Požiadavky k štátnej skúške pre magisterský študijný program
|
|
- Ἱππολύτη Νικολάκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 z predmetu: Matematická analýza 1. Číselné postupnosti a ich základné vlastnosti. 2. Funkcia jednej reálnej premennej, základné vlastnosti funkcií. 3. Derivácia funkcie jednej reálnej premennej, jej vlastnosti a použitie. 4. Riemannova definícia určitého integrálu, použitie určitých integrálov. 5. Nekonečný číselný rad a jeho základné vlastnosti, mocninové rady a ich použitie. 6. Reálna funkcia dvoch reálnych premenných a jej základné vlastnosti, parciálne derivácie a úplný diferenciál. 7. Definícia dvojného a trojného integrálu, výpočet a použitie. 8. Fourierov rad funkcie a jeho použitie. 9. Definície krivkových integrálov, ich výpočet a použitie. 10. Definície plošných integrálov, ich výpočet a použitie. 11. Existencia a jednoznačnosť riešenia začiatočnej úlohy. 12. Elementárne metódy riešenia diferenciálnych rovníc 1. rádu. 13. Lineárna diferenciálna rovnica n-tého rádu, znižovanie rádu lineárnej diferenciálnej rovnice. 14. Nehomogénna lineárna diferenciálna rovnica. 15. Systémy lineárnych diferenciálnych rovníc s konštantnými koeficientmi prípad jednoduchých koreňov charakteristickej rovnice. 16. Systémy lineárnych diferenciálnych rovníc s konštantnými koeficientmi prípad viacnásobných koreňov charakteristickej rovnice a Weyrova teória.
2 z predmetu: Algebra a geometria 1. Relácie v množine a binárne operácie na množine. Základné vlastnosti. 2. Algebrické štruktúry s jednou binárnou operáciou. 3. Algebrické štruktúry s dvoma binárnymi operáciami. 4. Vektorové priestory nad poľom. Dimenzia vektorových priestorov. 5. Matice nad okruhom. Operácie s maticami, druhy matíc. 6. Determinanty. Výpočet determinantov. 7. Metódy určenia inverznej matice. 8. Riešiteľnosť nehomogénnych sústav lineárnych rovníc. Základné metódy riešenia. 9. Relácie deliteľnosti a asociovanosti celých čísel. Najväčší spoločný deliteľ, najmenší spoločný násobok. Euklidov algoritmus postupného delenia. 10. Komplexné čísla. Odmocňovanie komplexných čísel. 11. Algebrické rovnice, pojem algebrického riešenia. Binomické a kvadratické rovnice. 12. Súradnice vektora vzhľadom na bázu M. Matica prechodu od bázy M k M. 13. Vektorová algebra, súčiny vektorov. Gram-Schmidtov ortogonalizačný proces. 14. Rovnice priamky v priestore. Vzájomný poloha dvoch priamok. 15. Vlastné čísla a vlastné vektory matíc. 16. Rovnice roviny v priestore a vzájomná poloha troch rovín.
3 z predmetu: Modelovanie ekonomických procesov 1. Analýza trhu s 1 typom výrobku v konkurenčnom prostredí (funkcia dopytu, funkcia ponuky, rovnováha trhu). 2. Analýza trhu s n typmi výrobkov v konkurenčnom prostredí (funkcie dopytu, funkcie ponuky, rovnováha trhu). 3. Funkcie celkových nákladov a celkových príjmov, funkcie marginálnych nákladov a marginálnych príjmov a ich vzájomný vzťah. 4. Elasticita funkcie. Elasticita funkcie dopytu a ponuky. Vplyv elasticity funkcie dopytu na celkové príjmy. 5. Spotrebiteľský a podnikateľský prebytok. 6. Dynamický model trhu s 1 typom výrobku v konkurenčnom prostredí. Rovnovážny stav a jeho stabilita. 7. Dynamický model trhu s n typmi výrobkov v konkurenčnom prostredí. Rovnovážny stav a jeho stabilita. 8. Statický IS-LM model. 9. Dynamický IS-LM model. 10. Optimalizačné úlohy v ekonómii (maximalizácia zisku, maximalizácia funkcie užitočnosti, využitie hladinových kriviek).
4 z predmetu: Pravdepodobnosť a matematická štatistika 1. Pravdepodobnosť prieniku náhodných javov. Nezávislosť náhodných javov. Úplný systém javov. Úplná pravdepodobnosť. Bayesov vzorec. 2. Bernoulliov vzorec. Diskrétne rozdelenie pravdepodobnosti. Distribučná funkcia, vlastnosti. Hustota rozdelenia, vlastnosti. 3. Stredná hodnota a rozptyl náhodnej veličiny. Všeobecné a centrálne momenty. Vzťah 2 medzi D ( X ), m 2 a m Charakteristická funkcia náhodnej veličiny. Výpočet všeobecných momentov pomocou charakteristickej funkcie. 5. Binomické rozdelenie. Charakteristická funkcia, stredná hodnota a rozptyl náhodnej veličiny s binomickým rozdelením. Poissonovo rozdelenie. Charakteristická funkcia, stredná hodnota a rozptyl náhodnej veličiny s poissonovým rozdelením. 6. Rovnomerné rozdelenie. Distribučná funkcia, charakteristická funkcia, stredná hodnota náhodnej veličiny s rovnomerným rozdelením Normálne rozdelenie N ( a,σ ) Normované normálne rozdelenie N ( 0,1).. Distribučná funkcia, stredná hodnota a rozptyl. 8. Základný súbor. Náhodný výber. Číselné charakteristiky náhodného výberu. 9. Odhad parametrov základného súboru. Bodový odhad. 10. Intervalový odhad parametrov základného súboru. Kritické hodnoty rozdelenia ( 0,1) Studentovho rozdelenia, chí-kvadrát rozdelenia a Fisherovho rozdelenia. 11. Testovanie štatistických hypotéz. Štatistická hypotéza. Štatistický test hypotézy. N, 12. Základy regresnej analýzy a korelácie. Regresná priamka. Pearsonov korelačný koeficient.
5 z predmetu: Numerická analýza 1. Interpolácia funkcií: Lagrangeov a Newtonov interpolačný polynóm; odhad chyby; Rungeho paradox; interpolácia na nerovnomerných uzloch. 2. Aproximácia funkcií: Odvodenie metódy najmenších štvorcov všeobecný prípad; diskrétna a spojitá aproximácia; použitie algebraických a goniometrických polynómov. 3. Splajny: splajny všeobecne, lineárna splajnová interpolácia; C1 a C2 kubická splajnová interpolácia, podmienky konvergencie. 4. Riešenie systémov lineárnych rovníc priame metódy: Gaussova eliminačná metóda, GEM s čiastočným a úplným výberom hlavného prvku; LU rozklad, Choleského rozklad, výpočet determinantu, Thomasov algoritmus. 5. Riešenie systémov lineárnych rovníc iteračné metódy: Jacobiho a Gauss-Seidelova metóda, podmienky konvergencie, gradientná metóda; metóda konjugovaných gradientov, metóda prepodmienených konjugovaných gradientov, podmienky konvergencie. 6. Riešenie maticového problému vlastných čísel: Vlastné čísla všeobecne, QR algoritmus, mocninová metóda. 7. Riešenie nelineárnych rovníc a systémov: Metóda bisekcie, pevného bodu a Newtonova metóda, prípad viacnásobného koreňa, metód Newton-Raphsonova a jej variatny pre nelineárne systémy. 8. Numerická kvadratúra: Newton-Cotesove formule (elementárne a zložené, otvorené a uzavreté lichobežníkové a Simpsonove pravidlo), Gaussova kvadratúra, singulárne integrály. 9. Začiatočné Cauchyho úlohy: Formulácia problému a základné pojmy, metódy Runge- Kutta, viackrokové metódy, riešenie systémov začiatočných úloh a rovníc druhého rádu. 10. Okrajové úlohy: Formulácia problému a základné pojmy, metóda streľby, metóda konečných diferencií, Galerkinova, Ritzova, kolokačná metóda, metóda najmenších štvorcov, výber bázových funkcií. 11. Parciálne diferenciálne rovnice. Riešenie PDR metódou konečných diferencií.
6 z predmetu: Fyzika 1. Vysvetlite základné pojmy kinematiky! Rýchlosť, hybnosť, zrýchlenie. Pohyb priamočiary rovnomerný a rovnomerne zrýchlený. 2. Vysvetlite základné pojmy dynamiky! Zákon zachovania hybnosti v uzavretej sústave častíc. Newtonove zákony dynamiky. Prvá a druhá veta impulzová. 3. Vysvetlite pojmy ťažisko sústavy častíc a ťažisko telesa! Vyslovte vety o ťažisku a napíšte pohybové rovnice pre teleso! 4. Vyslovte Newtonov zákon všeobecnej gravitácie a Coulombov zákon! Diskutujte o elektro mechanickej analógii a uveďte základné pojmy a vety z teórie konzervatívneho poľa! 5. Napíšte pohybovú rovnicu pre vynútené kmity harmonického oscilátora, riešte ju a interpretujte toto riešenie! Diskutujte o rezonancii! 6. Charakterizujte vlnenie, uveďte vlnovú rovnicu a jej riešenie. Pojednajte o interferencii vĺn! 7. Uveďte základné rovnice hydrostatiky a hydrodynamiky! Formulujte Bernoulliho rovnicu a jej dôsledky! 8. Formulujte základné vety termodynamiky! Práca a zmena vnútornej energie sústavy pri jednotlivých stavových zmenách. 9. Vyslovte Ohmov zákon a Kirchoffove zákony! Práca, výkon elektrického prúdu a účinnosť. 10. Vyslovte základné zákony pre magnetické pole! Vysvetlite vznik striedavého elektrického prúdu a uveďte vzťah pre jeho výkon! 11. Pojednajte o javoch, ktoré viedli k formulácii vlnovo časticového dualizmu! Uveďte a vysvetlite de Broglieho vyťahy! 12. Vysvetlite Heisenbergove relácie neurčitosti, zaveďte pojem vlnová funkcia a diskutujte o Schrödingerovej rovnici! 13. Uveďte Bohrov model atómu a kvantovomechanický model atómu! 14. Charakterizujte kvantové čísla elektrónu, uveďte Pauliho princíp a diskutujte o Mendelejevovej sústave prvkov! 15. Pojednajte o rádioaktivite a sformulujte zákon prirodzeného rozpadu prvkov! Diskutujte o využití nukleárnej energie!
Numerické metódy Zbierka úloh
Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za
Numerické metódy, pravdepodobnosť a matematická štatistika
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Elektromagnetické pole
Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/52 Metódy minimalizácie funkcie jednej premennej Metódy minimalizácie funkcie jednej premennej p. 2/52 Metódy minimalizácie funkcie jednej
1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3
Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Faculty of Mathematics, Physics and Informatics Comenius University Bratislava. NumDif
Numerické riešenie diferenciálnych rovníc Jela Babušíková Faculty of Mathematics, Physics and Informatics Comenius University Bratislava Klasifikácia diferenciálnych rovníc: obyčajné - počiatočná a okrajová
Učebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne.
Gymnázium Ľudovíta Štúra v Trenčíne Učebné osnovy Stupeň vzdelania: ISCED 3A Študijný odbor: 7902 J gymnázium Zameranie školského vzdelávacieho programu: bilingválne štúdium Predmet: Matematika vo francúzskom
Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2
NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Testové otázky ku skúške z predmetu Fyzika pre chemikov
Očakávaná odpoveď: (s) slovná matematická vzorec (s,m) kombinovaná (g) grafická - obrázok Testové otázky ku skúške z predmetu Fyzika pre chemikov 1. Vysvetlite fyzikálny zmysel diferenciálu funkcie jednej
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Obyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...
Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia
1 Úvod Sylabyaliteratúra Základnéoznačenia... 3
Obsah 1 Úvod 3 1.1 Sylabyaliteratúra.... 3 1.2 Základnéoznačenia.... 3 2 Množiny a zobrazenia 4 2.1 Dôkazy... 4 2.1.1 Základnétypydôkazov... 4 2.1.2 Matematickáindukcia... 4 2.1.3 Drobnéradyakodokazovať....
Stredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník
Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník ÚVOD Vzdelávací štandard z matematiky pre stredné odborné školy so štvorročným štúdiom patrí medzi základné pedagogické dokumenty,
Základy automatického riadenia
Základy automatického riadenia Prednáška 1 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
TECHNICKÁ UNIVERZITA V KOŠICIACH MATEMATIKA II. Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková
TECHNICKÁ UNIVERZITA V KOŠICIACH S T R O J N Í C K A F A K U L T A MATEMATIKA II Dušn Knežo, Mirim Andrejiová, Zuzn Kimáková RECENZOVALI: prof. RNDr. Jozef Doboš, CSc. RNDr. Ján Buš, CSc. c doc. RNDr.
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,
TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,
Funkcie komplexnej premennej
(prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Automatická regulácia Otázky ku skúške 3B031
Automatická regulácia Otázky ku skúške 3B031 Otázky 1. Pojem regulácie; základná bloková schéma regulačného obvodu, opis veličín a prvkov regulačného obvodu. 2. Druhy regulácií - delenie podľa typov úloh,
Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:
Cvičenia zo ŠTATISTIKY v Exceli Kurz IPA-Slovakia, september 2008, VYHNE
Cvičenia zo ŠTATISTIKY v Exceli Kurz IPA-Slovakia, september 2008, VYHNE doc. RNDr. Štefan PEŠKO, CSc. stefan.pesko@fri.uniza.sk, http://frcatel.fri.uniza.sk/pesko/ Katedra matematických metód, Fakulta
15. Matlab Lineárna algebra
1 Portál pre odborné publikovanie ISSN 1338-0087 15. Matlab Lineárna algebra Blaho Michal MATLAB/Comsol 18.09.2009 Matlab pracuje s dátami vo forme vektorov a matíc. Základnej práci s vektormi a maticami
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Riešenie sústavy lineárnych rovníc. Priame metódy.
Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy
DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)
Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy
Úvod do modelovania a simulácie, metóda Monte Carlo
Úvod do modelovania a simulácie, metóda Monte Carlo Prednáška 4 využitie MS Excel 13.10.2015 Ing. Marek Kvet, PhD. Modelovanie a simulácia Venuje sa štúdiu skúmaných objektov hmotného sveta - existujúcich
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA
54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.
Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty
Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami
Fakulta matematiky, fyziky a informatiky Univerzity Komenského, Bratislava. Sylabus 1. výberového sústredenia IJSO
Fakulta matematiky, fyziky a informatiky Univerzity Komenského, Bratislava Sylabus 1. výberového sústredenia IJSO Fyzika 17. 03. 2018 Autor: Dušan Kavický Slovo na úvod 1. výberové sústredenie súťaže IJSO
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Téma c. 1. Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu
Téma c. 1 Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu A) Výrok a jeho vlastnosti. Výroky tvorené z jednoduchých výrokov pomocou logických operátorov.
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Diferenciálne rovnice. Základný jazyk fyziky
Diferenciálne rovnice Základný jazyk fyziky Motivácia Typická úloha fyziky hľadanie časových priebehov veličín, ktoré spĺňajú daný fyzikálny zákon. Určte trajektóriu telesa padajúceho v gravitačnom poli.
Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
NUMERICKÁ MATEMATIKA A MATEMATICKÁ ŠTATISTIKA
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA A MATEMATICKÁ ŠTATISTIKA Stavebná fakulta Doc.Ing. Roman Vodička, PhD. RNDr. PavolPurcz, PhD.
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta
množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG
STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Slovenská Technická Univerzita Stavebná fakulta
Slovenská Technická Univerzita Stavebná fakulta Matematika I. Zbierka úloh ku cvičeniam Jozef Kollár Bratislava 04 Slovenská Technická Univerzita Stavebná fakulta Matematika I. Zbierka úloh ku cvičeniam
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
Matematika 2. Lineárna algebra. (ver )
Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok
Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...
Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom
1. POLIA A VEKTOROVÉ PRIESTORY V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom ďalšom výklade kľúčovú úlohu, a dokážeme o nich niekoľko jednoduchých základných tvrdení.
Polynómy. Hornerova schéma. Algebrické rovnice
Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x
1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
OTÁZKY SKÚŠKA z TE 2
OTÁZKY SKÚŠKA z TE 2 1. Elektrické obvody s periodickými neharmonickými veličinami a) vymenujte všetky možnosti pôvodu periodickej neharmonickej časovej závislosti obvodových veličín; b) uveďte všetky
Mini minimaliz acia an BUˇ Koˇ sice 2011
Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou
1 Logika a dôkazy. 2 Množiny. 3 Teória čísel. 4 Premenné a výrazy. 5 Rovnice, nerovnice a ich sústavy. Pojmy:
1 Logika a dôkazy výrok, axióma, definícia, úsudok, hypotéza, tvrdenie, pravdivostná hodnota, logické spojky, negácia výroku, konjunkcia, disjunkcia, implikácia, ekvivalencia, vyplýva, je ekvivalentné,
HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika
UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA POISTNEJ MATEMATIKY A ŠTATISTIKY PARCIÁLNA A MNOHONÁSOBNÁ KORELÁCIA: KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP (Bakalárska práca)
Matematická analýza pre fyzikov IV.
119 Dodatok - klasické riešenia PDR 8.1. Parciálne diferenciálne rovnice Príklady parciálnych diferenciálnych rovníc: Lalpaceova rovnica u = 0 Helmholtzova rovnica u = λu n Lineárna transportná rovnica
MATEMATIKA II ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA KATEDRA MATEMATIKY A DESKRIPTÍVNEJ GEOMETRIE RNDr. Pavol PURCZ, PhD. RNDr. Martina RÉVAYOVÁ MATEMATIKA II ZBIERKA ÚLOH KOŠICE 6 Copyright c 6, RNDr. Pavol
NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER
Základy metodológie vedy I. 9. prednáška
Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna
4. domáca úloha. distribučnú funkciu náhodnej premennej X.
4. domáca úloha 1. (rovnomerné rozdelenie) Električky idú v 20-minútových intervaloch. Cestujúci príde náhodne na zastávku. Určte funkciu hustoty rozdelenia pravdepodobnosti a distribučnú funkciu náhodnej
Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky
Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého
Základy automatizácie
Monika Bakošová Miroslav Fikar Ľuboš Čirka Základy automatizácie Laboratórne cvičenia zo základov automatizácie STU v Bratislava, 2003 Online verzia: 12. marca 2006 c doc. Ing. Monika Bakošová, CSc., doc.
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ. Zdroje: Kompendium statistického zpracování dat, VPS s r. o.
TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ Zdroje: Kompendium statistického zpracování dat, VPS s r. o. Témy prednášky ŠTATISTIKA, HYPOTÉZA TESTY ŠTATISTICKÝCH HYPOTÉZ (Testy štatistickej významnosti) t-test (STUDENTOV)
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM (štvorročné štúdium) Vypracoval:
Ján Buša Michal Hnatič. Úvod do problematiky. Košice 2004
Ján Buša Michal Hnatič CH A OS Úvod do problematiky Obr. 5: Obraz štvorca na začiatku, po prvej, štvrtej a po pätnástej iterácii Arnol dovho zobrazenia Košice 24 56 7.9 Arnol dove zobrazenie premiešavanie
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium Vypracoval: RNDr. Marian Hanula Posúdili členovia Ústrednej
(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti:
Hilbertove priestory Veľké množstvo aplikácií majú lineárne normované priestory, v ktorých norma je odvodená od skalárneho (vnútorného) súčinu, podobne ako v bežnom trojrozmernom euklidovskom priestore.
1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17
Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy
Štátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
Štátny pedagogický ústav, Pluhová 8, 830 00 Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY Bratislava 2008 ÚVOD Cieľové požiadavky z matematiky sú rozdelené vo väčšine kapitol
MATEMATIKA I ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA
primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2
Neurčitý integrál. Primitívna funkcia a neurčitý integrál Funkcia F(x)sanazývaprimitívnoufunkcioukfunkcii f(x)naintervale(a,b),akpre každé x (a,b)platí F (x)=f(x). Z definície vidíme, že pojem primitívnej
Štatistické riadenie procesov Regulačné diagramy 3-1
Charakteristika Štatistické riadenie procesov Regulačné diagramy 3-1 3 Regulačné diagramy Cieľ kapitoly Po preštudovaní tejto kapitoly budete vedieť: čo je to regulačný diagram, aké je jeho teoretické
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27