Uvod. Prenos signala moguće je obaviti:
|
|
- Ἰωράμ Μπλέτσας
- 7 χρόνια πριν
- Προβολές:
Transcript
1
2 Uvod Prenos signala ogće je obavii: njihovo prirodno oblik (na izlaz iz prevarača porka-signal). Prenos osnovno ili prirodno opseg česanosi; ransponovano opseg česanosi, pri če je porebno prehodno obavii obrad signala porke. Korisi se pooćni periodični deerinisičkog signala, pri če se neki od osnovnih paraeara ovog signala (aplida, česanos ili aza) enjaj saglasno proenaa signala porke. Pooćni signal posaje nosilac signala koji je porebno prenei a ie i prenošene porke. Opisani pospak obrade pooćnog signala, koe se enjaj neki od njegovih paraeara nkciji signala porke, naziva se odlacija. Osnovna svrha pospka odlacije je da se signal koji je porebno prenei, ako obradi da bde podesan za prenos. Generički signal nosilac porke naziva se odlišći signal, dok se pooćni periodični signal naziva nosilac. Signal koji predsavlja rezla obrade, naziva se odlisani signal. Proces obrade odlisanog signala prijenik sa cilje da se izdvoji odlišći signal je deodlacija - inverzan proces obrade signala predajnik. a izlaz iz deodlaora dobija se deodlisani signal. MODEM = MOdlaor + DEModlaor.
3 Analogni odlacioni pospci Analogni odlacioni pospci - odlisani signal je koninalan. U ovo slčaj kao nosilac vek se korisi signal čiji je alasni oblik sinsoidalan. jegovi osnovni paraeri s aplida, česanos i aza. Ako se aplida nosioca enja saglasno proenaa odlišćeg signala - aplidska odlacija (Aplide Modlaion, AM), Ako se česanos nosioca enja saglasno proenaa odlišćeg signala rekvencijska odlacija (Freqency Modlaion, FM), Ako se aza nosioca enja saglasno proenaa odlišćeg signala - azna odlacija (Phase Modlaion, PM). Aplida Faza Učesanos d U cos U cos d d
4 Analogni odlacioni pospci Modlisani signal je iplsnog alasnog oblika. osilac je povorka periodičnih iplsa. Osnovni paraeri ovog signala s aplida iplsa, vree rajanja i položaj iplsa, odnosno lokacija iplsa nar periode. S obziro na o da je alasni oblik odlisanog signala diskrean, sve vrse odlacije koje spadaj ov grp preposavljaj prehodn diskreizacij odlišćeg signala vreen, saglasno principia eoree o odabiranj. Aplide iplsa nosioca direkno je srazerne aplidaa odlišćeg signala rencia odabiranja - iplsno aplidski odlisan signal (Plse Aplide Modlaion, PAM). Trajanje iplsa povorci nosioca enja se srazerno aplidi odgovarajćih odbiraka odlišćeg signala - iplsno širinski odlisan signal ili iplsno odlisan signal po rajanj iplsa (Plse Widh Modlaion, PWM). Položaj iplsa nosioca nar periode srazeran je vrednosia aplida odbiraka odlišćeg signala iplsna položajna odlacija (Plse Posiion Modlaion, PPM). Poseban oblik iplsno odlisanih signala predsavljaj signali koji se dobijaj na izlazia iz A/D konverora - iplsna kodna odlacija i dela odlacija. Sekvenca iplsa!
5 Iplsni odlacioni pospci a) b) PAM c) PWM d) PPM T s
6 Digialni odlacioni pospci Digialni odlacioni pospci. I ovo slčaj kao nosilac vek se korisi signal čiji je alasni oblik sinsoidalan. U odnos na prehodno opisane pospke odlacije odlišći signal je digialan, odnosno diskreizovan je vreen i po aplidi. Digialni odlacioni pospci svojoj osnovnoj koncepciji znano se razlikj od svih osalih vrsa odlacije. Pri oe, razlikjeo sledeće generičke oblike digialnih odlacionih pospaka: digialna aplidska odlacija (Aplide Shi Keying, ASK); digialna azna odlacija (Phase Shi Keying, PSK); digialna rekvencijska odlacija (Freqency Shi Keying, FSK); Hibridni pospci odlacije, pri če s ogće kobinacije iskljčivo analognih, iskljčivo digialnih, odnosno analogno/digialnih odlacionih pospaka.
7 Aplidska odlacija Klasiikacija AM signala je sledeća: aplidska odlacija sa dva bočna opsega (Aplide Modlaion - Doble Side Band, AM-DSB); aplidska odlacija sa jedni bočni opsego (Aplide Modlaion - Single Side Band, AM-SSB), pri če o ože da bde gornji bočni opseg (Upper Side Band, USB) ili donji bočni opseg (Lower Side Band, LSB); konvencionalna aplidska odlacija (Convenional Aplide Modlaion, CAM), odnosno AM-DSB sa nosioce; aplidska odlacija sa nesierični bočni opsezia (Aplide Modlaion - Vesigial Side Band, AM-VSB), kao odiikacija konvencionalne aplidske odlacije.
8 Porebne orle
9 Porebne orle
10 AM zasniva se na princip proene aplide nosioca, ako da ona proces odlacije posaje direkno srazerna odlišće signal. Generički proces realizacije AM-DSB signala koji se još naziva i prodkna odlacija, ože se predsavii izrazo Aplidska odlacija sa dva bočna opsega k U cos k U U cos U AM AM cos Konsana proprcionalnosi! Po pravil je jednaka jedan! Aplida nosioca Prodkna odlacija F F U U cos U j M j Mj U U
11 AM-DSB Modlišći signal Modlisani signal U cos U A M j U cos osilac Donji bočni opseg Gornji bočni AU opseg a) Modlisani signal U cos Lokalni nosilac U e cos cos U U U M j AU AU b)
12 Konvencionalna AM - CAM ajsarija vrsa aplidski odlisanog signala. Da je izrazo: CAM Konsana proprcionalnosi cos U cos Proenljiva aplida nosioca CAM U Sepen odlacije <1 preodlacija U k cos U 1 cos U 1 1 cos k U U U U 1, ax U U oralizovan odlišći signal cos
13 Konvencionalna AM - CAM cos cos 1 cos cos ()=cosω a) c) cos cos b)
14 Spekar CAM signala U j U U M j U U CAM j U M j LSB USB CAM B Uslov ω > ω
15 AM sa jedni bočni opsego-ssm a osnov analize spekra CAM signala proizilazi da se prenošena porka sadrži svako od dva dobijena bočna opsega, kao i o da nosilac ne nosi pork. Za prenos porke dovoljan je iskljčivo jedan bočni opseg. Takav signal naziva se aplidski odlisan signal sa jedni bočni opsego (AM-SSB), pri če bočni opseg ože da bde donji (LSB) ili gornji bočni opseg (USB). eka je, cos.4cos.9cos
16 Deodlacija AM signala () Propsni opseg B Deodlaor Deekor anvelope i () Max česanos odlišćeg signala cos Koherenni deodlaor ekoherenni deodlaor Fazno odspanje! ekoherencija!
17 Koherenna deodlacija CAM DEM U CAM DEM U 1 cos, cos i () B U 1 cos cos 1 cos U 1 cos Prolazi kroz ilar! (AMDSB) signala i U cos Fazno odspanje! ekoherencija!
18 AM-SSB odlacija () ( ) U( )cos Uˆ ( ) sin AM LSB
19 DEM Koherenna deodlacija AM-SSB U cos Uˆ sin DEM AM LSB B AM LSB cos i () U cos U ˆ sincos U cos U ˆ sin U cos U ˆ sin i U cos U ˆ sin signala Uslov Fazno odspanje! ekoherencija! Prolazi kroz ilar!
20 Deekor anvelope Blok šea prijenika CAM signala sa nekoherenno deodlacijo, U 1 cos cos B Deekor anvelope ekoherenni deodlaor i () ea lokalnog oscilaora. Uloga osioca! C R
21 a) 1-1 Deekor anvelope 1 CAM U cos AV U 1 b) - T C R Signal na kondenzaor Modlišći c) 1 signal d) T T T T Oblas dijagonalnog odsecanja T
22 Osnovna karakerisika gaonih odlacija je da se odlišći signalo enja gao prosoperiodičnog signala - nosioca. Proena gla nosioca ože da se osvari proeno njegove renne česanosi, ili proeno njegove renne aze. Oda se gaone odlacije dele na rekvencijsk (Freqency Modlaion, FM) i azn odlacij (Phase Modlaion, PM). U proces gaone odlacije aplida nosioca osaje neproenjena. osilac, Konsanna anvelopa U cos d d Ugaone odlacije U cos Trenna devijacija aze d d i i Trenna aza Trenna devijacija česanosi
23 Modlišći signal Modlišći signal je, F Ugaoni Modlaor osilac UM Modlisani signal U, U, 1, E U jω Ugaone odlacije ax U, za ω j e d U M ω jω, za U U cos cos ω Klasiikacija ω
24 Ukoliko je, i k k U i Fazna odlacija ax ku ax Konsana Max devijacija aze Fazno odlisan signal je oblika, k U U cos cos PM, PM i Trenna aza
25 Ukoliko je, Frekvencijska odlacija Konsana i 1 d Trenna devijacija aze FM signala je, FM signal je, FM d k k U i,ax k U k U d d Max devijacija kržne česanosi Max devijacija česanosi k d U U cos cos d d
26 U, U cos U cos Ugaona odlacija Ugaono odlisansignal Modlisci signal M PM U cos cos, k U FM FM U U cos cos d coso FM cos, k U
27 Ugaona odlacija.5.5cos 1.5 cos a) b) -1 1 FM odlisan signal 1 PM odlisan signal c) d) -1
28 S S S d S i i P P P sd nd P P P si ni s n Srednja Srednja S Polazne preposavke Srednja Srednja, snaga Srednja snaga Srednja snaga Vrsa odlacije/deodlacije, G snaga snaga S korisnog snaga korisnog korisnog ša ša S S ša signala na laz signala na izlaz iz signala na laz na izlaz iz i na laz na laz prijenik deodlaor prijenika Fakor prijenik deodlaor prijenika ša
29 Polazne preposavke Osnovni paraear za procen icaja ša je odnos Signal/Š=(S/) - S srednja snag korisnog signala, je srednja snaga ša posaranoj ački sisea. n S AWG,B n S Pre-deodlacioni ilar d n cos n c s Sn sin FkT, Deodlaor: - koherenan - nekoherenan B S Pos-deodlacioni ilar i ni i
30 1 CAM U cos Polazne preposavke BCAM S S d S i i ni n,b CAM cos o B U 1 cos U i LPF cos n i n n cos n c s sin n cos n cos n c s sin cos n i n c LPF
31 (S/) kod CAM i AM-DSB sa koh. de 1 CAM U cos BCAM S S d S i i ni,b CAM Srednje snage korisnog signala i ša na laz Rx, n cos o P s E U U cos P B eodlisani nosilac P n E n S n d S P P s n P
32 (S/) kod CAM i AM-DSB sa koh. de Korisni signal, i njegova srednja snaga, na izlaz iz prijenika s, i U 1 cos cos U Psi U P Š, i njegova srednja snaga, na izlaz iz prijenika s, n c n cos nc cos ns P E n E n n, i LPF c sin cos Odnos S/ na izlaz iz Rx kod CAM i AM-DSB sa koh. deodlacijo, LPF S i P P si ni P S G CAM
33 S/ kod gaonih odlacija UM S S S i AWG n, B Liier diskriinaor Signal i š na laz prijenik s, n d B U cos za PM, B 1 n cos n sin U cos i ni za FM c s n ns U nc ns, n arcg nc
34 FM FM FM i S G P d P d S Procesno pojačanje! Odnos S/ na izlaz iz prijenika je, FM S P Poboljšanje na račn opsega! 1 B FM (S/) kod rekvencijske odlacije
35 S n PM (SGSS ša kod FM i PM) ns SGSS U 1 dn S SGSS P s nfm P U d P S npm P S nfm a) b) Trijanglarna SGSS ša!
36 (SGSS ša kod FM i PM) a osnov analize izraza za odnos na izlaz iz prijenika FM signala, očava se da se povećanje aksialne devijacije česanosi nosioca povećava odnos S/, pri če se isovreeno povećava i širina propsnog opsega sisea, saglasno Carsonovo obrasc. a aj način, na račn propsnog opsega, posiže se poboljšanje kvaliea prenosa, ali z izvesna ograničenja. aie, širenje propsnog opsega sisea na račn povećanja aksialne devijacije povećava se srednja snaga ša na laz prijenik. Kako srednja snaga korisnog signala na laz prijenik osaje neproenjena, jasno je da će se širenje opsega doći siacij kada snaga ša posaje jednaka snazi nosioca i koliko se i dalje povećava devijacija, snaga ša posaće veća od snage signala. To znači da se kvaliaivno enjaj preposavke na osnov koji je izveden izraz za odnos S/ na izlaz iz prijenika FM signala
37 Prag prijea kod rekvencijske odlacije C n s U n X 1 B X U n1 O U x A n c x Trajekorija koja okržje počeak azora! R d d x d 4 a) d x b) d Klikovi R d x d d Trajekorije koja ne obilazi oko počeka azora!
38 Prag prijea naspa kada vršna vrednos napona ša na laz prijenik dosigne vrednos napona nosioca. Procena vreena koe a vrednos ože da bde prevazidjena običajeno iznosi ε=.5% nekog dovoljno dgog posaranog vreenskog inervala. Verovanoća, U n U n U U P e du e P U n Prag prijea kod rekvencijske n U n n FkTB U 1FkTB P p odlacije S i FMp 5 B d n.5% Srednja snaga ša!
Telekomunikacije. Amplitudska modulacija
Telekonikacije Aplidska odlacija Modlacija Porke se pre prenosa kroz elekonikacioni kanal ransforiš elekrične signale. Dobijeni elekrični signali se og prenosii svo izvorno oblik šo se naziva prenos osnovno
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
UTICAJ ŠIRINE PROPUSNOG OPSEGA IDEALNOG SISTEMA ZA PRENOS NA TALASNI OBLIK PRENOŠENOG SIGNALA
UTICAJ ŠIRIE PROPUSOG OPSEGA IDEALOG SISTEMA ZA PREOS A TALASI OBLIK PREOŠEOG SIGALA Osnovna preposavka u razmaranjima idealnih sisema za prenos bila je da signal ima ograničen spekar i da se granice spekra
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Elementi energetske elektronike
ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
PRIMERI PITANJA ZA V CIKLUS LABORATORIJSKIH VEŽBI IZPREDMETA OSNOVI TELEKOMUNIKACIJA (TE3OT)
PRIMERI PITAJA ZA V CIKLU LABORATORIJKIH VEŽBI IZPREDMETA OOVI TELEKOMUIKACIJA (TE3OT) Karakerisike sisema proširenog spekra sa direknom sekvencom i kodnim mulipleksom a esu za reću vežu u V ciklusu iće
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 6: Διαμόρφωση Πλάτους (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση Απλής Πλευρικής Ζώνης (SSB) Διαμόρφωση Υπολειπόμενης Πλευρικής Ζώνης (VSB)
SNAGA POTROŠAČA NAIZMENIČNE STRUJE
NAGA OTROŠAČA NAZMENČNE TRUJE U slučaju vreenski proenljivih sruja, snaga generaora i snaga prijenika ogu bii poziivne i negaivne. so važi i za rad. Ako je snaga prijenika negaivna, on se ponaša kao generaor.
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
POGON SA ASINHRONIM MOTOROM
OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Kinetička energija: E
Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER
L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,
OSNOVI TELEKOMUNIKACIJA (RI3OT) 2. XII t, pri čemu je f. f 1
2. XII 2. 1. Na ulazu AM prijemnika sa slike posoje signali u ( ) = m( )cosω i u ( ) = m ( )cosω, pri čemu je f i = f o f1 i f s = f o + f1. i i s s s B D u i u s A 9 f 1 2sin ω o C f 1 E 9 F G H I cosω
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Telekomunikacije. Filip Brqi - 2/ februar 2003.
Telekomunikacije Filip Brqi - 2/99 14. februar 2003. Sadrжaj 1 Signali i spektri 2 1.1 Periodiqni signali...................... 2 1.1.1 Amplitudski i fazni spektri signala....... 2 1.1.2 Spektri najqex
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 3.4: Πολυπλεξία Ορθογωνικών Φερόντων (Quadrature Amplitude Modulation, QAM) 3.5: Μέθοδοι Διαμόρφωσης
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)
Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F