f () + g () (28) analognim postupkom bi pokazali da je deriacija razlike funkcija jednaka razlici deriacija (f g) () = f () g () (29) 3.2 Produkt funkcija promatramo produkt funkcija promjena argumenta odi na h() = f()g() (30) h + h = (f + f)(g + g) = fg + ( f)g + f( g) + ( f)( g) (31) prirast produkta funkcija h = fg + ( f)g + f( g) + ( f)( g) fg = ( f)g + f( g) + ( f)( g) (32) kocijent prirasta tražimo graničnu rijednost h h () = lim 0 deriacija produkta iznosi h = f g + g f + f g (33) g + g lim 0 f + lim 0 f g = f lim 0 = f()g () + f ()g() + f () 0 (34) (f()g()) = f()g () + f ()g() (35)
11 3 OSNOVNA PRAVILA DERIVIRANJA Kocijent funkcija promatramo kocijent funkcija promjena argumenta odi na prirast kocijenta funkcija h() = f() g() h + h = f + f g + g h = f + f g + g f (f + f)g f(g + g) = g (g + g)g fg + ( f)g fg f( g) = g 2 + ( g)g g( f) f( g) = g 2 + ( g)g omjer prirasta h i prirasta argumenta h = g f f g g 2 + ( g)g granična rijednost prirasta kocijenta funkcija 3.4 Kompozicija funkcija (36) (37) (38) (39) h h () = lim 0 = gf fg (40) g 2 postupak deriiranja kompozicija funkcija ćemo samo objasniti bez dokaza pretpostaimo da su zadane dije funkcije f() i g(), kao i njihoa kompozicija h() = (g f)() = g(f()) (41) složenu funkciju h() deriiramo u tri koraka pro deriiramo funkciju g(y) i u nju urstimo funkciju f() zatim deriiramo funkciju f() na kraju pomnožimo rezultate prog i drugog koraka (g f) () = g (f()) f () (42)
12 4 DERIVACIJE ELEMENTARNIH FUNKCIJA 12 4 Deriacije elementarnih funkcija izrano računanje deriacija elementarnih funkcija pokazat ćemo na jednostanom primjeru cjelobrojnih potencija postupak za ostale elementarne funkcije je rlo sličan u praksi koristimo tablicu deriacija elementarnih funkcija koja je naedena na kraju poglalja tražimo deriaciju funkcije g() = n prirast funkcije g() g = g( + ) g() = ( + ) n n (43) iskoristimo binomni teorem ( + ) n = n k=0 ( n k ) n k ( ) k (44) član k = 0 u sumi (44) se poništi s članom n u jedn. (43) i preostaje n ( ) n g = n k ( ) k (45) k k=1 omjer prirasta funkcije n i prirasta argumenta g = 1 n ( ) n n ( n k ( ) k n = k k k=1 k=1 ) n k ( ) k 1 (46) da bi izračunali deriaciju, potrebna nam je granična rijednost izraza (46) g n ( ) n lim 0 = lim n k ( ) k 1 (47) 0 k si članoi ( ) k 1 iščezaaju osim člana s nultom potencijom k=1 ( ) k 1 0 osim za k = 1 (48) deriacija funkcije n ( dg d = lim g n 0 = 1 ) n 1 (49)
13 5 PRIMJERI 13 binomni koeficijent ( n 1 ) = n! (n 1)!1! = n (50) konačno, deriacija cjelobrojne potencije d n d = nn 1 (51) odade odmah sljedi da deriacija konstante iščezaa jer je u tom slučaju n = 1 dc d %item nešto složnijim postupkom bi dokazali da = 0, c = konst. (52) deriacije elementarnih funkcija možemo sažeti u sljedećoj tablici f() f () c 0 c e c c 1 e 1 ln sin cos cos sin 1 tan cos 2 cot 1 sin 2 1 arcsin arccos arctan 1+ 2 arccot Tablica 4: Deriacije elementarnih funkcija. 5 Primjeri 5.1 Deriacija produkta funkcija: h() = sin računamo deriaciju funkcije h() = sin radi se o produktu dije funkcije f() = i g() = sin
14 5 PRIMJERI 14 deriacija produkta dije funkcije d df [f()g()] = g() + f()dg d d d (53) deriiramo funkcije f i g i urstimo ih u jedn. (53) df d = 1 i dg d = cos (54) 5.2 Deriacija kocijenta funkcija računamo deriaciju funkcije h() = sin d [ sin ] = sin + cos (55) d radi se o kocijentu diju funkcija f() = sin i g() = deriacija kocijenta diju funkcija deriiramo funkcije f i g d d i urstimo ih u jedn. (56) [ ] d sin = d [ f() g() df d = 1 i ] = gf fg dg d cos sin 2 g 2 (56) = cos (57) = cos sin 2 (58) 5.3 Deriacija kompozicije funkcija: h() = cos 3 računamo deriaciju kompozicije funkcija g() = cos i f(y) = y 3 = f(g()) = (cos) 3 (59) deriacija kompozicije h = f g h () = f (g()) g () (60)
15 6 ZADACIZA VJEŽBU 15 deriiramo funkciju f(y) f (y) = ( y 3) = 3y 2 (61) i urstimo y = g() tj. y = cos još moramo izračunati deriaciju funkcije g() deriacija kompozcije h() f (g()) = 3 cos 2 (62) g () = sin (63) d [ cos 3 ] = f (g()) g () = 3 cos 2 ( sin ) = 3 cos 2 sin (64) d 6 Zadaci za ježbu Izračunajte deriacije sljedećih funkcija f() = 2 f() = 5 2 f() = f() = 1/ f() = 2 cos f() = e ln f() = sin f() = sin 2 f() = (cos) 3 Rješenja: f () = 2 = f (1) = 2 f () = 10 = f (1) = 10
16 6 ZADACIZA VJEŽBU 16 f () = = f (1) = 3 f () = 1/ 2 = f (1) = 1 f () = 2 cos 2 sin = f (1) = f () = e ln + e 1 = f (1) = e(1 + ln 1) = e = f () = cos sin 2 = f (1) = cos 1 sin 1 = f () = 2 cos 2 = f (1) = f () = 3 cos 2 sin = f (1) = 0.052
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske
Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
5. poglavlje (korigirano) DERIVACIJA FUNKCIJA
5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Uvod u diferencijalni račun
Uvod u diferencijalni račun Franka Miriam Brückler Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je to uopće tangenta?
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Trigonometrijske funkcije
Trigonometrijske funkcije September 5, 008 Brojevna kružnica. Mjerenje kuteva pretpostavimo da se po kružnici jediničnog radijusa pomaknemo za kut t u smjeru suprotnom od kazaljke na satu II T(t) O t I
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika
1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Matematika 1. kolokviji. Sadržaj
Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................
Derivacija funkcije Materijali za nastavu iz Matematike 1
Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
4 Izvodi i diferencijali
4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
( + ) ( ) Derivacija funkcije y = f x, u tocki x, koja je definirana u intervalu a,b jednaka je granicnoj vrijednosti ili limesu izraza:
. DERIVACIJA FUNKCIJE. Pojam derivacije Derivacija funkcije f, u tocki, koja je definirana u intervalu a,b jednaka je granicnoj vrijednosti ili limesu izraza: f lim ili f lim Funkcija je u tocki Obrat
4.1 Elementarne funkcije
. Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
f(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
Sadržaj: Diferencijalni račun (nastavak) Derivacije višeg reda Približno računanje pomoću diferencijala funkcije
Sadržaj: Diferencijalni račun (nastavak) Derivacije višeg reda Približno računanje pomoću diferencijala funkcije Osnovni teoremi diferencijalnog računa L Hospitalovo pravilo Derivacije višeg reda Derivacija
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
Predavanje osmo: Uvod u diferencijalni račun
Predavanje osmo: Uvod u diferencijalni račun Franka Miriam Brückler Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je
5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA
5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,
Integrali Materijali za nastavu iz Matematike 1
Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)
(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)
Izvodi Definicija. Neka je funkcija f definisana i neprekidna u okolini tačke a. Prvi izvod funkcije f u tački a je Prvi izvod funkcije f u tački : f f fa a lim. a a f lim 0 Izvodi višeg reda funkcije
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
3. poglavlje (korigirano) F U N K C I J E
. Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
4. DERIVACIJA FUNKCIJE 1 / 115
4. DERIVACIJA FUNKCIJE 1 / 115 2 / 115 Motivacija: aproksimacija funkcije, problemi brzine i tangente Motivacija: aproksimacija funkcije, problemi brzine i tangente Povijesno su dva po prirodi različita
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
15. domaća zadaća. Matematika 1 (preddiplomski stručni studij elektrotehnike)
Maemaika 5.. Koriseći definiciju derivacije funkcije u očki izračunaje sljedeće granične vrijednosi: c) f) h) i) j) k) n) o) q) r) e 0 e 0 e 0 ln( + ) 0 ln( + ) 0 4 ln sin e 0 5 g e 0 6 cos e cg e ln(
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
VJEŽBE IZ MATEMATIKE 1
VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Lekcije i Limesi i derivacije Poglavlje Limesi i derivacije.0. Limesi Limes funkcije f kada teºi nekoj to ki a ovdje a moºe ozna avati i ± moºemo
Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.
Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Funkcije više varijabli
VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum
16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
VJEŽBE IZ MATEMATIKE 1
VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.