4.1 Elementarne funkcije
|
|
- Μέντωρ Ταρσούλη
- 8 χρόνια πριν
- Προβολές:
Transcript
1 . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom n tog stupnja. Brojevi a n, a n,..., a, a 0 nazivaju se koeficijenti polinoma, a specijalno se a n zove vodeći koeficijent, a a 0 slobodni koeficijent. Teorem. (O jednakosti dvaju polinoma) Polinomi f i g definirani s: f(x) = a n x n + a n x n a x + a 0, g(x) = b m x m + b m x m b x + b 0, su jednaki ako i samo ako je m = n i a i = b i, i = 0,,..., n. Svaki broj α za koji vrijedi f(α) = 0 zovemo nultočka polinoma f. Specijalno, ako je n = 0 onda polinom nultog stupnja zapisujemo u obliku f(x) = c, c R \ {0} i zovemo konstantni polinom ili konstanta. Njezin graf je pravac y = c koji je paralelan s x osi. Ako je f(x) = 0, x R onda f nazivamo nul-polinom (i njegov stupanj ne definiramo). Teorem. (O nul-polinomu) Polinom f(x) = a n x n + a n x n a x + a 0 je nul polinom ako i samo ako su svi koeficijenti a i = 0, i = 0,,..., n. Slika : Graf konstante 3 3 3
2 Specijalno, ako je n = onda polinom prvog stupnja zapisujemo u obliku f(x) = kx + l, k 0 i zovemo linearna funkcija. Vodeći koeficijent se zove koeficijent smjera, a slobodni koeficijent odsječak na y osi. Linearna funkcija ima jednu nultočku: l. Linearna k funkcija je strogo rastuća funkcija ako je k > 0, a strogo padajuća funkcija ako je k < 0. Graf linearne funkcije je pravac y = kx + l (a) k > 0 3 (b) k < 0 Slika : Graf linearne funkcije Specijalno, ako je n = onda polinom drugog stupnja zapisujemo u obliku f(x) = ax + bx + c, a 0 i zovemo kvadratna funkcija. Diskriminanta kvadratne funkcije je realan broj D = b ac. Nultočke kvadratne funkcije računamo po formuli: x, = b ± D. a
3 Ako je D > 0 onda kvadratna funkcija ima dvije različite realne nultočke (dvije jednostruke nultočke), D = 0 onda kvadratna funkcija ima jednu realnu nultočku (jednu dvostruku nultočku), D < 0 onda kvadratna funkcija ima dvije kompleksno konjugirane nultočke. Tjeme kvadratne funkcije je točka ( T(x 0, y 0 ) = T b ) ac b,. a a Graf kvadratne funkcije je parabola čija je os paralelna s y osi. Ako je a > 0 parabola je okrenuta prema gore, te je funkcija strogo padajuća na intervalu, x 0, u x 0 postiže najmanju vrijednost koja iznosi y 0 te je strogo rastuća na intervalu x 0, +. Ako je a < 0 parabola je okrenuta prema dolje, te je funkcija strogo rastuća na intervalu, x 0, u x 0 postiže najveću vrijednost koja iznosi y 0 te je strogo padajuća na intervalu x 0, +. 3
4 0 8 6 Slika 3: Graf kvadratne funkcije (a) a > 0, D < 0, 3 5 (b) a > 0, D = 0, (c) a > 0, D > 0, (d) a < 0, D > 0, (e) a < 0, D = 0, (f) a < 0, D < 0, Zbrajanje i množenje polinoma: (f + g)(x) := f(x) + g(x), (f g)(x) := f(x) g(x). Funkcije f + g : R R i f g : R R su također polinomi. Množenje polinoma skalarom: (λf)(x) := λf(x), λ R Funkcija λf : R R je također polinom.
5 Zadaci Zadatak. Odredite f(x) + g(x), f(x) g(x), 3f(x) g(x) i f(x) g(x) ako je zadano: a) f(x) = x 3x +, g(x) = x b) f(x) = x 3 + 5x x + 7, g(x) = 3x 3 x + 5x 3 c) f(x) = x 5 3x x +, g(x) = x 5 + 3x 5x + x d) f(x) = 3x 3 x +, g(x) = x 6 x. Zadatak. Odredite zbroj koeficijenata u kanonskom zapisu polinoma: a) f(x) = (x x + ) 000 (x x + ) 0 b) f(x) = (x x + 3) 987 (x 6x + 5) 987 c) f(x) = (x 5x + ) 50 (x 5x + ) 50 d) f(x) = (x + 3x + ) 00 (x 3x + ) 00 Zadatak 3. Skicirajte grafove sljedećih funkcija: a) f(x) = x, b) f(x) = x, c) f(x) = x 6, d) f(x) = x 3, e) f(x) = x 5, f) f(x) = x 7, g) f(x) = x, h) f(x) = x 3. Zadatak. Skicirajte grafove sljedećih funkcija: a) f(x) = (x + )(x )(x + 3)(x /), b) f(x) = (3 x)(x + 7)(x ), c) f(x) = 3(x ) (x )(x + ) 3, d) f(x) = ( x) 3 (x ) (x + ) 3 (x + 7). 5
6 .. Racionalne funkcije Funkcija f : D f R, D f R zadana formulom f(x) = P n(x) Q m (x) = a nx n + a n x n a x + a 0 b m x m + b m x m b x + b 0, gdje su P n i Q m polinomi stupnja n i m > 0, tim redom, naziva se racionalna funkcija. Domena racionalne funkcije sadrži sve realne brojeve koji nisu nultočke nazivnika, tj. D f = {x R : Q m (x) 0}. Prava racionalna funkcija je ona kod koje je stupanj polinoma u brojniku manji od stupnja polinoma u nazivniku. U suprotnom je neprava i može se dijeljenjem brojnika i nazivnika svesti na zbroj polinoma i prave racionalne funkcije. Slika : Graf racionalne funkcije (a) f(x) = x (b) f(x) = x (c) f(x) = x x +x+ (d) f(x) = x 3x+5 (x+)(x )(x 3) 6
7 Zadatak 5. Na osnovi teorema o jednakosti polinoma rastavite na parcijalne razlomke: a) x x b) x + x 3x c) 5x + x + x d) 3x + 8 x x e) x + x 3 + x f) x 3 x g) x h) x 5 x 3 8 i) x 9x 6 x 3 + x 6x j) x + 3 (x + )(x + ) k) x + (x ) 3 l) x + 3 (x ) (x + )(x + 3) Zadatak 6. Skicirajte grafove sljedećih funkcija: a) f(x) =, b) f(x) =, c) f(x) =, d) f(x) =, e) f(x) = +, x x 3 x+ x x f) f(x) = x. 7
8 ..3 Opća potencija i iracionalne funkcije Funkcije zadane formulom f(x) = x r, gdje je r R zovemo opće potencije. Općenito je domena opće potencije skup R +, ali se kod nekih funkcija domena može proširiti. Najjednostavnije iracionalne funkcije su funkcije f : D f R, D f R zadane formulom f(x) = x q, q Q. Domena iracionalne funkcije ovisi o svakoj pojedinoj funkciji. Primjer. a) Domena funkcije f(x) = x = x je D f = [0, +. b) Domena funkcije g(x) = x 3 = 3 x je D g = R. c) Domena funkcije h(x) = x = x je D h = 0, +. Slika 5: Graf funkcije f(x) = x Zadatak 7. Skicirajte grafove sljedećih funkcija: a) f(x) = x +, b) f(x) = 3 x, c) f(x) = x /, d) f(x) = x
9 .. Eksponencijalna funkcija Funkcija f : R 0, + zadana formulom f(x) = a x, a > 0, a naziva se eksponencijalna funkcija. a se naziva baza, a x eksponent. Eksponencijalna funkcija je bijekcija. Strogo je rastuća ako je a >, a strogo padajuća ako je 0 < a <, Neka su x, x, x R te a > 0, a. Tada vrijede sljedeća svojstva: f(x + x ) = f(x ) f(x ), tj. a x +x = a x a x, f(x x ) = f(x ), tj. f(x ) ax x = ax a x (a x ) x = a x x, f(0) = a 0 =. Slika 6: Graf eksponencijalne funkcije (a) a > (b) 0 < a < 9
10 Zadatak 8. Skicirajte grafove sljedećih funkcija: a) f(x) = x, b) f(x) = 3 x, c) f(x) = ( )x, d) f(x) = ( 3 )x, e) f(x) = x+, f) f(x) = 3 x, g) f(x) = x, h) f(x) = x, i) f(x) = e x +, j) f(x) = ( )x 3. Zadatak 9. Riješite sljedeće nejednadžbe: a) x <, b) ( )x 8, c) 3 x 9, d) x > Logaritamska funkcija Inverzna funkcija eksponencijalne funkcije naziva se logaritamska funkcija, u oznaci: log a, a > 0, a. Dakle, log a : 0, + R, log a x = y a y = x. Uočimo da vrijedi a log a x = x, x > 0 i log a a x = x, x R. Dekadski logaritam je logaritam s bazom 0 (oznaka: log), a prirodni logaritam je logaritam s bazom e (oznaka: ln). Logaritamska funkcija je bijekcija. Strogo je rastuća ako je a >, a strogo padajuća ako je 0 < a <. Slika 7: Graf logaritamske funkcije (a) a > (b) 0 < a < Neka su x, x 0, + te a > 0, a. Tada vrijede sljedeća svojstva: f(x x ) = f(x ) + f(x ), tj. log a (x x ) = log a x + log a x, f( x x ) = f(x ) f(x ), tj. log a ( x x ) = log a x log a x, log a x k = k log a x, k R, log a r x = r log a x, r R \ {0}, 0
11 log a = 0, veza između logaritama različitih baza: log a x = log b x log b a. Zadatak 0. Skicirajte grafove sljedećih funkcija: a) f(x) = log x b) f(x) = log 3 x, c) f(x) = log 3 x, d) f(x) = log / x, e) f(x) = log /3 x, f) f(x) = ln x, g) f(x) = log /3 x +, h) f(x) = log x, i) f(x) = log x, j) f(x) = log( x). Zadatak. Izračunajte: a) ( 5 )log 5 0, b) log 7, c) ( 0.) log 0.0 log 5, d) 5 log / 8 log3 9, e) log 8 ( log 5 ), f) log 3 log ( 3 5 log 5 8 ), g) log 8 log 3 log 8 + log Zadatak. Riješite sljedeće jednadžbe: a) log /3 x =, b) log x = 0, c) log x 6 =, d) log x 0.5 =...6 Trigonometrijske funkcije Trigonometrijske funkcije: sin, cos, tg, ctg a) Funkcija x sin x Funkcija sin : R [, ] je neparna, periodična s periodom kπ, k Z (temeljni period je π) funkcija čiji graf je prikazan na Slici 8. a). Slika 8: Trigonometrijske funkcije sin i cos Π Π Π Π 3Π Π 5Π (a) Π Π Π Π 3Π Π 5Π (b) b) Funkcija x cos x Funkcija cos : R [, ] je parna, periodična s periodom kπ, k Z (temeljni period je π) funkcija čiji graf je prikazan na Slici 8. b).
12 c) Funkcija x tg x Funkcija tg: R\ { π + kπ k Z} R neparna je, po dijelovima rastuća i periodična s periodom kπ, k Z (temeljni period je π). Njezin graf prikazan je na Slici 9. a). d) Funkcija x ctg x Funkcija ctg: R\ {kπ k Z} R neparna je, po dijelovima padajuća i periodična s periodom kπ, k Z (temeljni period je π). Njezin graf prikazan je na Slici 9. b). Slika 9: Trigonometrijske funkcije tg i ctg 5 3 Π Π Π Π 3Π 3 5 (a) 5 3 Π Π Π Π 3Π 3 5 (b)
13 Osnovne veze među trigonometrijskim funkcijama: sin x + cos x = ( sin x = cos x π ) (, cos x = sin x + π ) Adicijske formule: tgx = sin x cos x = ctgx, sin(x ± y) = sin x cos y ± sin y cos x cos(x ± y) = cos x cos y sin x sin y tg(x ± y) = tgx±tgy tgx tgy ctg(x ± y) = ctgx ctgy ctgy±ctgx. cos x ctgx = sin x = tgx Trigonometrijske funkcije dvostrukog kuta: sin(x) = sin x cos x cos(x) = cos x sin x tg(x) = ctg(x) = tgx tg x ctg x ctgx. Zadaci Zadatak 3. Izračunajte: a) cos 05, b) sin 75, c) cos 5, d) sin 30. Zadatak. Ako je sin x = 3, π < x < π izračunajte cos x i tg ( x ). Zadatak 5. Dokažite da za sve α, β R vrijedi: a) sin α + sin β = sin α + β b) sin α sin β = cos α + β c) cos α + cos β = cos α + β d) cos α cos β = sin α + β cos α β, sin α β, cos α β, sin α β. Gornje formule se zovu: Transformacija zbroja u umnožak. Zadatak 6. Riješite sljedeće jednadžbe: a) sin x =, b) cos x =, c) tg x =, d) ctg x = 3. 3
14 Zadatak 7. Skicirajte grafove sljedećih funkcija: a) f(x) = sin(x π 6 ), b) f(x) = cos(x π ), c) f(x) = sin(x π 3 ), d) f(x) = 3 cos(x + π 3 ). Zadatak 8. Skicirajte grafove sljedećih funkcija: a) f(x) = tg x b) f(x) = ctg x, c) f(x) = tg (x π ), d) f(x) = ctg x Ciklometrijske funkcije Ciklometrijske funkcije : arkus sinus (arcsin), arkus kosinus (arccos), arkus tangens (arctg) i arkus kotangens (arcctg). a) Funkcija x arcsin x. Budući da funkcija sin : R [, ] nije injekcija, ona nema inverznu funkciju. Zato ćemo definirati bijektivnu funkciju: Sin : [ π, π ] [, ] formulom Sin (x) := sin x Funkciju Sin zovemo restrikcija funkcije sin na [ π, π ], što simbolički pišemo: Sin = sin [ π, π ]. Funkcija Sin ima inverznu funkciju (koju zovemo arkus sinus): arcsin : [, ] [ π, π ]. Graf funkcije arcsin dobiva se kao osno-simetrična slika grafa funkcije Sin u odnosu na pravac y = x (Slika 0.a). b) Funkcija x arccos x. Budući da funkcija cos : R [, ] nije injekcija, ona nema inverznu funkciju. Zato ćemo definirati bijektivnu funkciju: Cos : [0, π] [, ], Cos = cos [0,π], koja ima inverznu funkciju (koju zovemo arkus kosinus): arccos : [, ] [0, π]. Graf funkcije arccos dobiva se kao osno-simetrična slika grafa funkcije Cos u odnosu na pravac y = x (Slika 0.b). c) Funkcija x arctg x.
15 Slika 0: Konstrukcija grafova ciklometrijskih funkcija arcsin i arccos (a) (b) Budući da funkcija tg: R\ { π + kπ k Z} R nije injekcija, ona nema inverznu funkciju. Zato ćemo definirati bijektivnu funkciju: Tg : π, π R, Tg = tg π, π, koja ima inverznu funkciju (koju zovemo arkus tangens): arctg : R π, π. Graf funkcije arctg dobiva se kao osno-simetrična slika grafa funkcije Tg u odnosu na pravac y = x (Slika.a). 5
16 Slika : Konstrukcija grafova ciklometrijskih funkcija arctg i arcctg (a) (b) d) Funkcija x arcctg x. Budući da funkcija ctg: R\ {kπ k Z} R nije injekcija, ona nema inverznu funkciju. Zato ćemo definirati bijektivnu funkciju: Ctg : 0, π R, Ctg = ctg 0,π, koja ima inverznu funkciju (koju zovemo arkus kotangens): arcctg : R 0, π. Graf funkcije arcctg dobiva se kao osno-simetrična slika grafa funkcije Ctg u odnosu na pravac y = x (Slika.b). Zadatak 9. Skicirajte grafove sljedećih funkcija: a) f(x) = arcsin(x 3) b) f(x) = arccos x +, c) f(x) = arctg x, d) f(x) = arcctg (x + ). 6
3.1 Elementarne funkcije
3. Elementarne funkcije 3.. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
4 Elementarne funkcije
4 Elementarne funkcije 4. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Funkcije Materijali za nastavu iz Matematike 1
Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X
9. PREGLED ELEMENTARNIH FUNKCIJA
9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija
Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
f(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
3. poglavlje (korigirano) F U N K C I J E
. Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Funkcije Sadržaj: Pojam funkcije, svojstva, operacija s funkcijama, zadavanje funkcije Pregled osnovnih elementarnih funkcija: Polinomi Racionalne
Funkcije Sadržaj: Pojam funkcije, svojstva, operacija s funkcijama, zadavanje funkcije Pregled osnovnih elementarnih funkcija: Polinomi Racionalne funkcije Iracionalne funkcije Potencije Eksponencijalne
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
3 Funkcije. 3.1 Pojam funkcije
3 Funkcije 3.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
4 Funkcije. 4.1 Pojam funkcije
4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x
Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable
Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Infimum i supremum skupa Zadatak 1. Neka je S = (, 1) [1, 7] {10}. Odrediti: (a) inf S, (b) sup S. (a) inf S =, (b) sup S = 10.
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Funkcije. Helena Kmetić. 6. srpnja 2016.
Funkcije Helena Kmetić 6. srpnja 016. Sadržaj 1 Uvod 1.1 Klasifikacija realnih funkcija pomoću grafa............. 3 1. Apsolutna vrijednost i udaljenost.................. 4 Funkcije 6.1 Linearne funkcije...........................
ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva
1. Trigonometrijske funkcije
. Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni
ELEMENTARNE FUNKCIJE
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Zadatak 081 (Nina, gimnazija) Tada je: 2 f x = a x + b x + c ima ekstrem čija vrijednost. 4 a c. 4 a c b. 2 a
Zadatak 8 (Nina, gimnazija) Skup svih vrijednosti funkcije f() = + c jest interval, 3 ]. Tada je: Rješenje 8 A. c = B. c = C. c = 3 D. c = 4 Polinom drugog stupnja (kvadratna funkcija) iznosi f = a + b
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Eksponencijalna i logaritamska funkcija
16 1. UVOD U ANALIZU Rešenje. Kako je ovo neprava funkcija, deljenjem nalazimo da je (11) f() = 1 + 5 6 + 1 3 5 + 6 = 1 + 5 6 + 1 ( )( 3). Prema postupku navedenom u teoremi 1.7, važi razlaganje odnosno
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
ELEMENTARNE FUNKCIJE
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43
Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Obične diferencijalne jednadžbe 2. reda
VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 13 Obične diferencijalne jednadžbe 2. reda Obične diferencijalne jednadžbe 2. reda U ovoj lekciji vježbamo rješavanje jedne klase običnih
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Uvod u diferencijalni račun
Uvod u diferencijalni račun Franka Miriam Brückler Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je to uopće tangenta?
1. Osnovne operacije s kompleksnim brojevima
KOMPLEKSNI BROJEVI 1 1. Osnovne operacije s kompleksnim brojevima Kompleksni brojevi su proširenje skupa realnih brojeva. Naime, ne postoji broj koji zadovoljava kvadratnu jednadžbu x 2 + 1 = 0. Baš uz
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije)
Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije) Prvo ponoviti/nau iti sadrºaje na sljede oj stani, a zatim rije²iti zadatke na ovoj stranici. Priprema Ove zadatke moºete rije²iti koriste
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
FUNKCIJE DVIJU VARIJABLI (ZADACI)
FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Trigonometrijske funkcije
Trigonometrijske funkcije September 5, 008 Brojevna kružnica. Mjerenje kuteva pretpostavimo da se po kružnici jediničnog radijusa pomaknemo za kut t u smjeru suprotnom od kazaljke na satu II T(t) O t I
VJEŽBE IZ MATEMATIKE 1
VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Predavanje osmo: Uvod u diferencijalni račun
Predavanje osmo: Uvod u diferencijalni račun Franka Miriam Brückler Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
1 Obične diferencijalne jednadžbe
1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f
Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj
Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135
Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi
Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
ELEMENTARNA MATEMATIKA 2
ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup