SNAGA POTROŠAČA NAIZMENIČNE STRUJE
|
|
- Κύμα Γιάνναρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 NAGA OTROŠAČA NAZMENČNE TRUJE U slučaju vreenski proenljivih sruja, snaga generaora i snaga prijenika ogu bii poziivne i negaivne. so važi i za rad. Ako je snaga prijenika negaivna, on se ponaša kao generaor. Kada je snaga generaora negaivna, energija se iz reže dovodi generaoru. ored renune snage, u kolu naizenične sruje definišu se: srednja ili akivna snaga, reakivna snaga i prividna snaga. Neka su renune vrednosi sruje i napona prijenika ipedanse Z dai sa i( sin u( U sin( Trenuna snaga koju pria prijenik jednaka je: p( u( i( U seno U U dobija se: p( U sin( sin( sin sin( Uvodeći rigonoerijsku ransforaciju: sin sin cos cos sledi: p( u( i( U cos U cos( odnosno, razlikuju se konsanna i naizenična koponena (dvosruke učesanosi renune vrednosi snage porošača. Kao šo se vidi sa vreenskog dijagraa snage, kod vreenski proenjivih sruja i napona, elekrični eleen u delu periode pria energiju od izvora, a u delu perioda vraća energiju izvoru. a slike se vidi da elekrični eleen u neki inervalia vreena radi kao porošač, a drugi vreenski inervalia kao generaor. U inervalia vreena u kojia su u i i isog znaka, renuna snaga prijenika je p > 0 (energija prisupa prijeniku i u njeu se jedni delo prevara u oplou i druge vrse energije, a drugi delo se nalazi u agneno i elekrično polju prijenika. U inervalia vreena u kojia su u i i supronog znaka, renuna snaga prijenika je p < 0 (energija prelazi od prijenika osaku kola - npr. generaoru, u prijeniku se obavljaju nepovrani procesi.
2 Akivna (srednja snaga definiše se kao: T p( d U cos sin( T T U cos T sin( T sin( 0 T T T U cos T cos cos T U cos Jedinica za akivnu snagu je va [W]. Za / akivna snaga prijenika je poziivna i veća je šo je anji ugao, j. šo je veći cos. ada se ože zaključii da renuna vrednos snage osciluje sa srednjo vrednošću apliudo U. T 0 U cos i Reakivna snaga predsavlja aksialnu snagu povranih procesa. Q U sin Reakivna snaga je poziivna u slučaju preežno indukivnog prijenika ( > 0, a negaivna u slučaju preežno kapaciivnog prijenika ( < 0. Jedinica za reakivnu snagu je vol aper reakivni ili var [VAr] ili [var]. Deo energije koji se vraća izvoru je reakivna energija. rednja vrednos reakivne energije je nula. Reakivna energija predsavlja nepovoljnu pojavu u kolia naizenične sruje. renos reakivne energije u oba sera predsavlja rasipanje energije. Fakor snage predsavlja eru energeskog kvaliea nekog eleena (cos. Disribueri elekrične energije uslovljavaju snabdevanje visoko vrednošću fakora snage. osupak povećanja fakora snage naziva se kopenzacija. Najpoznaiji porošači reakivne energije su elekrooori i ransforaori. a druge srane, posoje i uređaji koji korise reakivnu energiju supronog sera, koji ponišavaju (kopenzuju reakivnu energiju. Najpoznaiji uređaji akvih osobina su kondenzaorske baerije koje se posavljaju na esu porošača, ako da se porošači snabdevaju porebno reakivno energijo za rad npr. oora, ali se ona i kopenzuje kondenzaoro, e reakivna energija ne ide dalje od porošača, odnosno ne prolazi kroz brojilo elekrične energije.
3 rividna snaga prijenika definiše se kao proizvod efekivne vrednosi napona i sruje prijenika i obeležava se sa : U Jedinica za prividnu snagu je vol aper [VA]. rividna snaga jednaka je aksialnoj snazi prijenika (za aksialni fakor snage cos = i ia veliki značaj. rividna snaga se obično daje kao karakerisika aparaa i označava na njihovi pločicaa. Trougao snage. lično rouglu ipedanse oguće je nacrai i rougao snage: z rougla snage ogu se izvesi sledeći izrazi: cos Q sin Q Fakor snage cos sada se ože definisai količniko akivne i prividne snage prijenika: cos zrazi za akivnu i reakivnu snagu prijenika ogu se predsavii u više oblika: U cos Z cos R Q U sin Q Z sin Q X U Z
4 . zeđu krajeva prijenika je usposavljen prosoperiodični napon efekivne vrednosi U = 0 V. ruja prijenika je prosoperiodična efekivne vrednosi = A i fazno zaosaje za napono za /6, pri čeu su referenni serovi za napon i sruju usaglašeni. Odredii snage prijenika i fakor snage prijenika. Akivna snaga: 0 0 cos,8kw. 6 rividna snaga: 0 0 4,4kVA. Reakivna snaga: Q 0 0 sin,kvar. 6 Kako je: Q >0 preežno indukivni prijenik. Fakor snage: cos cos 0, 865 6,8 0 Fakor snage oguće je odredii i iz odnosa: cos 0, 865 4,4 0. Dva prijenika su vezana na red i uključena u kolo naizenične sruje. od ovi okolnosia su prividne snage prijenika = 4 kva i = 5 kva. Napon izeđu krajeva prvog prijenika fazno prednjači sruji prijenika za 5/, a sruja fazno prednjači naponu izeđu krajeva drugog prijenika za /. Odredii prividnu snagu redne veze ovih prijenika. Akivna i reakivna opornos redne veze prijenika su: R R R i X X X. Množenje ovih jednačina kvadrao efekivne vrednosi sruje prijenika, za akivnu i reakivnu snagu redne veze prijenika dobija se: Q Q Q rividna snaga redne veze prijenika je: Q ( Q ( Q Q Q Q Q Q ( Q ( Q Q cos cos sin sin (cos cos sin sin 5 / cos( /,57kVA 4
5 . Dva prijenika su vezana paralelno i priključena na prosoperiodični napon. od ovi okolnosia su: akivna snaga prvog prijenika = 00 W, efekivna vrednos sruje drugog prijenika = A, fakor snage drugog prijenika cos = 0,8, efekivna vrednos sruje napojne grane =,5 A i fakor snage paralelne veze prijenika cos = 0,9. Drugi prijenik, a i paralelna veza oba prijenika su, pod dai okolnosia, preežno indukivni. Odredii: a efekivnu vrednos sruje prvog prijenika, b fakor snage prvog prijenika, c efekivnu vrednos priključenog napona. a Q Q Q U cos U cos U cos ( U sin U sin U sin ( cos cos cos sin sin sin cos cos cos cos cos cos sin sin sin sin (cos cos sin sin (cos cos sin sin cos( cos 0,8 6, 87 cos 0,9 5, 84 0,55A cos cos,5 0,9 0,8 0,55 b z jednačine ( dobija se : cos 0,55 0,55 00 c U cos U 8,8V cos 0,55 0,55 0,55 5
6 4. Za kolo prikazano na slici poznae su: efekivna vrednos priključenog prosoperiodičnog napona U = 50 V, kao i efekivne vrednosi sruje svih grana = A, = A i = A. Odredii akivnu i reakivnu snagu celoga kola. Vekorski dijagra sruja dva paralelno vezana prijenika ože se predsavii na sledeći način: x rvi prijenik je čiso kapaciivnog karakera, e sruja fazno prednjači u odnosnu na napon za ugao 90 (kao šo se o vidi sa slike, odnosno biće: x cos sin cos sin sin sin sin 0 6 U cos U cos 5 W Q Q Q U sin U sin 5VAr 6
7 5. Dva prijenika su vezana paralelno i priključena na prosoperiodični napon. od ovi okolnosia su: akivna i reakivna opornos drugog prijenika R = 00 i X = 400, reakivna snaga prvog prijenika Q = 5 VAr, reakivna snaga kola Q = 5 VAr i efekivna vrednos sruje napojne grane 5 5 A. Odredii akivnu i reakivnu opornos prvog prijenika. Q 0, Q X, X 0 kapaciivni prijenik X 0 indukivni prijenik Q Q Q Q Q Q 60VAr Q Q X 0A X U Z Z X R 500 U 5V U 5 VA Q Q 450W 80W R 70W U cos Q U Q sin sin g cos arcg 6, 87 Q U cos 5A R R 800 Q Q X X 600 7
8 8 6. Redna veza opornika opornosi R i kondenzaora kapaciivnosi C je priključena na srujni generaor prosoperiodične sruje ] [A / sin(500 0 g i. zraz za renunu snagu koju pria ova redna veza je: ] [W 4 / cos(000,6 0 p. Odredii opornos R i kapaciivnos C. Neka su izrazi za renune vrednosi prosoperiodične sruje i i prosoperiodičnog napona u: sin( i sin( U u Trenuna vrednos snage određuje se kao: sin( sin( U i u p cos( cos( U p cos( ( cos U p ( cos cos U p ] cos[( cos p ] ( cos[ p oređenje dobijenog izraza sa izrazo za renunu snagu, koji je da u zadaku, dobija se: 0,6W VA Kako je: g R g 0 0 0,6 R k R z izraza za prividnu snagu sledi: g g g C R C R Q 4 g R C A 0 0 g μf C 0,6 s 500
9 7. Odredii ukupnu akivnu snagu koja se razvija u kolu prikazano na slici, ako je R = 5, L = 9,55 H, R = 4, = 0 A i f = 50 Hz. Kolu na slici odgovara vekorski dijagra: x cos sin x cos cos sin cos ( U R U Z 5,8 4 Z R X L 5 5, 8 0, 69 ( R cos 0,86 ( Z Zaeno jednačina ( i ( u jednačinu ( dobija se: 0 0,48, 9 0,67 0,6 8,4A,7A R R 56W 9
10 8. Koliku ukupnu akivnu snagu uzia iz reže naizenične sruje kolo prikazano na slici ako je pokazivanje aperera 00 A, R = 0, R = 0, R = 0, X L = 5, X L = 5, X L = 0? Z Z L X L R ( X 6, 05 X L ( R R 44, 7 X L X L arcg arcg 56, R X L arcg arcg 6, 56 R R o Za kolo na slici ože se nacrai fazorski dijagra: odakle se ogu napisai sledeće jednačine za projekcije vekora sruja i : x x cos sin x,55 0, 89 cos sin 0,8 0, ,89 (0,8 0,45 00 (0,55 ( U Z Z 0, 8 Z Z ( ( ( 0,7 (0,8 0,6 00 (0,55 R R R 0 57, ,5 00,6, 4 00,0 57,45A 46,5A 5,6kW 0
11 9. Tri porošača su paralelno priključena na naizenični napon od 0 V, kao na slici. rvi porošač uzia iz reže snagu 4.6 kw uz fakor snage, drugi porošač uzia prividnu snagu,5 kva radeći uz fakor snage 0,6 (ind., a reći porošač uzia akivnu snagu 5,5 kw uz fakor snage 0,8 (kap.. orebno je odredii: a prividne snage i koje ovi porošači uziaju iz reže, b ukupnu prividnu, akivnu i reakivnu snagu. a cos 4,6kVA cos cos 6,9kVA cos b Vekorski dijagra prividnih snaga za kolo na slici ože se predsavii na sledeći način: x cos cos cos 7,5kW sin sin sin 4,88kVAr x 7,95kVA arcg 5, 5 x cos 7,5kW Q sin 4,8kVAr
12 0. orošaču osko-indukivnog karakera prividne snage 65 kva paralelno je vezan sinhroni oor od 5 kva, čiji je fakor snage 0,6 (cap. Ako je sada ukupni fakor snage 0,85 (ind odredii fakor snage porošača od 65 kva. cos 0,6 5, cos 0,85, 8 cos sin g , cos cos sin sin sin cos 65 sin 0 0,6 65 cos 5 sin cos sin 5 0 cos , cos 9, 65 sin 65 sin 40, cos 9, sin 0,6 cos 0,45 / 0,8 0,6 cos 0,84 cos 0,558 cos 0,05 0,84 cos 0,558 cos 0, cos 0,40 cos 0, ,40 cos 0,64,04 0,40,57 cos Rešenja kvadrane jednačine su: cos 0, 986 i cos 0, 584. Kako važi 90 90, cos ne ože iai negaivnu vrednos, pa je raženi fakor snage porošača od 65 kva cos 0,584.
13 . okazivanje vaera je 000 W. Kolike se akivne snage razvijaju na pojedini eleenia kola, ako je X L =, R = 8 i R = 5? R R ( U Z U R Z X L R 8 8, 5 8,5 5 0, 55 8,5 ( 5 Ubacivanje jednačine ( u jednačinu ( dobija se: 5 (0, ,54,6A 0,55,6 6,95A Akivne snage koje se razvijaju na opornicia R i R određuju se kao: R R 80W 70W
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραAntene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Διαβάστε περισσότεραNaizmenične struje. Osnovi elektrotehnike 2. i (t) + 2 ča
Naizmenične sruje Osnovi elekroehnike i () + ča za I i() i() Naizmenične sruje predsavljaju vremenski promenljive sruje koje salno menjaju inenzie, a povremeno i smer!!! 0 1 Karakerisike periodičnih signala
Διαβάστε περισσότεραSnage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραRAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραnvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Διαβάστε περισσότερα1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραVILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
Διαβάστε περισσότεραReverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραOSNOVE ELEKTROTEHNIKE II Vježba 11.
OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone
Διαβάστε περισσότερα( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραNAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)
NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:
Διαβάστε περισσότεραKola u ustaljenom prostoperiodičnom režimu
Kola u ustalenom prostoperiodičnom režimu svi naponi i sve strue u kolu su prostoperiodične (sinusoidalne ili kosinusoidalne funkcie vremena sa istom kružnom učestanošću i u opštem slučau različitim fazama
Διαβάστε περισσότεραElementi električnih kola
Glava 1 Elemeni elekričnih kola Analiza elekričnih kola podrazumjeva uvo denje odgovarajućih maemaičkih modela fizičkih elemeaa koji čine elekrična kola i dodjeljivanje maemaičkih funkcija koninulanim
Διαβάστε περισσότεραMAGNETNO SPREGNUTA KOLA
MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραNAIZMENIČNE STRUJE. Osnovni pojmovi
NAZMENČNE STRUJE Osnovni pojovi Naizenične struje i naponi su električne veličine koje toko vreena enjaju ser. Prea vreenskoj zavisnosti jačine struje, naizenične struje se ogu podeliti na sledeći način:
Διαβάστε περισσότεραRešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I
. Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne
Διαβάστε περισσότεραSOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραGlava 2 Odzivi u kolima prvog i drugog reda
Glava 2 Odzivi u kolima prvog i drugog reda Prilikom modelovanja elekričnih kola najčešeće se korise diferencijalne jednačine da opišu elemene sa memorijoom, j. elemene koji mogu da skladiše energiju.
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραOBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Διαβάστε περισσότεραSnaga naizmenicne i struje
Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču
Διαβάστε περισσότεραInduktivno spregnuta kola
Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Διαβάστε περισσότεραVJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Διαβάστε περισσότερα, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραQ11. 4k2 Q12. 1k7 VEE=-5.2V
. ZTK 50k Slika Za logicko kolo sa slike odredii: a) logicku funkciju kola Y=f() i Y=g() ) rednosi opornosi 9 i 4 ako da su margine šuma za logicku nulu i jedinicu jednake a logicki nioi na ulazu i izlazu
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραFAKULTET PROMETNIH ZNANOSTI
SVEČILIŠTE ZAGEB FAKLTET POMETNIH ZNANOSTI predme: Nasavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Auorizirana predavanja 2016. 1 jecaj nelinearnih karakerisika komponenaa na rad elekroničkih
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραSnage u ustaljenom prostoperiodičnom režimu
Snage u ustaljenom prostoperiodičnom režimu 13. januar 016 Posmatrajmo kolo koje se sastoji od dvije podmreže M i N, kao na Slici 1. U kolu je uspostavljen ustaljeni prostoperiodični režim i ulazni napon
Διαβάστε περισσότεραRad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραOM1 V10 V11 Ime i prezime: Index br: TORZIJA GREDE
O1 V10 V11 me i prezime: nde br: 1 9.1.015. 9. TORZJA GREDE 9.1 TORZJE GREDE KRUŽNOG PRSTENASTOG POPREČNOG PRESEKA orzije grede kružnog poprečnog preseka Slika 9.4 r (9.8) 0 0 r R 0 0 1 R (9.11) π (9.1)
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Διαβάστε περισσότερα4. NAIZMJENIČNE STRUJE
4. NAZMJENČNE SJE 4. Prosoperodčne harončne velčne njhove osnovne karakerske elekroehnc se najčešće prjenjuju uređaj koj korse nazjenčnu sruju "". Kod nazjenčne sruje jenja se, oko vreena, nenze sjer.
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραKinetička energija: E
Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M
Διαβάστε περισσότεραUniverzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
Διαβάστε περισσότεραTrigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραPARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραTeorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραObrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Διαβάστε περισσότεραDRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Διαβάστε περισσότεραOsnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Διαβάστε περισσότεραOsnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραPOGON SA ASINHRONIM MOTOROM
OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO
Διαβάστε περισσότεραMATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραGRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραZadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραTEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραr koje dejstvuju na tačku: m a F.
Drui Njunov zakon Proizvod između mase maerijalne ačke m i vekora njeno ubrzanja a r jednak je vekorskoj r sumi svih sila F r i r koje dejsvuju na ačku: m a F. Drui Njunov zakon je vekorski zakon ali oovo
Διαβάστε περισσότεραPRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003.
PVI DO ISPIT I OSNOV KTOTHNIK 8 jun 003 Napomene Ispit traje 0 minuta Nije ozvoqeno napu{tawe sale 90 minuta o po~etka ispita Dozvoqena je upotreba iskqu~ivo pisaqke i ovog lista papira Kona~ne ogovore
Διαβάστε περισσότερα4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραOSNOVI DIGITALNE ELEKTRONIKE (13S042ODE)
OSNO GTLNE ELEKTONKE (S4OE) ačunske ežbe ( časa nedeljno): dr Goran Saić saic@el.ef.rs hp://n.ef.rs/~siode kabine d Termini za konsulacije: posle časoa računskih ežbi, po dogooru. igialni signali magisrala
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραXI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Διαβάστε περισσότεραDIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότερα