9. Merenje temperature
|
|
- Ξάνθιππος Παπάζογλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 U ovom poglavlju biće obrađena posebna grupa senzora koja omogućava merenje temperature električnim putem. Temperatura je najčešće merena veličina u industriji. Procenjuje se da oko 60 % svih merenja u tehnološkim procesima otpada upravo na merenja temperature Termootporni senzori od referentnih materijala Ovo su senzori načinjeni od referentnih materijala, koji imaju tačno određene vrednosti otpornosti na određenim temperaturama. Zavisnost promene otpornosti sa temperaturom posledica je zavisnosti promene specifične otpornosti materijala sa temperaturom: l l R S 1 (9.1) S gde je ρ 0 specifična otpornost na 0 C. Koeficijenti α, β, γ itd. nazivaju se temperaturnim koeficijentima promene specifične otpornosti datog materijala. α se naziva linearni koeficijent jer stoji uz θ. β se naziva kvadratni koeficijent jer toji uz θ 2. I tako redom. Najčešće se termootpornici prave od platine jer je se platina može dobiti u veoma čistom stanju, hemijski je neutralna i ima relativno veliki linearni temperaturni koeficijent α. Platinski senzori otpornosti proizvode se sa različitim nominalnim vrednostima otpornosti na 0 C, prema čemu i dobijaju ime. Npr. Pt-100 ima otpornost 100 Ω na 0 C, Pt-1000 ima otpornost 1000 Ω na 0 C, itd. Ovi senzori imaju izuzetno linearnu karakteristika u širokom opsegu. Koeficijenti platine u relaciji 9.1 su: α = +3, C -1 β = -5, C -2 γ = +4, C -3 δ = -4, C -4 Osetljivost: Pt-100 ima osetljivost od 0,354 Ω/ C, a Pt-1000 od 3,54 Ω/ C, odnosno 10 puta veću. Selektivnost: Veoma je selektivan ako ne trpi mehanička naprezanja, jer se tada menjaju l i S u izrazu 9.1. Opseg: Od -200 C do 850 C Rezolucija: Oko 0,15 C u blizini nule, ali je na punom opsegu temperatura nešto manja i iznosi oko 1,5 C. Ofset Mora postojati po definiciji. Na nula stepeni celzijusa on je ili 100 Ω ili 1000 Ω. Nelinearnost Izuzetno je linearan (±2,21 %), pa se koristi kao etalon temperature. 9 1
2 Slika 9.1. Odziv termootpornika Pt-100 Šum: Da bi se izmerila otpornost, kroz senzor se mora propustiti struja. Ova struja dodatno zagreva otpornik. Parazitno povećanje odziva proporcionalno je termičkom šumu. Reverzibilnost: Ime malo vremensko kašnjenje i ne podnosi dobro nagle promene spoljašnje temperature. Mora se koristiti u sredini sa sporopromenljivom temperaturom Termistori Termistor je temperaturno osetljiv otpornik koji se pravi od poluprovodničkih materijala germanijuma, oksida hroma, kobalta, gvožđa itd. Promena otpornosti sa temperaturom izrazito je nelinearna i u širem temperaturnom opsegu od -50 C do +100 C može se opisati jednačinom: B R e C / (9.2) A gde su θ apsolutna temperatura, a A, B i C konstante, koje zavise od materijala od koga je termistor napravljen. U užem temperaturnom opsegu promena otpornosti termistora opisuje se eksponencijalnom jednačinom: B 1/ 1/ 0 R (9.3) R e gde je R 0 otpornost termistora na nominalnoj sobnoj temperaturi od 20 C. 0 Većina termistora ima negativni temperaturni koeficijent B (NTC - Negative Temperature Coefficient), što znači da im sa povećanjem temperature opada otpornost. Postoje i termistori koji imaju pozitivan temperaturni koeficijent, tj. kod kojih sa porastom temperature raste otpornost (PTC - Positive Temperature Coefficient). Dobre osobine termistora su visoka osetljivost na temperaturne promene, male dimenzije, velika brzina odziva, velika vrednost otpornosti na 20 C (reda 10 kω do 10 MΩ), neosetljivost na otpornost priključnih vodova, stabilnost sa starenjem i niska cena. 9 2
