Uvod u diferencijalni račun

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Uvod u diferencijalni račun"

Transcript

1 Uvod u diferencijalni račun Franka Miriam Brückler

2 Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je to uopće tangenta?

3 Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je to uopće tangenta? Tangenta je pravac

4 Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je to uopće tangenta? Tangenta je pravac koji se od svih pravaca koji prolaze kroz diralište najbolje priljubljuje uz krivulju oko dirališta.

5 Problem brzine U različitim trenutcima bilježene su udaljenosti točke koja se giba po pravcu od njene početne pozicije: t/s d/cm

6 Problem brzine U različitim trenutcima bilježene su udaljenosti točke koja se giba po pravcu od njene početne pozicije: t/s d/cm Slijedi da su (prosječne) brzine u pojedinim vremenskim intervalima t/s v/(cm/s) 0 1/2 1/5 1/2 2/5 1/10 3/10

7 Kolika je početna brzina reakcije? C 4 H 9 Cl(aq) + H 2 O(l) C 4 H 9 OH(aq) + HCl(aq) c = c(c 4 H 9 Cl) Trenutna brzina reakcije = koeficijent smjera tangente na graf ovisnosti c o t, podijeljen sa stehiometrijskim koeficijentom = 1, mol L 1 s 1 0, mol/l s

8 Problem procjene promjene

9 Što je zajedničko prethodnim problemima?

10 Što je zajedničko prethodnim problemima? Imamo različite realne funkcije jedne varijable, ali u svim slučajevima gledamo neprecizirano malu (blisku nuli) promjenu nezavisne varijable u odnosu na neku njenu zadanu (fiksiranu) vrijednost i efekt te promjene na zavisnu varijablu.

11 Derivacija kao opis relativne promjene iznosa funkcije: Derivacija f (c) je procjena relativne promjene funkcije f ako je promjena varijable ( x) približno jednaka nuli: f (c) f x. Koliko iznosi derivacija afine funkcije u zadanoj točki njene domene?

12 Derivacija kao opis relativne promjene iznosa funkcije: Derivacija f (c) je procjena relativne promjene funkcije f ako je promjena varijable ( x) približno jednaka nuli: f (c) f x. Koliko iznosi derivacija afine funkcije u zadanoj točki njene domene? Za mali razmak x omjer f x neće biti bitno različit od koeficijenta smjera tangente povučene na graf funkcije f u točki s apscisom c Derivacija kao koeficijent smjera tangente: f (c) je koeficijent smjera tangente na graf funkcije f (prikazan u Kks-u) povučene u točki s apscisom c. Kakva je veza derivacije i rasta ili pada funkcije? Koja je jednadžba tangente na graf funkcije u zadanoj točki grafa?

13 Derivacija kao opis relativne promjene iznosa funkcije: Derivacija f (c) je procjena relativne promjene funkcije f ako je promjena varijable ( x) približno jednaka nuli: f (c) f x. Koliko iznosi derivacija afine funkcije u zadanoj točki njene domene? Za mali razmak x omjer f x neće biti bitno različit od koeficijenta smjera tangente povučene na graf funkcije f u točki s apscisom c Derivacija kao koeficijent smjera tangente: f (c) je koeficijent smjera tangente na graf funkcije f (prikazan u Kks-u) povučene u točki s apscisom c. Kakva je veza derivacije i rasta ili pada funkcije? Koja je jednadžba tangente na graf funkcije u zadanoj točki grafa? Derivacija kao trenutna brzina: Derivacija f (c) funkcije čija je nezavisna varijabla vrijeme je trenutna brzina promjene zavisne varijable u trenutku c.

14 Ukoliko bismo na neki način uspjeli odrediti f (c)-ove za sve moguće c, derivaciju bismo mogli shvatiti shvatiti kao novu funkciju f : I R (c f (c), c I ). Ako (skalarna) veličina f ovisi o vremenu i ako smo našli njezinu derivaciju (kao funkciju), te ju ponovno deriviramo, što možemo zaključiti iz te druge derivacije?

15 Ukoliko bismo na neki način uspjeli odrediti f (c)-ove za sve moguće c, derivaciju bismo mogli shvatiti shvatiti kao novu funkciju f : I R (c f (c), c I ). Ako (skalarna) veličina f ovisi o vremenu i ako smo našli njezinu derivaciju (kao funkciju), te ju ponovno deriviramo, što možemo zaključiti iz te druge derivacije? Deriviranjem funkcije f dobivamo drugu derivaciju f, deriviranjem druge derivacije treću derivaciju itd. Oznake za prvu, drugu i treću derivaciju su redom f, f, f. Daljnje derivacije (n-ta za n > 3) u pravilu se označavaju s f (n).

16 Tablica derivacija f (x) f (x) C 0 x n n x n 1 a x a x ln a 1 log a x x ln a sin x cos x cos x sin x 1 tg x cos 2 x ctg x 1 sin 2 x f (x) f (x) arcsin x 1 1 x 2 arccos x 1 1 x 2 1 arctg x 1+x 2 arcctg x 1 1+x 2 sh x ch x ch x sh x

17 f (x) f (x) koef. smjera tangente u (0, f (0)) x

18 f (x) f (x) koef. smjera tangente u (0, f (0)) x x 3

19 f (x) f (x) koef. smjera tangente u (0, f (0)) x x 4 x 3 x

20 f (x) f (x) koef. smjera tangente u (0, f (0)) x x 4 x 3 x x 1/2 /2 (x 0) x 2

21 f (x) f (x) koef. smjera tangente u (0, f (0)) x x 4 x 3 x x 1/2 /2 (x 0) x 2 e x 2x 2 1 0

22 f (x) f (x) koef. smjera tangente u (0, f (0)) x x 4 x 3 x x 1/2 /2 (x 0) x 2 2x e x e x 1 ln x

23 f (x) f (x) koef. smjera tangente u (0, f (0)) x x 4 x 3 x x 1/2 /2 (x 0) x 2 2x e x e x 1 ln x 1/x ln 2

24 f (x) f (x) koef. smjera tangente u (0, f (0)) x x 4 x 3 x x 1/2 /2 (x 0) x 2 2x e x e x 1 ln x 1/x ln 2 0 0

25 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x.

26 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x. Što možete reći o f?

27 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x. Što možete reći o f? A o f (0)?

28 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x. Što možete reći o f? A o f (0)? Postoji li tangenta na graf funkcije f u točki s apscisom 0? Koji je koeficijent smjera te tangente?

29 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x. Što možete reći o f? A o f (0)? Postoji li tangenta na graf funkcije f u točki s apscisom 0? Koji je koeficijent smjera te tangente? Ako je derivacija jednaka 0 ona a) ne postoji, b) postoji. Je li a) ili b) točno? Zašto?

30 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x. Što možete reći o f? A o f (0)? Postoji li tangenta na graf funkcije f u točki s apscisom 0? Koji je koeficijent smjera te tangente? Ako je derivacija jednaka 0 ona a) ne postoji, b) postoji. Je li a) ili b) točno? Zašto? Kako geometrijski interpretirati podatak da je f (c) = 0 za neki c iz domene od f?

31 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x. Što možete reći o f? A o f (0)? Postoji li tangenta na graf funkcije f u točki s apscisom 0? Koji je koeficijent smjera te tangente? Ako je derivacija jednaka 0 ona a) ne postoji, b) postoji. Je li a) ili b) točno? Zašto? Kako geometrijski interpretirati podatak da je f (c) = 0 za neki c iz domene od f? A u kontekstu derivacije kao brzine?

32 Ako je f : R R, f (x) = x 2, vidjeli smo da je f (c) = 2c za svaki c R. Dakle je f : R R dana formulom f (x) = 2x. Temeljem proizvoljno odabrane medu danim definicijama derivacije argumentirajte zašto je f (x) = 2 za sve x. Što možete reći o f? A o f (0)? Postoji li tangenta na graf funkcije f u točki s apscisom 0? Koji je koeficijent smjera te tangente? Ako je derivacija jednaka 0 ona a) ne postoji, b) postoji. Je li a) ili b) točno? Zašto? Kako geometrijski interpretirati podatak da je f (c) = 0 za neki c iz domene od f? A u kontekstu derivacije kao brzine? A u kontekstu derivacije kao relativne promjene?

33 Za koje c R je f (c) = 0 ako sljedeća slika prikazuje graf funkcije f? Na kojim intervalima je f (x) < 0?

34 Što biste rekli o f ( 5/2), f ( 2), f (0) i f (1) za funkciju f čiji je graf prikazan sljedećom slikom? Argumentirajte!

35 Uzmimo funkciju trećeg korijena. Kako izgleda njen graf? Što je njena prirodna domena?

36 Uzmimo funkciju trećeg korijena. Kako izgleda njen graf? Što je njena prirodna domena? Izračunajte derivaciju te funkcije. Što primjećujete?

37 Uzmimo funkciju trećeg korijena. Kako izgleda njen graf? Što je njena prirodna domena? Izračunajte derivaciju te funkcije. Što primjećujete? Ako je c element domene funkcije f, onda f (c) ne postoji u sljedećim slučajevima: U c graf ima špicu ; U c se graf razdvaja; U c je tangenta vertikalna; c je rub nekog od disjunktnih intervala koji u uniji čine domenu.

38 Homogenost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = 3 x i g(x) = 2 3 x. Usporedite procjene f (c) i g (c) za nekoliko različitih c.

39 Homogenost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = 3 x i g(x) = 2 3 x. Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = 3 2x? A koliko je g (x) za g(x) = 30 20x?

40 Homogenost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = 3 x i g(x) = 2 3 x. Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = 3 2x? A koliko je g (x) za g(x) = 30 20x? Kakav je odnos izmedu derivacije funkcije i funkcije dobivene njezinim množenjem s konstantom?

41 Homogenost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = 3 x i g(x) = 2 3 x. Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = 3 2x? A koliko je g (x) za g(x) = 30 20x? Kakav je odnos izmedu derivacije funkcije i funkcije dobivene njezinim množenjem s konstantom? Ovisi li to o točki domene u kojoj tražimo derivaciju?

42 Homogenost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = 3 x i g(x) = 2 3 x. Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = 3 2x? A koliko je g (x) za g(x) = 30 20x? Kakav je odnos izmedu derivacije funkcije i funkcije dobivene njezinim množenjem s konstantom? Ovisi li to o točki domene u kojoj tražimo derivaciju? Homogenost deriviranja: (Cf (x)) = Cf (x). Slijedi li iz toga da je (x e x ) = x (e x ) = x e x? Zašto?

43 Aditivnost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = x 2, g(x) = x 3, h(x) = f (x) + g(x). Usporedite procjene f (c) i g (c) za nekoliko različitih c.

44 Aditivnost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = x 2, g(x) = x 3, h(x) = f (x) + g(x). Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = a(x) + b(x), a(x) = 2x, b(x) = 1 x?

45 Aditivnost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = x 2, g(x) = x 3, h(x) = f (x) + g(x). Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = a(x) + b(x), a(x) = 2x, b(x) = 1 x? Kakav je odnos izmedu derivacija dviju funkcija i derivacije njihova zbroja?

46 Aditivnost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = x 2, g(x) = x 3, h(x) = f (x) + g(x). Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = a(x) + b(x), a(x) = 2x, b(x) = 1 x? Kakav je odnos izmedu derivacija dviju funkcija i derivacije njihova zbroja? Ovisi li to o točki domene u kojoj tražimo derivaciju?

47 Aditivnost deriviranja U istom koordinatnom sustavu skicirajte grafove funkcija zadanih formulama f (x) = x 2, g(x) = x 3, h(x) = f (x) + g(x). Usporedite procjene f (c) i g (c) za nekoliko različitih c. Koliko iznosi f (x) ako je f (x) = a(x) + b(x), a(x) = 2x, b(x) = 1 x? Kakav je odnos izmedu derivacija dviju funkcija i derivacije njihova zbroja? Ovisi li to o točki domene u kojoj tražimo derivaciju? Aditivnost deriviranja: (f (x) + g(x)) = f (x) + g (x). Linearnost deriviranja je zajedničko ime za aditivnost i homogenost deriviranja.

48 Komentirajte sljedeći zadatak i njegovo predloženo rješenje: Derivirajte f (x) = x 5 π sin x + 5. f (x) = x 5 π sin x + 5 = (x 5 ) π(sin x) + ( 5) = 5x 4 π cos x

49 Komentirajte sljedeći zadatak i njegovo predloženo rješenje: Derivirajte f (x) = x 5 π sin x + 5. f (x) = x 5 π sin x + 5 = (x 5 ) π(sin x) + ( 5) = 5x 4 π cos x Što biste rekli o 4. derivaciji polinoma stupnja 1? 2? 3? 4? 5?

50 Komentirajte sljedeći zadatak i njegovo predloženo rješenje: Derivirajte f (x) = x 5 π sin x + 5. f (x) = x 5 π sin x + 5 = (x 5 ) π(sin x) + ( 5) = 5x 4 π cos x Što biste rekli o 4. derivaciji polinoma stupnja 1? 2? 3? 4? 5? Možete li donijeti kakav zaključak o višim derivacijama polinomâ?

51 Komentirajte sljedeći zadatak i njegovo predloženo rješenje: Derivirajte f (x) = x 5 π sin x + 5. f (x) = x 5 π sin x + 5 = (x 5 ) π(sin x) + ( 5) = 5x 4 π cos x Što biste rekli o 4. derivaciji polinoma stupnja 1? 2? 3? 4? 5? Možete li donijeti kakav zaključak o višim derivacijama polinomâ? Kako biste utvrdili je li istinita sljedeća tvrdnja: Derivacija razlike funkcija jednaka je razlici njihovih derivacija.

52 Derivacija produkta i kvocijenta funkcija Derivirajte x 2, x 3 i x 2 x 3.

53 Derivacija produkta i kvocijenta funkcija Derivirajte x 2, x 3 i x 2 x 3.Je li istinita tvrdnja: Derivacija produkta funkcija jednaka je produktu njihovih derivacija?

54 Derivacija produkta i kvocijenta funkcija Derivirajte x 2, x 3 i x 2 x 3.Je li istinita tvrdnja: Derivacija produkta funkcija jednaka je produktu njihovih derivacija? Osmislite primjer kojim se vidi da derivacija kvocijenta funkcija općenito nije jednaka kvocijentu derivacija.

55 Derivacija produkta i kvocijenta funkcija Derivirajte x 2, x 3 i x 2 x 3.Je li istinita tvrdnja: Derivacija produkta funkcija jednaka je produktu njihovih derivacija? Osmislite primjer kojim se vidi da derivacija kvocijenta funkcija općenito nije jednaka kvocijentu derivacija. Formula za derivaciju produkta funkcija glasi (f (x) g(x)) = f (x)g (x) + f (x)g(x), a za derivaciju kvocijenta funkcija ( ) f (x) = f (x)g(x) f (x)g (x) g(x) g 2. (x)

56 Derivacija produkta i kvocijenta funkcija Derivirajte x 2, x 3 i x 2 x 3.Je li istinita tvrdnja: Derivacija produkta funkcija jednaka je produktu njihovih derivacija? Osmislite primjer kojim se vidi da derivacija kvocijenta funkcija općenito nije jednaka kvocijentu derivacija. Formula za derivaciju produkta funkcija glasi (f (x) g(x)) = f (x)g (x) + f (x)g(x), a za derivaciju kvocijenta funkcija ( ) f (x) = f (x)g(x) f (x)g (x) g(x) g 2. (x) Zadatak Izvedite formule za derivacije funkcija tangens i kotangens!

57 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna?

58 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna? S kojom bazom?

59 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna? S kojom bazom? a(x) = ( e 3) x Derivirajte ju!

60 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna? S kojom bazom? a(x) = ( e 3) x Derivirajte ju! a (x) = ( e 3) x ln e 3 = 3 ( e 3) x = 3e 3x.

61 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna? S kojom bazom? a(x) = ( e 3) x Derivirajte ju! a (x) = ( e 3) x ln e 3 = 3 ( e 3) x = 3e 3x. Derivirajte funkciju zadanu formulom b(x) = (sin x) 2 = sin x sin x koristeći pravilo za derivaciju produkta:

62 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna? S kojom bazom? a(x) = ( e 3) x Derivirajte ju! a (x) = ( e 3) x ln e 3 = 3 ( e 3) x = 3e 3x. Derivirajte funkciju zadanu formulom b(x) = (sin x) 2 = sin x sin x koristeći pravilo za derivaciju produkta: b (x) = cos x sin x + sin x cos x = 2 sin x cos x = sin(2x).

63 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna? S kojom bazom? a(x) = ( e 3) x Derivirajte ju! a (x) = ( e 3) x ln e 3 = 3 ( e 3) x = 3e 3x. Derivirajte funkciju zadanu formulom b(x) = (sin x) 2 = sin x sin x koristeći pravilo za derivaciju produkta: b (x) = cos x sin x + sin x cos x = 2 sin x cos x = sin(2x). Derivirajte funkciju zadanu formulom c(x) = ln x 3!

64 Je li funkcija zadana formulom a(x) = (e x ) 3 eksponencijalna? S kojom bazom? a(x) = ( e 3) x Derivirajte ju! a (x) = ( e 3) x ln e 3 = 3 ( e 3) x = 3e 3x. Derivirajte funkciju zadanu formulom b(x) = (sin x) 2 = sin x sin x koristeći pravilo za derivaciju produkta: b (x) = cos x sin x + sin x cos x = 2 sin x cos x = sin(2x). Derivirajte funkciju zadanu formulom c(x) = ln x 3! c (x) = (3 ln x) = 3 x.

65 Lančano pravilo Opišite funkcije zadane formulama a(x) = (e x ) 3, b(x) = (sin x) 2 = sin x sin x, c(x) = ln x 3 i d(x) = (cos x) π kao kompozicije po dviju funkcija!

66 Lančano pravilo Opišite funkcije zadane formulama a(x) = (e x ) 3, b(x) = (sin x) 2 = sin x sin x, c(x) = ln x 3 i d(x) = (cos x) π kao kompozicije po dviju funkcija! Općenito, pravilo za deriviranje kompozicije funkcija glasi (g f ) (x) = g (y) f (x), gdje je y = f (x). To se pravilo često piše u obliku (g f ) (x) = g (f (x)) f (x). Zadatak Odredite derivaciju od Λ m po c ako je 1 Λ m = 1 Λ + cλm, tj. m K(Λ m) 2

67 Lančano pravilo Opišite funkcije zadane formulama a(x) = (e x ) 3, b(x) = (sin x) 2 = sin x sin x, c(x) = ln x 3 i d(x) = (cos x) π kao kompozicije po dviju funkcija! Općenito, pravilo za deriviranje kompozicije funkcija glasi (g f ) (x) = g (y) f (x), gdje je y = f (x). To se pravilo često piše u obliku (g f ) (x) = g (f (x)) f (x). Zadatak Odredite derivaciju od Λ m po c ako je 1 Λ m = 1 Λ + cλm, tj. m K(Λ m) 2 Λ m = 1 + 4c 1 2c/Λ. m Koja je jedinica te derivacije?

Predavanje osmo: Uvod u diferencijalni račun

Predavanje osmo: Uvod u diferencijalni račun Predavanje osmo: Uvod u diferencijalni račun Franka Miriam Brückler Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

15. domaća zadaća. Matematika 1 (preddiplomski stručni studij elektrotehnike)

15. domaća zadaća. Matematika 1 (preddiplomski stručni studij elektrotehnike) Maemaika 5.. Koriseći definiciju derivacije funkcije u očki izračunaje sljedeće granične vrijednosi: c) f) h) i) j) k) n) o) q) r) e 0 e 0 e 0 ln( + ) 0 ln( + ) 0 4 ln sin e 0 5 g e 0 6 cos e cg e ln(

Διαβάστε περισσότερα

Redovi funkcija. Redovi potencija. Franka Miriam Brückler

Redovi funkcija. Redovi potencija. Franka Miriam Brückler Franka Miriam Brückler Redovi funkcija 1 + (x 2) + 1 + x + x 2 + x 3 + x 4 +... = (x 2)2 2! + (x 2)3 3! + +... = sin(x) + sin(2x) + sin(3x) +... = x n, + + n=1 (x 2) n, n! sin(nx). Redovi funkcija 1 +

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Polinomi Racionalne funkcije Korijeni Algebarske funkcije. Algebarske funkcije. Franka Miriam Brückler

Polinomi Racionalne funkcije Korijeni Algebarske funkcije. Algebarske funkcije. Franka Miriam Brückler Algebarske funkcije. Franka Miriam Brückler Zadatak Skicirajte graf funkcije zadane formulom f (x) = 4x + 7. Zadatak Skicirajte graf funkcije zadane formulom f (x) = 4x + 7. Netko je na taj graf primijenio

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

4. DERIVACIJA FUNKCIJE 1 / 115

4. DERIVACIJA FUNKCIJE 1 / 115 4. DERIVACIJA FUNKCIJE 1 / 115 2 / 115 Motivacija: aproksimacija funkcije, problemi brzine i tangente Motivacija: aproksimacija funkcije, problemi brzine i tangente Povijesno su dva po prirodi različita

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

4 Elementarne funkcije

4 Elementarne funkcije 4 Elementarne funkcije 4. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

f(x) = a x, 0<a<1 (funkcija strogo pada)

f(x) = a x, 0<a<1 (funkcija strogo pada) Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Lekcije i Limesi i derivacije Poglavlje Limesi i derivacije.0. Limesi Limes funkcije f kada teºi nekoj to ki a ovdje a moºe ozna avati i ± moºemo

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

( + ) ( ) Derivacija funkcije y = f x, u tocki x, koja je definirana u intervalu a,b jednaka je granicnoj vrijednosti ili limesu izraza:

( + ) ( ) Derivacija funkcije y = f x, u tocki x, koja je definirana u intervalu a,b jednaka je granicnoj vrijednosti ili limesu izraza: . DERIVACIJA FUNKCIJE. Pojam derivacije Derivacija funkcije f, u tocki, koja je definirana u intervalu a,b jednaka je granicnoj vrijednosti ili limesu izraza: f lim ili f lim Funkcija je u tocki Obrat

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................

Διαβάστε περισσότερα

3. poglavlje (korigirano) F U N K C I J E

3. poglavlje (korigirano) F U N K C I J E . Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje

Διαβάστε περισσότερα

3.1 Elementarne funkcije

3.1 Elementarne funkcije 3. Elementarne funkcije 3.. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Plohe u prostoru i ekstremi skalarnih funkcija više varijabli

Plohe u prostoru i ekstremi skalarnih funkcija više varijabli Plohe u prostoru i ekstremi skalarnih funkcija više varijabli Franka Miriam Brückler f (x, y) = y ln x f x = y x, f y = ln x. f (x, y) = y ln x f x = y x, f y = ln x. Dakle, za svaki par (x, y) u domeni

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα