věstonická vrubovka (18 cm dlhá kosť mladého vlka s 55 zárezmi) tisíc rokov pred n. l. geometrické ornamenty (váza z Mezopotámie)
|
|
- Ἀβιούδ Μεταξάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 STRUČNÝ PREHĽAD OBJAVOV V MATEMATIKE Matematika je prakticky tak dlho na svete ako ľudstvo. Prvé predstavy o číslach a o jednoduchých rovinných útvaroch, ktorými sa začína vyučovanie geometrie, vznikli už v dobe kamennej. Významné matematické predstavy vznikali v starovekom Grécku. Táles, Pytagoras, Euklides, Archimedes sú zapísaní medzi významných matematikov. Dvadsiate storočie ponúklo myšlienku: História matematiky môže pripomenúť veľké problémy môže naučiť pokore tvárou v tvár veľkým dielam minulosti (M. Kline, ). Moderná doba je prejavom rozšírenia matematickej kultúry. Zaujatie matematikou sa dá porovnať so záujmom o mytológiu, literatúru alebo hudbu. Je to jedna z najvlastnejších oblastí človeka, v nej sa prejavuje ľudská podstata, túžba po intelektuálnej sfére života, ktorá je jedným z prejavov harmónie sveta (H. Weyl, ) tisíc rokov pred n. l. 5 tisíc rokov pred n. l. začiatok 3. tisícročia pred n. l rokov pred n. l pred n. l. 7. stor. pred n. l. 6. stor. pred n. l. věstonická vrubovka (18 cm dlhá kosť mladého vlka s 55 zárezmi) geometrické ornamenty (váza z Mezopotámie) v písomných pamiatkach v Uruku (Irak) sa objavila číselná symbolika sumerské klinopisné texty používali šesťdesiatkovú nepozičnú číselnú sústavu starovekí Číňania robili trigonometricko astronomické výpočty v mezopotámskych textoch sa používala pozičná šesťdesiatková sústava starobabylonské klinové dosky obsahovali rovnice (kvadratické i kubické) s viacerými neznámymi, druhú a tretiu odmocninu, pytagorovské trojice čísiel staroegyptské dokumenty (Moskovský a Rhindov papyrus) obsahovali základné matematické operácie, počítanie so zlomkami, riešenie kvadratickej rovnice, jednoduché postupnosti, obsahy a objemy základných útvarov v Indii poznali Pytagorovu vetu, približné hodnoty 2 a π, počítali obsahy plôch Táles z Milétu meral výšku pyramíd na základe podobnosti trojuholníkov, vyslovil vetu o pravom uhle nad priemerom kružnice
2 v Číne formuloval Čhen c vetu o vzťahu štvorcov r nad stranami pravouhlého trojuholníka 530 pred n. l. 4. stor. pred n. l pred n. l. 3. stor. pred n. l. Pytagoras z Krotonu založil spolok, ktorého členovia urobili všeobecný dôkaz Pytagorovej vety, študovali základy teórie čísel, priblížili sa k pojmu iracionálneho čísla Eudoxos z Knidosu vypracoval tzv. exhaustívnu metódu, Theaitetos vytvoril teóriu iracionality a položil základy stereometrie v Alexandrii Euklides zhrnul matematické poznatky do logického systému Základy Eratostenes vytvoril sito, Archimedes odvodil vzorce pre objem valca, kužeľa, gule, odhadol π Apollonios podal systematický výklad kužeľosečiek v Číne vyšla zbierka Matematika v deviatich knihách 152 pred n. l. 1. stor. n. l. 2. stor. n. l. 3. stor. n. l. Herón zhrnul poznatky gréckej matematiky, sformuloval spôsob číselného riešenia kvadratických rovníc Nikomachos spracoval Úvod do aritmetiky Ptolemaios vo svojom Almageste uviedol vetu o štvoruholníku vpísanom do kruhu Diofantos systematicky používal algebrické symboly, vyslovil niekoľko viet z teórie čísel v Číne sa objavili desatinné zlomky okolo 595 okolo 620 prvá polovica 9. stor. okolo v Indii sa používala desiatková pozičná sústava Brahmagupta v Indii všeobecne vyriešil neurčité rovnice prvého stupňa Al Chovárizmí rozšíril indický pozičný systém a prepracoval Diofantovu Aritmetiku poznatky sférickej trigonometrie (Abú l Vafá) Leonardo Pisano (Fibonacci) vydal v Európe prvú knihu o arabskej aritmetike a algebre, vysvetlil desiatkovú sústavu (Liber Abaci) použitie planimetrie a stereometrie ukázal L. Pisano v práci Practica geometriae
3 v Číne je publikovaný tzv. Pascalov trojuholník binomických koeficientov až do 8. stupňa Bradwardinus sa venoval otázkam spojitosti a pretržitosti, aktuálnemu i potencionálnemu nekonečnu Müller (Regiomontanus) systematicky spracoval trigonometriu Paciolli v Summe de arithmetica zhrnul výsledky vývoja aritmetiky, zaviedol zjednodušenú symboliku Stiffel objasnil koncepciu logaritmov (Arithmetica integra) Cardano publikoval Ars Magna spolu s algebraickým riešením kubických rovníc (S. del Ferro, N. Tartaglia) Bombelli vo svojej Algebre vyložil teóriu imaginárnych čísiel Stevin zaviedol počítanie s desatinnými zlomkami Viete zaviedol algebrickú symboliku v Úvode do analytického umenia Ludolf van Ceulen vypočítal π na 35 desatinných miest, uverejnil ich v roku 1615 Napier publikoval návod na počítanie s logaritmami Bürgi používal logaritmy (žil v Prahe) Briggs uverejnil logaritmické tabuľky so základom 10 Cavalieri publikoval úvahy o infinitezimálnych veličinách, Fermat vypracoval metódu určenia dotyčnice krivky, vznikajú základy diferenciálneho a integrálneho počtu Descartes vydal Rozpravu o metóde a v časti Geometria vyložil metódu súradníc i základy analytickej geometrie Desargues rozvinul projektívne vlastnosti geometrických útvarov Pascal skonštruoval počítací stroj Pascal publikoval tzv. aritmetický trojuholník, ku ktorému dospel pri štúdiu kombinatorických problémov
4 druhá polovica 17. storočia Fermat a Pascal položili základy teórie pravdepodobnosti, Huygens publikoval prvé práce (1657) Wallis zaviedol nekonečné rady a súčiny (1655) Leibniz publikoval Dissertatio de arte combinatoria (1666) prvá polovica 18. stor. Newton a Leibniz vytvorili (nezávisle) infinitezimálny počet a základy teórie symetrických funkcií vyšli Newtonove Matematické princípy prírodnej filozofie l Hospital publikoval prvú učebnicu diferenciálneho počtu Moivre, Stirling, Maclaurin, Euler a iní rozpracovali základy analytických metód teórie pravdepodobnosti Jakub Bernoulli publikoval Ars conjectandi, odvodil zákon veľkých čísel, položil základy variačného počtu Taylor odvodil všeobecný vzorec pre rozvoj funkcií do mocninového radu Moivre ukázal formulu pre mocniny komplexných čísiel Clairaut začal študovať analytickú a diferenciálnu geometriu priestorových kriviek Saccheri prepracoval axiomatiku Euklidovej geometrie (1733) Euler formuloval problém mostov v Kráľovci ako úlohu kombinatorickej topológie (1735), vypracoval metódu riešenia neurčitých rovníc, dokázal malú Fermatovu vetu (1736), položil základy variačného počtu (1744), vydal Úvod do analýzy (1748) a podal ucelený výklad diferenciálneho (1755) a integrálneho počtu (1768) Cramer používal determinanty (1750) 2. polovica 18. stor. Riccati zaviedol hyperbolické funkcie (1757) Lambert dokázal iracionalitu čísla π (1761) Lagrange položil základy modernej algebry, rozpracoval analytický variačný počet (1770) Monge vydal Deskriptívnu geometriu (1799) Gauss dokázal zákon reciprocity kvadratických zvyškov
5 (1796), podal presný dôkaz základnej vety algebry (1799), vypracoval metódu najmenších štvorcov, Základy aritmetiky (1801) Laplace zaviedol všeobecné metódy riešenia diferenciálnych rovníc (Laplaceova transformácia) Bolzano spresnil definíciu limity a spojitosti, určil kritériá konvergencie Cauchy zaviedol presné kritériá pre konvergenciu nekonečných radov a vymedzil pojem absolútnej konvergencie Fourier rozpracoval metódu integrácie parciálnych diferenciálnych rovníc Abel dokázal, že neexistuje vzorec (pomocou radikálov) na vyriešenie algebrických rovníc stupňa vyššieho než štvrtého Cauchy systematicky rozvinul teóriu komplexných funkcií Lobačevskij zverejnil neeuklidovskú geometriu Abel a Jacobi rozvinuli teóriu eliptických funkcií Galois vytvoril koncepciu teórie grúp Bolyai publikoval základy neeuklidovskej geometrie Babbage navrhol plán samočinného počítača Hamilton publikoval presnú teóriu komplexných čísel Wantzel dokázal, že trisekcia ľubovoľného uhla je neriešiteľná Hamilton objavil kvaternióny Liouville dokázal vetu na zisťovanie racionálnosti čísel Boole položil základy modernej formálnej matematickej logiky (Matematická analýza logiky), vydal Zákony myslenia (1854) vyšli (posmrtne) Bolzanove Paradoxy nekonečna Riemann spresnil a zovšeobecnil pojem integrálu, zaviedol do analýzy topologické metódy, napísal práce o trigonometrických radoch, vybudoval tzv. Riemannovu geometriu
6 1858 Möbius ukázal príklad jednostrannej plochy Cayley ucelene vyložil základy teórie matíc Clebsch vytvoril tzv. algebraickú geometriu Beltrami a Klein vytvorili model neeuklidovskej geometrie Jordan rozpracoval teóriu grúp Dedekind publikoval teóriu reálnych čísel Klein v Erlangenskom programe vysvetlil význam grúp pre klasifikáciu rôznych oblastí matematiky Hermite dokázal transcendenciu čísla e Cantor rozpracoval teóriu množín Gibbs pripravil základy vektorovej analýzy Lindemann ukázal, že π je transcendentné číslo Poncelet prispel k rozvoju projektívnej geometrie Cantor vytvoril teóriu iracionálnych čísel a teóriu množín, systematicky študoval pojem nekonečna Ricci položil základy tenzorového počtu Frege prispel k systematickej formalizácii logiky (Základy aritmetiky) Peano pripravil axiomatiku prirodzených čísel začiatok20. stor. Cantor uviedol diagonálnu metódu, Schröder rozvinul matematickú logiku Borel modernizoval pojmy teórie miery Hilbert podal úplnú axiomatickú sústavu geometrie (Základy geometrie) Hilbert na medzinárodnej konferencii matematikov v Paríži forrmuloval 27 problémov Lebesque rozšíril pojem integrál (1901) Zermelo sformuloval axiómu výberu (1904), zaviedol do
7 teórie množín axiomatický systém (1908) Voltera, Banach, Frechet položili základy funkcionálnej analýzy Levi Civita rozvinul absolútny diferenciálny a tenzorový počet Brouwer položil základy modernej topológie (1907) Principia mathematica (Russell, Whitehead) Hausdorff rozvinul pojem topologického priestoru Banach zovšeobecnil pojem topologického zobrazenia a vyslovil vetu o pevnom bode Neumann formuloval základy teórie hier Gödel dokázal dôležité vety o všeobecných vlastnostiach logických systémov (vety o neúplnosti) Kolmogorov axiomatizoval teóriu pravdepodobnosti Turing a Post vytvorili koncepciu abstraktného matematického stroja skupina matematikov Bourbaki začala systematicky a logicky usporadúvať celú matematiku na základe všeobecných princípov (Základy matematiky) Gödel ukázal, že ak je teória množín bezosporná, bude bezosporná aj po pridaní axiómy výberu alebo hypotézy kontinua Shanon vytvoril základy teórie informácií Wiener vypracoval teoretické základy kybernetiky Erdös a Selberg zjednodušili dôkaz vety o rozdelení prvočísiel Cartan a Eilenberg rozvinuli homologickú algebru Cohen podal riešenie problému hypotézy kontinua Appel a Haken využitím počítačového programu vyriešili problém štyroch farieb Wiles podal ucelený dôkaz Fermatovej vety
8
Poznámky z dejín matematickej kultúry
Poznámky z dejín matematickej kultúry Dušan JEDINÁK Vývoj matematiky (stručný prehľad) Odvtedy ako sme sa pozreli na svet očami matematiky, objavili sme veľké tajomstvo, prírodné modely ukazujú na podstatné
Μία περιληπτική ιστορία των μαθηματικών
Μία περιληπτική ιστορία των μαθηματικών Τα μαθηματικά ξεκινούν με το μέτρημα. Εντούτοις, δεν είναι λογικό να ειπωθεί ότι αυτό το πρωτόγονο μέτρημα ήταν μαθηματικά. Μόνον όταν καταγράφηκαν κάποια αντίγραφα
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER
Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
tretej odmocniny ( x ), mocniny čísla 10, n-tá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, n je prirodzené číslo.
Mocniny a odmocniny, zápis veľkých čísel Školský vzdelávací program matematika 9. ročník 1. Obsah vzdelávania učebného predmetu v 9. ročníku (rozšírený počet hodín ) Tematický celok Témy Druhá a tretia
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ της Χριστίνας Φίλη (Επίκουρη καθηγήτρια Ε.Μ.Π )
ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ της Χριστίνας Φίλη (Επίκουρη καθηγήτρια Ε.Μ.Π ) 3000-2000 π.χ Αίγυπτος Εμφάνιση ιερογλυφικών αριθμών. Κατασκευή πυραμίδων. Πραγματεία Μεταθέσεων (yang-ying
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník
Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou
Tematický výchovno-vzdelávací plán. z matematiky. pre 9. ročník
výchovnovzdelávací plán z matematiky pre 9. ročník Počet hodín : 5 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok: 2014/2015
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Čriepky z histórie matematickej kultúry
Čriepky z histórie matematickej kultúry Dušan JEDINÁK Čriepky (1) Z filozofického slovníka Mathéma znamená v gréčtine učenie, poznanie, vedomosť. Všeobecná matematika je súbor vied, ktoré svojou metódou
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Funkcie komplexnej premennej
(prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)
Zostavil Dušan JEDINÁK
Zostavil Dušan JEDINÁK Úvodné myšlienky Predkladaný Kalendár M F 2015 je súborom stručných životopisných medailónov významných matematikov alebo fyzikov pre každý mesiac občianskeho roku, spomienkou na
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Vzdelávacia oblasť: Matematika a práca s informáciami 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce
Základná škola Pavla Horova Michalovce ŠKOLSKÝ ROK: 2016/2017 9. ROČNÍK Matematika Vypracoval: Mgr. Ľubomíra Bérešová, RNDr. Eva Ciglianová, Mgr. Mária Hinďošová, Mgr. Tatiana Markušová Obsah Charakteristika
H φιλοσοφία και οι εξελίξεις των Μαθηματικών στον 19 ο αιώνα και τις αρχές του 20 ου.
ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ H φιλοσοφία και οι εξελίξεις των Μαθηματικών στον 19 ο αιώνα και τις αρχές του 20 ου. Στις αρχές του 19 ου αιώνα κύρια επιρροή στην φιλοσοφία των μαθηματικών ασκούσαν οι απόψεις του
Matematický zápis Maxwellových rovníc ( história zápisu v matematike )
Slovenská Akadémia Vied Fyzikálny ústav SAV Matematický zápis Maxwellových rovníc ( história zápisu v matematike ) RNDr. Robert Turanský Bratislava 8.6.2009 Maxwellove publikácie ( Maxwellove rovnice )
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Ιστορία της Γραμμικής Άλγεβρας
Ιστορία της Γραμμικής Άλγεβρας Μία σύντομη Επισκόπηση Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Θεσσαλονίκη 2009 Βασικές Έννοιες τη Γραμμικής Πίνακες Γραμμικές εξισώσεις Ορίζουσες ιανυσματικοί χώροι Γραμμική
247 Μαθηματικών Πάτρας
247 Μαθηματικών Πάτρας Σκοπός Αποστολή του Τμήματος είναι η καλλιέργεια της μαθηματικής σκέψης και παράλληλα η ανάδειξη επιστημόνων που θα αναζητούν, θα επεξεργάζονται και θα προτείνουν θεωρητικά μοντέλα
Základy automatického riadenia
Základy automatického riadenia Prednáška 1 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita
Téma Pojmy Spôsobilosti
OBSAH VZDELÁVANIA 1.ročník (Prima) 4 hod. týždenne + 0,5 RH / 148,5 hod. ročne Tematický celok počet hodín Obsahový štandard Výkonový štandard Prostriedky hodnotenia Téma Pojmy Spôsobilosti Opakovanie
Dušan JEDINÁK O B S A H
Dušan JEDINÁK Prečo práve etudy? Rád poznávam zaujímavých ľudí. Vždy po nich zostanú nečakané spomienky. Aj v rozvoji matematiky hrali dôležitú úlohu osobnosti. Slávni matematici. Tých prvých nepoznáme
Numerické metódy Zbierka úloh
Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia
K výročiam významných matematikov (v školských rokoch 2016/2017 až 2020/2021)
1 K výročiam významných matematikov (v školských rokoch 2016/2017 až 2020/2021) Zostavil Dušan Jedinák, emeritný učiteľ počtov a merby TOPOĽČANY 2016 1 2 Úvod Úžasnú konštrukciu matematiky a jej užitočných
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
K výročiam významných matematikov
K výročiam významných matematikov (v školskom roku 2013/2014) Zostavil Dušan JEDINÁK Topoľčany 2011 2 Úvodná ponuka Už dlhšiu dobu tušíme, že príležitostnou spomienkou na ľudí spojených s matematickou
Μαθηματικά και Λογοτεχνία. Η ιστορική εξέλιξη των μαθηματικών
Μαθηματικά και Λογοτεχνία Η ιστορική εξέλιξη των μαθηματικών Αιγύπτιοι (3000 π.χ.) Οι γνώσεις των Αιγυπτίων Η ανάγκη μέτρησης των καλλιεργήσιμων εκτάσεων της γης συνέβαλε στην ανάπτυξη της πρακτικής γεωμετρίας.
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Požiadavky k štátnej skúške pre magisterský študijný program
z predmetu: Matematická analýza 1. Číselné postupnosti a ich základné vlastnosti. 2. Funkcia jednej reálnej premennej, základné vlastnosti funkcií. 3. Derivácia funkcie jednej reálnej premennej, jej vlastnosti
Téma c. 1. Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu
Téma c. 1 Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu A) Výrok a jeho vlastnosti. Výroky tvorené z jednoduchých výrokov pomocou logických operátorov.
Katolícka univerzita v Ružomberku HISTÓRIA ROVNÍC
Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky HISTÓRIA ROVNÍC (Seminárna práca) Lena Ondrejičková U, Mat - Nv Ružomberok 008 ÚVOD Keď sa povie slovo matematika, väčšina ľudí
Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα
Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Βασίλειος Παπαντωνίου Ομ. Καθηγητής Πανεπιστημίου Πατρών bipapant@math.upatras.gr Επίκεντρο της παρουσίασης Η εξέλιξη της μαθηματικής σκέψης
Vzdelávacia oblasť - ISCED 2. Matematika a práca s informáciami
Vzdelávacia oblasť - ISCED 2 Matematika a práca s informáciami Vzdelávacia oblasť Matematika a práca s informáciami Rámcový učebný plán vzdelávacej oblasti Predmet/ročník 5. 6. 7. 8. 9. Spolu Matematika
Učebné osnovy: Matematika. Ročník: 9., Počet hodín : 4+2 hodín týždenne, spolu 198 hodín ročne ŠVP:
Učebné osnovy: Matematika Ročník: 9., Počet hodín : ŠVP: ŠkVP: 4+2 hodín týždenne, spolu 198 hodín ročne Štátny vzdelávací program pre 2. stupeň ZŠ v Slovenskej republike Základná škola 2. stupeň Základná
Učebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne.
Gymnázium Ľudovíta Štúra v Trenčíne Učebné osnovy Stupeň vzdelania: ISCED 3A Študijný odbor: 7902 J gymnázium Zameranie školského vzdelávacieho programu: bilingválne štúdium Predmet: Matematika vo francúzskom
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
10.05.12 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012
Εαρινό εξάμηνο 2012 10.05.12 Χ. Χαραλάμπους 1. Έχει κάθε πολυώνυμο ρίζα? 2. Πόσες ρίζες έχει ένα πολυώνυμο βαθμού n? 3. Μπορούμε να καθορίσουμε πότε οι ρίζες είναι ρητές, πραγματικές, θετικές, κλπ? 4.
EUKLIDOVA GEOMETRIA. Katolícka univerzita v Ružomberku. Pedagogická fakulta. (Seminárna práca z Histórie matematiky) 2006/2007 Mária Veselá
Katolícka univerzita v Ružomberku Pedagogická fakulta EUKLIDOVA GEOMETRIA (Seminárna práca z Histórie matematiky) 2006/2007 Mária Veselá 4. roč., M - Nv EUKLIDOVA GEOMETRIA Počnúc 8.storočím pred naším
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti
Obsahový a výkonový štandard MATEMATIKA
Obsahový a výkonový štandard MATEMATIKA Matematika, 1.ročník Numerácia v obore prirodzených čísel do 100 dvojice, vzťah rovnako nerovnako, viac menej kvalita čísel počítanie po jednom, po dvoch... poznávanie
Συνοπτικό Περιεχόμενο Μαθημάτων 1. ΣΥΝΟΠΤΙΚΌ ΠΕΡΙΕΧΌΜΕΝΟ ΜΑΘΗΜΆΤΩΝ ΤΗΣ ΣΧΟΛΉΣ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
Συνοπτικό Περιεχόμενο Μαθημάτων 1. ΣΥΝΟΠΤΙΚΌ ΠΕΡΙΕΧΌΜΕΝΟ ΜΑΘΗΜΆΤΩΝ ΤΗΣ ΣΧΟΛΉΣ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ 1 Σχολή Μηχανολόγων Μηχανικών 1. Συνοπτικό Περιεχόμενο Μαθημάτων Σημείωση 1: Υπενθυμίζεται ότι ο κωδικός
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014
Εαρινό εξάμηνο 2014 21.05.14 Χ. Χαραλάμπους Ποια είναι η πρόοδος στην Άλγεβρα την εποχή αυτή? Η Άλγεβρα μέχρι τώρα ασχολείται με εύρεση ριζών για πολυωνυμικές εξισώσεις. Χάρις στο έργα των Viete (16 ος
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Spojitosť a limity trochu inak
Spojitosť a limity trochu inak Štefan Tkačik Abstrakt Spojitosť funkcie alebo oblastí je základným stavebným kameňom matematickej analýzy. Pochopenie jej podstaty uľahčí chápanie diferenciálneho a integrálneho
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Matematika nižšie stredné vzdelanie MATEMATIKA
ÚVOD MATEMATIKA Vzdelávací štandard pre učebný predmet matematika nepredstavuje iba súhrn katalógov, ktoré stanovujú výkony a obsah vyučovacieho predmetu, ale je to predovšetkým program rôznych činností
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1
3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte
Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál
ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012
Εαρινό εξάμηνο 2012 17.05.12 Χ. Χαραλάμπους (1791-1858) 1858) Peacock: «Treatise on Algebra»(1830) και αργότερα μετά το 1839 την «αριθμητική άλγεβρα» και στην «συμβολική άλγεβρα». «αριθμητική άλγεβρα»:
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Matematika gymnázium s osemročným vzdelávacím programom MATEMATIKA ÚVOD
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika chápeme ako program vytvárajúci priestor na rozvíjanie individuálnych učebných ciest žiakov. Pre učiteľov slúži najmä na orientáciu v cieľoch,
Matematika gymnázium s osemročným vzdelávacím programom MATEMATIKA ÚVOD
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika chápeme ako program vytvárajúci priestor na rozvíjanie individuálnych učebných ciest žiakov. Pre učiteľov slúži najmä na orientáciu v cieľoch,
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Ministerstvo školstva Slovenskej republiky. Učebné osnovy MATEMATIKA. pre 5. až 9. ročník základnej školy
Ministerstvo školstva Slovenskej republiky Učebné osnovy MATEMATIKA pre 5. až 9. ročník základnej školy Inováciu učebných osnov koordinoval: PhDr. L. Bálint, CSc. Schválilo Ministerstvo školstva Slovenskej
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
MATEMATIKA CIELE UČEBNÉHO PREDMETU I. CHARAKTERISTIKA UČEBNÉHO PREDMETU
MATEMATIKA I. CHARAKTERISTIKA UČEBNÉHO PREDMETU Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia je schopnosť
1 Časová dotácia: Matematika. Vzdelávacia oblasť. Matematika a práca s informáciami. Názov predmetu. Stupeň vzdelania ISCED 2
Vzdelávacia oblasť Názov predmetu Matematika a práca s informáciami Matematika Stupeň vzdelania ISCED 2 Dátum poslednej zmeny UO 1. september 2014 UO vypracoval Mgr. Beáta Riegerová, Mgr. Branislav Polacsek
Dušan JEDINÁK. (Táles, Pytagoras, Euklides, Archimedes, Diofantos)
Dušan JEDINÁK (Táles, Pytagoras, Euklides, Archimedes, Diofantos) TÁLES z Milétu Egyptský kňaz a mladý kupec Táles z Milétu stáli za slnečného dňa neďaleko pyramídy a uvažovali o určení jej výšky. Táles
Η πλήρης συνέντευξη του ηµήτρη Χριστοδούλου στον Αλκη Γαλδαδά.
Η πλήρης συνέντευξη του ηµήτρη Χριστοδούλου στον Αλκη Γαλδαδά. Ο. Χριστοδούλου βρέθηκε αυτό τον καιρό στην Ελλάδα και µίλησε στο ΒΗΜΑ για την ερευνητική του εργασία που έχει οδηγήσει σε µια σειρά από σηµαντικές
Polynómy. Hornerova schéma. Algebrické rovnice
Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x
UČEBNÉ OSNOVY. Matematika. Názov predmetu: Ročník: piaty šiesty siedmy ôsmy deviaty. Časový rozsah výučby:
UČEBNÉ OSNOVY Názov predmetu: Ročník: Časový rozsah výučby: a) daný štátnym 4 h. týždenne vzdelávacím programom 132 h. ročne b) voliteľný školou 1 h. týždenne 33 h. ročne Stupeň vzdelania: Forma štúdia:
1 Galois Theory, I. Stewart. https://repository.kallipos.gr/bitstream/11419/731/4/book Galois theory.
Χαρά Χαραλάμπους Τμήμα Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 10 Απριλίου 2016 Με βάση την ομιλία (30.3.16) στην 8η Διεθνής Μαθηματική Εβδομάδα «Θεωρία Galois σε 30 λεπτά» Ελληνική Μαθηματική
Stredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník
Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník ÚVOD Vzdelávací štandard z matematiky pre stredné odborné školy so štvorročným štúdiom patrí medzi základné pedagogické dokumenty,
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
MONITOR 9 (2007) riešenia úloh testu z matematiky
MONITOR 9 (007) riešenia úloh testu z matematiky Autormi nasledujúcich riešení sú pracovníci spoločnosti EXAM testing Nejde teda o oficiálne riešenia, ktoré môže vydať ia Štátny pedagogický ústav (wwwstatpedusk)
ŠKOLSKÝ VZDELÁVACÍ PROGRAM
ŠKOLSKÝ VZDELÁVACÍ PROGRAM MATEMATIKA vzdelávacia oblasť: Matematika a práca s informáciami ISCED 2 Prerokované a schválené v pedagogickej rade dňa 30.08.2013 1 Časová dotácia predmetu Základná škola s
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
História použitia matematického aparátu vo fyzike. Niekoľko príkladov
História použitia matematického aparátu vo fyzike. Niekoľko príkladov Matematika má skoro vždy pripravený vhodný aparát pre fyziku, ale nie vždy a nie vždy o ňom fyzici vedia. Úvod E. Wigner, 1959, O nepochopiteľnej
ŠkVP ZŠ s MŠ J.M. Hurbana Beckov Učebné osnovy ISCED 2 MATEMATIKA. Matematika a práca s informáciami
Názov predmetu Vzdelávacia oblasť Názov ŠVP Škola MATEMATIKA Matematika Matematika a práca s informáciami Štátny vzdelávací program pre 2. stupeň základnej školy Základná škola s materskou školou Jozefa
Metódy numerickej matematiky I
Úvodná prednáška Metódy numerickej matematiky I Prednášky: Doc. Mgr. Jozef Kristek, PhD. F1-207 Úvodná prednáška OBSAH 1. Úvod, sylabus, priebeh, hodnotenie 2. Zdroje a typy chýb 3. Definície chýb 4. Zaokrúhľovanie,
ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014
Εαρινό εξάμηνο 2014 20.03.14 Χ. Χαραλάμπους Είναι το 5 ο αίτημα όντως αίτημα και όχι πρόταση? Η πρώτη φορά που το αίτημα χρησιμοποιείται στα Στοιχεία είναι στην απόδειξη της Πρότασης 29. ( Η Πρόταση 29
MATEMATIKA CIELE UČEBNÉHO PREDMETU I. CHARAKTERISTIKA UČEBNÉHO PREDMETU
MATEMATIKA I. CHARAKTERISTIKA UČEBNÉHO PREDMETU Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia je schopnosť
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
Περιεχόμενα. Πρόλογος
Περιεχόμενα Πρόλογος ix 1 Στοιχεία Απειροστικού Λογισμού 1 1.1 ΠραγματικοίΑριθμοί... 1 1.1.1 ΑξιωματικήθεμελίωσητωνΠραγματικώνΑριθμών.... 1 1.1.2 Θετικοίακέραιοι,ακέραιοικαιρητοίαριθμοί... 5 1.1.3 Τοπολογικήδομήτου
TC Obsahový štandard Výkonový štandard
Celé čísla. Počtové operácie s celými číslami UČEBNÉ OSNOVY ÔSMY ROČNÍK TC Obsahový štandard Výkonový štandard Pojem celé číslo Kladné a záporné čísla, kladné a záporné desatinné čísla Opačné čísla Absolútna
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr.
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr. Štefan Tkačik, PhD..5.009 V tejto práci sa pokúsime objasniť
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
TRANSFORMÁCIA Z HISTÓRIE MATEMATIKY DO DIDAKTIKY
TRANSFORMÁCIA Z HISTÓRIE MATEMATIKY DO DIDAKTIKY Úvod Dejiny matematiky poskytujú veľa dokladov o pestrej a všestrannej ľudskej myšlienkovej aktivite, ktorá v priebehu tisícročí vytvorila monumentálnu