3 Loše strane su izrazito nelinearna karakteristika, velike varijacije parametara (što predstavlja problem kod zamene termistora), mali temperaturni opseg, nestabilnost na visokim temperaturama i povećano samozagrevanje zbog velike otpornosti i malih dimenzija Termoparovi Sastoje se od žica načinjenih od različitih metala spojeih na jednom kraju. Taj kraj na kome su žice spojene dovodi se na temperaturu koja se meri i zove se vrući kraj ili merni kraj. Drugi kraj svake od žica nalazi se na referentnoj (poznatoj) temperaturi i naziva se hladan kraj. Treba imati na umu da se hladan kraj kraj se može naći i na višoj temperaturi od one na kojoj je vruć kraj, ali se iz tradicionalnih razloga ovi krajevi i dalje ponekad tako nazivaju. Žice su na hladnom kraju razdvojene, a za referentnu temperaturu se obično uzima trojna tačka vode, odnosno 0 C, jer se ona veoma lako rekonstruiše. Dakle, napon na termoparu je proporcionalan razlici temperatura vrućeg i hladnog kraja Princip rada se zasniva na tzv. Sibekovom (Seebeck) efektu. Koncentracija slobodnih elektrona u nekoj tački kristalne rešetke metala zavisi od temperature. Ako se suprotni krajevi provodnika drže na različitim temperaturama, duž provodnika će se javiti gradijent temperature, a samim tim i gradijent koncentracije nosilaca naelektrisanja, odnosno razlika potencijala. Ta razlika potencijala se naziva termonapon ili termogeni napon. Iako bi se priključenjem voltmetra samo na jednu žicu mogla detektovati razlika temperatura, to bi bilo veoma nepraktično, jer bi se i samo merilo moralo izložiti temperaturi koja se meri. Umesto toga koristi se još jedna žica, ali od drugog materijala. Ako bi se koristio isti materijal termonaponi bi se u povratku do hladnog kraja poništili. U principu, spoj bilo koja dva različita metala će proizvesti električni potencijal proporcionalan temperaturnoj razlici. Međutim, termoparovi za praktična merenja se prave kao spojevi posebnih legura sa predvidivim i ponovljivim odnosnima temperature i napona. Različite legure imaju različite temperaturne opsege. Termoparovi se obično označavaju oznakama hemijskih elemenata koji ga čine. Na primer, Au-Pt, Pt- Pd itd. Kada je neki od materijala legura, onda se češće koriste slovne skraćenice. Na primer termopar tipa N označava kombinaciju nikrozila i nisila, a termopar tipa K hromela i alumela. Posebna svojstva kao što su otpornost na koroziju u agresivnim sredinama mogu biti važni za izbor odgovarajućeg tipa termopara. Kada je merno mesto daleko od instrumenta, konekcija se može ostvariti umetanjem žica od jeftinijeg materijala u odnosu na one koji se koriste za izradu senzora, kao na slici 9.2. hromel θref bakar θinstr θmer V alumel θref bakar Slika 9.2. Termopar u postupku merenja i način priključenja na voltmetar Osetljivost: Reda 10 μv/ C. Npr. za termopar K tipa: 37 μv/ C Selektivnost Izuzetno selektivni, osim u slučaju spoljašnjih promenljivih magnetskih polja koji mogu indukovati EMS. Zato se žice termopara obavezno upredaju kako bi se poništio fluks eventualnog spoljašnjeg polja. 9 3
4 Opseg: Tipično od -270 C do 1370 C Rezolucija: Maksimalna rezolucija je u okolini nule i iznosi 1,1 C, ali u punom opsegu je nešto lošija, 2,2 C. Ofset: Zavisi od temperature hladnog kraja, jer senzor ne meri apsolutne vrednosti. Nelinearnost: Na punom opsegu iznosi oko ±3,3 %, ali ako se posmatra samo odziv za pozitivne vrednosti temperature u stepenima celzijusa, nelinarnost pada na svega ±1,2 %. Jedan primer je dat na slici 9.3. Slika 9.3. Odziv i linearnost termopara K tipa. Šum: S obzirom na veoma male napone koji se dobijaju, termopar je osetljiv na struju voltmetra i termički šum u žicama. Reverzibilnost: Oporavak senzora je trenutan jer se električno polje u provodniku uspostavlja brzinom svetlosti, a koncentracija elektrona se menja nešto sporije od brzine drifta elektrona u metalu. To sprečava inertnost sistema, pa je ponovljivost prolaska kroz iste vrednosti temperature veoma velika Termografija Principi beskontaktnog merenja temperature Prema Vinovom zakonu pomeranja, telo koje apsorbuje 100% zračenja koje na njega pada (apsolutno crno telo) i koje se nalazi u termodinamičkoj ravnoteži, emituje zračenje čiji je maksimum na talasnoj dužini obrnuto proporcionalnoj termodinamičkoj temperaturi: b (9.4) T 9 4
5 Konstanta b zove se Vinova konstanta i iznosi 2, Km. Zakon se zove zakon pomeranja, zato što se za veću termodinamičku temperaturu, maksimum energije zračenja pomera ka manjim talasnim dužinama (većim učestanostima). Ovo pomeranje direktna je posledica Plankovog zakona zračenja apsolutnog crnog tela, čijim diferenciranjem se direktno dobija Vinov zakon pomeranja. Izraz 9.4 ukazuje na to, da ako postoji ovakva veza između temperature i talasne dužine, onda je temperaturu nekog tela moguće odrediti beskontaktnim merenjem talasne dužine svetlosti koju to telo zrači. Uređaj kojim se obavlja ovakvo beskontaktno merenje temperature naziva te termograf, a dobijena dvodimenzionalna ili trodimenzionalna slika rasporeda temperatura naziva se termogram. Međutim, u prirodi ne postoji tako nešto kao što je apsolutno crno telo koje bi apsorbovalo svu energiju okolnog zračenja i emitovalo samo zračenje koje zavisi od njegove temperature. Realna fizička tela uvek reflektuju i propuštaju neki deo energije koji zrače druga tela u njihovoj blizini. Zato je snaga zračenja koja se detektuje sa nekog realnog tela kombinacija tri snage: snage sopstvene emisije (P emitovano ), snage reflektovanog okolnog zračenja od svih ostalih tela u blizini (P reflektovano ) i snage propuštenog okolnog zračenja (P propušteno ) za koje je dato telo delimično ili potpuno transparentno. P mereno P P P (9.5) emitovano reflektovano propusteno Količnik emitovane i merene snage zračenja naziva se koeficijent emisije, a reflektovane i merene snage koeficijent refleksije. Slično, količnik propuštene i merene snage naziva se koeficijent transmisije. O ovim koeficijentima se mora voditi računa prilikom interpretacije rezultata merenja dobijenih na termogramu. Moguće su sledeće greške: realna tela kojima se meri intenzitet zračenja imaju uvek manji udeo sopstvene emisije u ukupnom zračenju (P emitovano < P mereno ), pa senzor meri višu temperaturu od stvarne (one koja bi se dobila kontaktnim merenjem); hladnija mesta na termogramu znače samo da posmatrano telo efikasnije apsorbuje energiju emitovanu od strane bliskih toplijih izvora zračenja, a ne nužno i da je ono hladnije od svoje okoline; tela koja imaju velike koeficijente refleksije ili transmisije mogu, zbog velikog P reflektovano ili P propušteno, lažno biti prikazana kao toplija na termogramu, ukoliko u njihovoj blizini postoje druga tela koja ka njima zrače. Ona će tada reflektovati ili propuštati temperaturu drugog tela ka senzoru kao sopstvenu. Da bi se merenje temperature nekog objekta obavilo sa minimalnim uticajem zračenja okolnih tela, svi termografski uređaji moraju imati mogućnost unošenja koeficijenata emisije i refleksije. Algoritam u procesoru termografskog uređaja će koristiti unete koeficijente za korekciju rezultata merenja, kako bi se dobila temperatura koja je bliža stvarnoj kontaktnoj temperaturi objekta. Koeficijenti emisije i refleksije se određuju empirijski Infracrveni senzori Ako se u obzir uzme spektar elektromagnetskog zračenja talasnih dužina koje se kreću od dugih talasa do gama zraka, dobija se opseg temperatura koji odgovara relaciji 9.4 kao na slici 9.4. Sa slike 9.4 se vidi da praktično ceo opseg temperatura od interesa za industrijska merenja (od 250 ºC do ºC) odgovara talasnim dužinama infracrvenog dela spektra (IC). Zbog toga svi senzori od praktičnog interesa za beskontaktno merenje temperature moraju u osnovi biti detektori infracrvenog zračenja. Izuzetak od ovog pravila su jedino specijalni senzori koji se koriste u npr. visokim pećima, zatim za osmatranje vulkanskih erupcija ili se ugrađuju u radioteleskope namenjene istraživanjima dubokog kosmosa. 9 5
6 0 ºC -273 ºC 1 bil. ºC 1 mlrd. ºC 1 mil. ºC 1000 ºC -250 ºC -273,15 ºC θ (ºC) γ zraci X zraci UV IC Mikrotalasi Radio talasi FM AM Dugi radio talasi λ (m) Slika 9.4. Grafički prikaz zavisnosti talasne dužine maksimuma zračenja od temperature površine tela prema Vinovom zakonu pomeranja Infracrveni senzori se najčešće prave od piroelektričnih materijala, koji generišu napon na svojim krajevima kada se izlože toploti (ili u ovom slučaju toplotnom zračenju). Materijali koji se koriste za izradu piroelektričnih senzora su galijum-nitrid (GaN), cezijum-nitrat (CsNO 3 ), polivinil fluorid, kobalt ftalocianin i derivati fenilpiridina. Tela koja zrače na temperaturama bliskim temperaturi samog senzora su nevidljiva za termograf, jer je on zaslepljen sopstvenim zračenjem. Osim toga, predaja energije zračenja sa tela na nižoj temperaturi na senzor koji se nalazi na višoj temperaturi nije moguća prema drugom zakonu termodinamike. Ukoliko se žele meriti temperature ispod ambijentalnih, senzori se moraju hladiti, jer merenje temperature bliske temperaturi samog senzora sadrži neprihvatljivo veliku grešku. Stoga je neophodno unapred znati koji se opseg temperatura želi meriti, kako bi se izabrao adekvatan termografski uređaj. Treba imati na umu da je hlađenje senzora zahtevno i u pogledu vremena i u pogledu potrošnje energije. Kvalitetni savremeni senzori imaju rezoluciju merenja temperature od ±0,001 ºC pa čak do ±0,0001 ºC. Nešto češće se, zbog niže cene, sreću i senzori sa manjom rezolucijom od oko ±0,1 ºC, a veoma retko od ±1 ºC. Ovi jeftini senzori se najčešće koriste u industrijskoj dijagnostici instalacija i grubom nadzoru proizvodnih procesa Termalne kamere Da bi se dobila termalna slika određenog prostora potrebno je združiti veći broj infracrvenih senzora i povezati ih u pravougaonu matricu. Svaki senzor u matrici definiše jednu tačku (jedan piksel) prostora ispred sebe. Što je veći broj senzora koncentrisan na manjem prostoru, to će prostorna rezolucija takvog uređaja biti veća. Kada se na matricu senzora dodaju grafička memorija, procesor za obradu slike i displej, dobija se termografski uređaj pod nazivom termalna kamera (slika 9.5). Slika 9.5. Primeri različitih termalnih kamera Procesor termalne kamere primenjuje niz matematičkih postupaka da zračenje nevidljivo ljudskom oku pretvori u sliku u RGB formatu. Pri tome kamera obavlja i preračunavanje stvarne temperature posmatranog objekta u skladu sa unetim koeficijentima emisije i refleksije. Neke kamere imaju veoma sofisticirane senzore i korekcione algoritme uzimajući u obzir čak i temperaturu okolnog vazduha kroz koji se zračenje prenosi od tela do senzora. 9 6
7 Primena Pomoću termografskih uređaja najčešće se detektuju temperaturni profili na površini objekata koji odstupaju od normalnih, čime se ustanovljavaju mogući problemi. Neki od primera primene u industriji odnose se na održavanje električnih i mehaničkih sistema koji trpe naprezanja ili velika opterećenja (slike 9.6, 9.7 i 9.8). Slika 9.6. Provera ispravnosti vara termalnom kamerom. Prve tri slike su primeri varova sa greškama, dok je desno prikazan ispravan var Slika 9.7. Inspekcija dalekovoda pomoću termalne kamere radi provere mesta pregrevanja Slika 9.8. Primeri neravnomerne raspodele temperatura kao posledica naprezanja sistema pri radu U oblasti uštede energije, termografija može pomoći u uočavanju mesta termalnih curenja ili regiona koji se pregrevaju. Ukoliko je reč o bezbednosnom nadzoru, termografijom će se lako uočiti mesta koja imaju skrivene pukotine ili propuštaju vlagu, čime se omogućava pravovremena reakcija, pre nego što dođe do katastrofe. U održavanju objekata, termografijom se pretražuju skrivene ili nepoznate zidne instalacije, otkrivaju mesta curenja vodovodnih i kanalizacionih cevi, detektuju putanje slivanja vode i prodiranja vlage i analiziraju se spoljašnje termoizolacione karakteristike (slika 9.9). Termografija se široko koristi i u optimizaciji proizvodnje mašinskih delova. Termogram naprezanja sistema tokom rada ukazuje na mesta koja su prilikom projektovanja nepotrebno pojačana, a u realnosti 9 7
8 ne trpe značajna opterećenja. Uočavanjem takvih pojava, mogu se redizajnirati pojedini delovi, kako bi se ostvarile uštede u potrošnji materijala i snizila cena proizvoda bez uticaja na njegove performanse. Slika 9.9. Primeri primene termografije na održavanje objekata U biomedicini, primena termografije zauzima značajno mesto u dijagnostici pojedinih tipova oboljenja, od mehaničkih trauma tkiva do malignih tumora, kod kojih, zbog poremećene funkcije tkiva, dolazi do narušavanja uobičajenog površinskog temperaturnog profila Aktivna termografija Princip merenja opisan u dosadašnjem delu poglavlja koristi isključivo sopstveno zračenje tela radi merenja njegove temperature. Zbog toga što je senzor/detektor pasivan, ovakva merenja se svrstavaju u pasivnu termografiju. Osnovna pretpostavka kod pasivne termografije jeste da je objekat merenja ujedno i dominantan izvor zračenja, odnosno da najveći deo snage merenog zračenja čini sopstvena spontana emisija. Pored toga, u pasivnoj termografiji, objekat čiji temperaturni profil se analizira mora imati višu ili nižu temperaturu od svoje okoline, inače ga neće biti moguće razlikovati na snimku. Međutim, postoje i sistemi koji koriste isključivo merenje snage reflektovanog zračenja tela P reflektovano kao osnovu merenja. Da bi to bilo moguće, snaga reflektovanog zračenja mora nadjačati sopstvenu emisiju, što će biti slučaj jedino ako se objekat osvetli dodatnim snažnim izvorom svetlosti. Takvo aktivno osvetljavanje objekata obavlja se u infracrvenom delu spektra, u opsegu talasnih dužina od 700 nm do 1400 nm (neposredno ispod dela spektra vidljivog ljudskom oku, engl. Near Infrared - NIR) ili ređe, u opsegu talasnih dužina od 1400 nm do 3000 nm (tzv. kratkotalasno infracrveno zračenje, engl. SWIR Short-wavelength infrared). Takav postupak, koji uključuje veštačko osvetljenje prilikom merenja, naziva se aktivna termografija. Aktivna termografija kao rezultat daje sposobnost tzv. noćnog vida (engl. night vision). Naziv noćni vid je usvojen po analogiji sa sposobnošću nekih životinja (npr. mačke, glodari, sove, hobotnice) da vide u naizgled potpunom mraku. Pored toga što imaju senzorske ćelije veoma osetljive na infracrvenu svetlost, ove životinje pozadinom svojih očnih šupljina fokusiraju i reflektuju spontano prisutno infracrveno zračenje i njime dodatno osvetljavaju scenu ispred sebe, povećavajući na taj način rezoluciju noćne slike. Dobijena scena, inače nevidljiva ljudskom oku, u uređaju za aktivnu termografiju se prevodi u monohromatski termogram, prilikom ispisa na displeju. S obzirom da sistemi za aktivno infracrveno osvetljavanje najčešće koriste osvetljavače velike snage, dobijeni snimci su mnogo veće rezolucije nego oni koji se mogu dobiti pasivnom termografijom. Osim toga, uočavanje dubine i trodimenzionalnosti objekata je moguće čak i kada dolazi do preklapanja objekata iz različitih planova, koji imaju bliske koeficijente refleksije, zahvaljujući tome što se njihove površine nalaze pod različitim uglovima, pa imaju različite stepene refleksije. Kako između snage aktivnog osvetljavača i temperature osvetljenog tela (količine reflektovanog zračenja) ne postoji jasna matematička zavisnost, aktivna termografija i nije prava termografska metoda, u smislu da ne omogućava merenje temperature, već samo služi za dobijanje 2D projekcije ambijenta upotrebom istih senzora koji se koriste u pasivnoj termografiji. 9 8
12. Merni pretvarači i senzori
12. Merni pretvarači i senzori 12.1. Tipovi mernih pretvarača Merni pretvarači su uređaji koji pretvaraju energiju iz jednog oblika u drugi. Tipovi nekih oblika energije definisanih u fizici dati su u
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1
OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Kvantna optika Toplotno zračenje Apsorpciona sposobnost tela je sposobnost apsorbovanja energije zračenja iz intervala l, l+ l na površini tela ds za vreme dt. Apsorpciona moć tela je sposobnost apsorbovanja
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k.
OT3OS1 7.11.217. Definicije Funkcija prenosa Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k Y z X z k Z y n Z h n Z x n Y z H z X z H z H z n h
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
FIZIČKO-TEHNIČKA MERENJA: SENZORI TEMPERATURE
: SENZORI TEMPERATURE UVOD Merenje temperature predstavlja jedno od najčešćih merenje, jer je temperaturu potrebno odrediti ne samo zbog upravljanja određenim procesom, već mnogi senzori drugih veličina
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER
L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Testiranje statistiqkih hipoteza
Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting