Matematický zápis Maxwellových rovníc ( história zápisu v matematike )
|
|
- Περσεφόνη Αλαφούζος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Slovenská Akadémia Vied Fyzikálny ústav SAV Matematický zápis Maxwellových rovníc ( história zápisu v matematike ) RNDr. Robert Turanský Bratislava
2 Maxwellove publikácie ( Maxwellove rovnice )
3 Čo je to Matematika? ( Čím sa zaoberá Matematika ) ( pr. n. l. ) náuka o číslach Egypt, Babylon ( pr. n. l. ) náuka o číslach a tvaroch Gréci dôraz na Geometriu (čísla slúžili na vyjadrenie vzdialenosti) používali semi-pozičnú číselnú sústavu poznali len racionálne čísla problém s vyjadrením 2 vrcholné dielo gr. mat. Euklidove Základy ( gr. Stoicheia, lat. Elementa )
4 Čo je to Matematika? ( Čím sa zaoberá Matematika ) DNES = 21 st. n. l. matematika je jazykom vedy je náukou ( vedou ) o štruktúrach skúma abstraktné štruktúry(štr. numerické,štr. tvaru,...) - Aritmetika a numerika (štruktúry čísel a počítania) - Geometria (štruktúry tvaru) - Diferenciálny a integrálny počet (štr. pohybu a zmeny ) - Logika ( analyzuje principy uvažovania ) - Pravdepodobnosť ( zaoberá sa štr. náhodných javou ) - Topológia (zaoberá sa vzájomnou polohou,podobnosťou)...
5 Grécke centrá matematiky
6 Problém s vyjadrením 2 ( Problém s vyjadrením iracionálnych čísel ) Pythagoras zo Samos 570 pr. n. l. 500 pr. n. l. (Grécky: Πυθαγόρας) Grécky učenec založil v meste Kroton (Taliansko) Filozofickú školu Skúmal (=zaoberal sa) : Aritmetikou Mousicé ( muzikou = hudbou ) Geometriou Astronómiou V stredoveku známe pod spoločným menom KVADRIVIUM
7 Problém s vyjadrením 2 ( Problém s vyjadrením iracionálnych čísel )
8 Problém s vyjadrením 2 ( Problém s vyjadrením iracionálnych čísel )
9 p ( 2m) 2 2 4m q 2 2 Problém s vyjadrením 2 ( dôkaz že 2 nie je racionálne číslo ) = 2 = p q = p,q sú celé čísla (navzájom nesúdelitelné ) 2 p 2 je párne číslo p je párne číslo = 2q = 2q 2q 2m p môžem zapísať ako súčin 2 a m Aj q je párne q a p sú vzájomne deliteľné!!!! SPOR!!!!
10 Dôsledky problému vyjadrenia 2 Geometria kraľovská disc. Mat. PREFEROVANIE GEOMETRIE pred ALGEBROU (GEOMETRIA: To čo sa dá nakresliť pravítkom a kružidlom ) riešené úlohy predstavujú sústavy Polynómov 2. stupňa Problémy (neriešiteľné úlohy) Geometrie predstavujú: trisekcia uhla, kvadratúra kruhu Úlohy sa musia riešiť použitím Polynómov > 2. stupňa
11 Grécka Matematika vs. Grécka Fyzika Pre Grékov bola matematika zábava neslúžila ( a ani nemala ) na riešenie praktických problémov Používala sa v umení (hudba=stupnice, architektúra=zlatý rez) Je veľký rozdiel čo dosiahli Gréci v Matematike a čo vo Fyzike Fyzika: Archimedov zákon Páka (používanie páky v stavebníctve) Index Lomu svetla vo vode (tabuľka indexu lomu pre rôzne uhly)
12 Dekart dôraz na Algebru zavedenie N-rozmerného priestoru ( vznik Analytickej geometrie Algebr. zápis geom. ) René Descartes 1596 Francúzko 1650 Švédsko (Latinsky: Algebraický Renatus zápis je Cartesius výhodnejší ) umožňuje Francúzky zápis vedec rovníc nazývaný polynómov Otec hociakého modernej stupňa filozofie ( teda a n > 2 ) Otec vhodnejší modernej matematiky a univerzálnejší spôsob ako Geometrický Je autorom: Kartézkej a n x n +a n-1 x súradnicovej n-1 + a 2 x 2 +a 1 x sustavy 1 +a 0 x 0 (v Kart. súr. sústave je možné útvary popísať pomocou Algebraických rovníc ) Analytickej geometrie ( používanie sudca algebry v pri Toulouse riešení geom. problémov) základy Analytickej geometrie pred Descartom položil Pierre de Fermat ( , Francúzko ) Veľký Amatér civilným povolaním
13 Moderná fyzika a infinitezimálny počet ( Infinitezimálny počet a Klasická fyzika ) Isaac Newton 1643 Anglicko 1727 Anglicko Anglický vedec zakladateľ Klasickej Newtonovskej fyziky, Infinitezimálnej matematiky... Fyzik, matematik, astronóm, filozof, Alchymista a správca kráľovskej mincovne( ~ minister financií 5x väčší plat ako prof.), člen parlamentu (za Cambridge), postavil sa proti rekatolizačným snahám kráľa Jakub II, predseda Kráľovskej akadémie vied
14 Moderná fyzika a infinitezimálny počet ( Infinitezimálny počet a Klasická fyzika ) Je autorom: Infinitezimálny počtu ( Fluenty a Fluxie ) Zakladateľ Klasickej fyziky (zjednotiteľ nebeskej a pozemskej fyziky) Optiky ( časticovej teórie optiky, teórie farieb=rozklad bieleho svetla na spektrum farieb )...
15 Moderná fyzika a infinitezimálny počet ( Infinitezimálny počet a Klasická fyzika ) Infinitezimálny počet : Zaoberal sa Fluenta-mi a Fluxia-mi Fluxie = rýchlosti ako rastú ako sa menia Fluenty 2 y = x Fluenta x x + o y + oy = ( x + o) 2 = x 2 pretoze y = x y = 2x + o y = 2x Fluxia 2 + 2xo + o 2
16 PRINCIPIA klasické dielo fyziky (autor zakladateľ infinitezimálneho počtu)
17 PRINCIPIA klasické dielo fyziky (autor zakladateľ infinitezimálneho počtu)
18 PRINCIPIA klasické dielo fyziky (autor zakladateľ infinitezimálneho počtu)
19 Leonhard Euler (Euler tvorca algebraického zapisu ) Leonahard Euler 1707 Švajčiarsko 1783 Rusko Švajčiarsky vedec Matematik a fyzik. Otec modernej matematickej terminológie a moderného mat.(algebrického) zápisu Nová matematická notácia ( trigonometrické funkcie, f(x),, π, e,i,... i označovalo imag. jedn. ale aj nekonečno) Mat.Analýza (rozvoje f.,rady, kompl. anal., variačný počet, Gamma f.,...) Teória čisel ( prvočísla...) Teória grafov(problém mostov= Královec)...
20 Stručný prehľad ( historického vývoja mat. zápisu )
21 James Clerk Maxwell ( autor dynamickej teórie elektromag. pola ) James Clerk Maxwell 1831 Škótsko 1879 Anglicko Škótsky vedec Teoretický fyzik, experimentátor a matematik. Teória elektromg. poľa ( popis elektromagnetického poľa pomocou Parciálnych Dif. Rovníc PDR) Kinetická teória plynov ( Maxwell- Boltzmanove rozdelenie) Optika...
22 Maxwellove rovnice časť 1. ( článok 1864 ) Dynamická teória elektromg. poľa Nadviazal na Faradaya ( magn. silokrivky, elektrotonický stav ) Rovnako ako Thomson snaha vysvetliť zákony elekt. a magn. Mechanicky (pohyb viskózneho pr. ) Článok má 7 častí a je 77 strán dlhý Inšpirácia Newt. problém sila závisí nielen na vzdialenosti ale aj rýchlosti! Existencia Éteru (média) v ktorom sa šíria elektromg.vlny(prenáša sa En.) Popis elektromagnetického poľa pomocou Parciálnych Dif.Rovníc PDR
23 Maxwellove rovnice časť 1. ( článok 1864 )
24 Maxwellove rovnice časť 1. ( článok 1864 ) Dynamická teória elektromag. Poľa V 3. časti zavádza na 8 stranách 20 fyz. veličín Používa pre KARTÉZKE ZLOŽKY RÔZNE NÁZVY!!! ( F,G,H ) Elektromagnetická hybnosť
25 Maxwellove rovnice časť 1. ( článok 1864 )
26 Maxwellove rovnice časť 1. ( článok 1864 ) zaviedol ( F,G,H ) = Elektromagnetická hybnosť F ~( P,Q,R ) Elektromotorická sila nie je odlíšená od Ē nepoužil dnes klasické vektory E,B miesto nich zaviedol skalárny φ ~ Ψ a vekt. potenciál A ~ ( F,G,H )
27 Maxwellove rovnice časť 1. ( článok 1864 )
28 Maxwellove rovnice časť 2. ( Traktát o Elektrine a Magnetizme 1873 )
29 Maxwellove rovnice časť 2. ( Traktát o Elektrine a Magnetizme 1873 )
30 Maxwellove rovnice časť 2. ( Traktát o Elektrine a Magnetizme 1873 )
31 Maxwellove rovnice časť 2. Hamiltonove ( ) kvaterniony
32 Maxwellove rovnice časť 2. Hamiltonove ( ) kvaterniony
33 Heaviside a Gibbs ( vektorový zápis Max. teórie elektromg. poľa ) Oliver Heaviside 1850 Anglicko 1925 Anglicko Anglický vedec v 1884 preformuloval Max. rov. do vektorového tvaru zaoberal sa Vek.formalizmom Josiah Willard Gibbs 1839 USA 1903 USA Americký vedec Termodynamika (potenciály),štatistická fyz., Vektorová analýza, Fyz. Chémia, Elektromagnetizmom zaoberal sa Vek.formalizmom
34 Maxwellove rovnice časť 3. ( Heaviside a Gibbs )
35 Differenciálna Geometria ( ako vyzerajú vektory dnes?) Diferenciálna geometria ( vznik začiatok 20.st ) Absolútna geometria pôvodný názov zo začiatku 20.st Variety (manifolds) sú štruktúrou (objektom záujmu) ktorou sa zaoberá Dif. Geometria Súradnicový zápis Bez-súradnicovy zápis Silné zastúpenie ( silná škola ) Talianskych matematikov...
36 Differenciálna Geometria ( ako vyzerá grad, div, rot? )
37 Differenciálna Geometria ( ako vyzerajú Max.rov v Dif.geom.? )
38 Záver Matematika je exaktným jazykom vedy. Ako sa vyvíja veda tak sa vyvíja aj matematika. ( je zaujímavé že dnes sa matematika vyvíja aj sama bez potreby jej aplikácie... ) Ak chceme porozumieť vede tak musíme dobre ovládať jazyk. Jazykom vedy je matematika. Bez jej zvládnutia nemôžeme porozumieť vede a už vôbec nemôžeme v nej niečo nového spraviť. Ak sa zaujímame o históriu vedy ( jednej časti vedy=fyziky) je dobré vedieť ako sa vyvíjal jej jazyk. Z toho ako sa vyvíjal jazyk nám veľa povie o zmýšľaní ľudí v danej dobe a aj o ich schopnostiach porozumieť a riešiť problémy... A o tomto bol dnešný seminár...
39 Záver Ďakujem za pozornosť...
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Elektromagnetické pole
Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Číslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva.
Číslo a číslica Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslica (cifra) je grafický znak, pomocou ktorého zapisujeme
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Reprezentácia informácií v počítači
Úvod do programovania a sietí Reprezentácia informácií v počítači Ing. Branislav Sobota, PhD. 2007 Informácia slovo s mnohými významami, ktoré závisia na kontexte predpis blízky pojmom význam poznatok
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER
věstonická vrubovka (18 cm dlhá kosť mladého vlka s 55 zárezmi) tisíc rokov pred n. l. geometrické ornamenty (váza z Mezopotámie)
STRUČNÝ PREHĽAD OBJAVOV V MATEMATIKE Matematika je prakticky tak dlho na svete ako ľudstvo. Prvé predstavy o číslach a o jednoduchých rovinných útvaroch, ktorými sa začína vyučovanie geometrie, vznikli
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
TC Obsahový štandard Výkonový štandard
Celé čísla. Počtové operácie s celými číslami UČEBNÉ OSNOVY ÔSMY ROČNÍK TC Obsahový štandard Výkonový štandard Pojem celé číslo Kladné a záporné čísla, kladné a záporné desatinné čísla Opačné čísla Absolútna
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
O matematike, fyzike a vôbec (fyzika v kocke)
O matematike, fyzike a vôbec (fyzika v kocke) Samuel Kováčik Commenius University samuel.kovacik@gmail.com 20. septembra 2013 Samuel Kováčik (KTF FMFI) mat-fyz 20. septembra 2013 1 / 42 Úvod O čom sa buďeme
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
1o ΓΕΛ ΚΑΒΑΛΑΣ ΕΡΕΥΝHΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: «ΤΑ ΜΥΣΤΙΚΑ ΤΩΝ ΧΡΩΜΑΤΩΝ»
ΕΡΕΥΝHΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: «ΤΑ ΜΥΣΤΙΚΑ ΤΩΝ ΧΡΩΜΑΤΩΝ» ΜΑΘΗΤΕΣ: 1.ΑΡΓΥΡΙΟΥ ΗΜΗΤΡΑ Α1 2.ΒΕΡΟΥΚΑΣ ΡΑΦΑΗΛ Α1 3.ΖΑΧΑΡΙΑ ΟΜΝΑ Α2 4.ΘΕΟ ΟΣΙΑ ΟΥ ΣΥΜΕΛΑ Α2 5.ΚΑΜΙΩΤΗ ΜΑΡΙΑ Α2 6.ΚΑΡΑΚΩΣΤΑΣ ΙΩΑΝΝΗΣ Α3 7.ΚΕΚΡΙ ΗΣ ΓΙΩΡΓΟΣ
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
Polynómy. Hornerova schéma. Algebrické rovnice
Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Ústav aplikovanej mechaniky a mechatroniky, SjF STU Bratislava;
Ústav aplikovanej mechaniky a mechatroniky, SjF SU Bratislava; wwwatcsjfstubask echnická mechanika 0 3 BEK, 0 0 BDS pre bakalárov, zimný sem docingfrantišek Palčák, PhD, ÚAMM 000 7 Cvičenie: Dynamika všeobecného
Požiadavky k štátnej skúške pre magisterský študijný program
z predmetu: Matematická analýza 1. Číselné postupnosti a ich základné vlastnosti. 2. Funkcia jednej reálnej premennej, základné vlastnosti funkcií. 3. Derivácia funkcie jednej reálnej premennej, jej vlastnosti
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Spojitosť a limity trochu inak
Spojitosť a limity trochu inak Štefan Tkačik Abstrakt Spojitosť funkcie alebo oblastí je základným stavebným kameňom matematickej analýzy. Pochopenie jej podstaty uľahčí chápanie diferenciálneho a integrálneho
Riešenie sústavy lineárnych rovníc. Priame metódy.
Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy
Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Výrazy a ich úpravy. -17x 6 : -17 koeficient; x premenná; 6 exponent premennej x. 23xy 3 z 5 = 23x 1 y 3 z 5 : 23 koeficient; x; y; z premenné;
Výrazy a ich úpravy Počtový výraz je matematický zápis, ktorým vyjadrujeme počtové operácie s číslami a poradie v akom majú byť prevedené. Napr.: ( (5 1,76)+5):0,4. Počtové výrazy sa pomenovávajú podľa
Menovky na dvere, čísla, prívesky, kľúčenky
Menovky na dvere, čísla, prívesky, kľúčenky Farby výrobkov: Von Dnu apex Banská Bystrica - List 10,44 - Žbirkovci 8,70 116 x 140 Benka 7,32 96 x 82-6,10 94 x 38 Sisi 8,16 6,80 Zurich - Hrončekovci 6,00
Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)
Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i
SLOVENSKO maloobchodný cenník (bez DPH)
Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.
Funkcie komplexnej premennej
(prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)
2 Základy vektorového počtu
21 2 Základy vektorového počtu Fyzikálne veličíny sa dajú rozdeliť do dvoch skupín. Prvú skupinu fyzikálnych veličín tvoria tie, pre ktorých jednoznačné určenie postačí poznať veľkosť danej fyzikálnej
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Symetrie a zákony zachovania v Nambuovej mechanike
v Nambuovej mechanike Oddelenie teoretickej fyziky Fakulta matematiky, fyziky a informatiky Univerzita Komenského Bratislava fecko@fmph.uniba.sk Konferencia slovenských fyzikov, Prešov, 3.-6. septembra
1. Komplexné čísla. Doteraz ste pracovali s číslami, ktoré pochádzali z nasledovných množín:
1. Komplexné čísla Po preštudovaní danej kapitoly by ste mali byť shopní: poznať použitie a význam komplexnýh čísel v elektrikýh obvodoh rozumieť pojmom reálna a imaginárna časť, imaginárna jednotka, veľkosť,
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Čriepky z histórie matematickej kultúry
Čriepky z histórie matematickej kultúry Dušan JEDINÁK Čriepky (1) Z filozofického slovníka Mathéma znamená v gréčtine učenie, poznanie, vedomosť. Všeobecná matematika je súbor vied, ktoré svojou metódou
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
STREŠNÉ DOPLNKY UNI. SiLNÝ PARTNER PRE VAŠU STRECHU
Strešná krytina Palety 97 Cenník 2018 STREŠNÉ DOPLNKY UNI SiLNÝ PARTNER PRE VAŠU STRECHU POZINKOVANÝ PLECH LAMINOVANÝ PVC FÓLIOU Strešné doplnky UNI Cenník 2018 POUŽITEĽNOSŤ TOHOTO MATERIÁLU JE V MODERNEJ
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
6. Mocniny a odmocniny
6 Moci odoci Číslo zýve oceec (leo zákld oci), s zýv ociteľ (leo epoet) Číslo s zýv -tá oci čísl Moci s piodzeý epoeto pe ľuovoľé eále číslo pe kždé piodzeé číslo je v ožie eálch čísel defiová -tá oci
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5