k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :"

Transcript

1 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da je konvergentan ako postoji vektor a R n takav niz realnih brojeva (d(a k,a)) k konvergira prema 0, tj. ako ( a R m )( ε > 0)( k 0 N)( k k 0 )(d(a k,a) < ε). Tada pišemo a k a ili lim k a k = a. Točku a zovemo limes niza i takoder kažemo da niz (a k ) k konvergira prema a. Za niz (a k ) k kažemo da je divergentan ako on nije konvergentan. Napomena 4.2. Definicija 4.1 se direktno može prepisati u proizvoljnom metričkom prostoru. Za n = 1 dobivamo uobičajenu definiciju konvergencije. U tom slučaju važnu su ulogu igrali monotoni nizovi. Kako u R n nismo uveli uredaj, nema smisla govoriti o pojmu monotonog niza. Definiciju 4.1 možemo na ekvivalentan način i ovako iskazati: a k a ako vrijedi K(a,ε), k 0 N, k k 0, a k K(a,ε). Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : Propozicija 4.3. Ako niz (a k ) k R n konvergira, tada mu je limes jedinstven. Dokaz. Pretpostavimo da postoje dva limesa a i â. Neka je ε > 0. Iz konvergencije niza (a k ) k slijedi da postoji k 0 N takav da d(a,a k ) < ε/2 i d(â,a k ) < ε/2. Tada vrijedi d(a,â) d(a,a k )+d(a k,â) < ε 2 + ε 2 = ε. Stoga je nužno a = â. Napomena 4.4. Prethodniargumentmožemo ovako reformulirati. Ako bi biloε = 1 2d(a,â) > 0, onda iz K(a,ε) K(â,ε) =, zaključujemo da ne mogu svi članovi niza počevši od nekog biti u obje kugle. Napomena 4.5. Budući da u općenitom topološkom prostoru nemamo metriku, konvergenciju niza definiramo pomoću otvorenih skupova. Ako je (X,U) topološki prostor, tada za a A označimo s U(a) skup svih otvorenih okolina od a, tj. skup svih U U takvih da je a U. Za niz (a k ) k u topološkom prostoru (X,U) kažemo da je konvergentan, ako postoji točka a X takva da za svaku otvorenu okolinu U od a postoji k 0 N takav da je za svaki k k 0 vrijedi a k U, tj. ( a X)( U U(a))( k 0 N)( k k 0 )(a k U). 16

2 U tom slučaju za točku a kažemo da je limes niza (a k ) k. Za razliku od situacije u metričkim prostorima, limes konvergentnog niza u općenitom topološkom prostoru ne mora biti jedinstven. Npr., za proizvoljan skup X stavimo U = {,X}. Tada je U očito topologija na X (tzv. indiskretna topologija). Primijetimo da je s obzirom na tu topologiju svaki niz u X konvergentan te mu je svaka točka iz X limes. Posebno, ako X ima barem dva različita elementa, niti jedan (konvergentan) niz u topološkom prostoru (X, U) neće imati jedinstven limes. S obzirom da je R n vektorski prostor, znamo zbrajati vektore i množti ih skalarom. Kao i u slučaju n = 1 prirodno je istražiti odnos konvergencije niza i tih operacija. Propozicija 4.6. Neka su (a k ) k i (b k ) k nizovi u R n i (λ k ) k niz u R. Ako tada vrijedi 1 a k +b k a+b, 2 λ k a k λa. a k a, b k b, λ k λ Dokaz. Dokaz je isti kao u slučaju dimenzije n = 1. Za zadaću. U Primjeru 2.13 smo direktnim računom pokazali da su norme i ekvivalentne (pa i njihove inducirane metrike). To povlači da niz konvergira u jednoj metrici ako i samo ako konvergira u drugoj. Stoga dobivamo karakterizaciju konvergencije niza (a k ) k pomoću konvergencije koordinatnih nizova (a k i ) k, gdje je a k = (a k 1,...,ak n). Propozicija 4.7. a k a ako i samo ako a k i a i, za i = 1,...,n. Dokaz. Pretpostavimo da a k a. To znači Ekvivalencija normi iz Primjera 2.13 povlači da a k a 0. a k a 0. Stoga za svaki ε > 0 postoji k 0 N takav da za svaki k k 0 vrijedi max{ a k 1 a 1,..., a k n a n } = a k a < ε Pročitamo li prethodni redak ponovno samo za svaku koordinatu zaključujemo da a k i a i, i = 1,...,n. Obratno, neka koordinatni nizovi konvergiraju a k i a i, i = 1,...,n. Tada za svaki ε > 0 postoje k 1,...,k n takvi da vrijedi k k 1, a k 1 a 1 < ε,. k k n, a k n a n < ε. 17

3 Uzmemo i k 0 = max{k 1,...,k n } onda za k k 0 vrijede sve ove ocjene. Stoga je k k 0 a k a = max{ a k 1 a 1,..., a k n a n } < ε. Zaključujemo da a k a 0, pa onda opet prema Primjeru 2.13 a k a 0. Napomena 4.8. ZbogekvivalencijesvihnorminaR n slijedidanizkonvergiraur n uproizvoljnoj normi ako i samo ako svi koordinatni nizovi konvergiraju (u R). Primjer 4.9. Sada lako zaključujemo da niz s početka ovog odjeljka konvergira. Slično, svi nizovi ( 1 k, 1 k ),(1 k,0),(0, 1 k ),(1 k, 1 k 2 ) konvergiraju istom limesu (0,0). Prvi niz nalazi se na simetrali prvog kvadranta, naredna dva na koordinatnim osima, a zadnji na grafu funkcije y = x 2. Zadatak Dokažite ponovno Propoziciju 4.6 koristeći tvrdnju Propozicije 4.7. Propozicija 4.7 takoder povlači Korolar Ako nizovi (a k ) i (b k ) u R n konvergiraju redom prema a i b, onda niz (a k b k ) konvergira prema (a b). Definicija Za skup A R n kažemo da je ograničen (omeden) ako postoji M > 0 takav da je A K(0,M). Za niz (a k ) k R n je kažemo da je ograničen (omeden) ako je njegov skup vrijednosti {a k : k N} ograničen podskup od R n. Neka je a : N R n niz. Podniz niza a je svaka funkcija b = a p, pri čemu je p : N N strogo monotona. b 1 = a p(1) = a p1,b 2 = a p(2) = a p2,... Točka a R n je gomilište niza (a k ) k ako je za svaki ε > 0 beskonačno mnogo članova niza (a k ) k u K(a,ε). Napomena Pojam gomilišta niza treba razlikovati od pojma gomilišta skupa vrijednosti niza. Npr. ako je a R n, tada je skup gomilišta konstantnog niza a k = a, k N, skup {a}, dok skup {a k : k N} = {a} nema gomilišta. Propozicija Točka a R n je gomilište niza (a k ) k ako i samo ako postoji podniz niza (a k ) k koji konvergira prema a. Propozicija Svaki podniz konvergentnog niza u R n je takoder konvergentan s istim limesom. Zbog Propozicije 4.7 odredena svojstva poznata za nizove u R prenose se na nizove u R n. Propozicija Svaki konvergentan niz u R n je ograničen. 18

4 Dokaz 1. Neka je (a k ) k konvergentan niz. Tada je zbog Propozicije 4.7 konvergentan u R i svaki njegov koordinatni niz. Stoga je svaki od njih ograničen. Neka je M i ograda i-tog koordinatnog niza, tj. k N, a k i M i, i = 1,...,n. Neka je M = max{m 1,...,M n }. Sada vrijedi a k M. Sada zbog ekvivalencije normi iz Primjera 2.13 vrijedi pa je niz ograničen. a k n a k nm, Dokaz 2. Propoziciju možemo dokazati i direktno. Budući a k a slijedi da za ε = 1 postoji k 0 N takav da k k 0, d(a k,a) < 1. Definiramo Sada za sve k N imamo odnosno R = max{1,d(a 1,a),...,d(a k 0 1,a)}. (a k ) k K(a,R), (a k ) k K(0,d(0,a) +R). Teorem 4.17 (Bolzano-Weierstrassov teorem za nizove). Svaki ograničen niz u R n ima konvergentan podniz. Dokaz. Neka je (a k ) k R n ograničen. No zbog ekvivalencije normi niz je ograničen i u normi. Stoga je i svaki njegov koordinatni podniz ograničen. Sada B-W teorem za R kaže da koordinatni niz (a k 1 ) k ima konvergentan podniz (a p 1(k) 1 ) k a p 1(k) 1 a 1. Sada je koordinatni podniz (a p 1(k) 2 ) k ograničen, pa ima podniz koji je konvergentan. Podniz podniza je podniz originalnog niza, pa ga označimo sa (a p 2(k) 2 ) k. Vrijedi a p 2(k) 2 a 2. Tako nastavimo do zadnje koordinate. Time smo dobili n podnizova originalnog niza koji konvergiraju: a p 1(k) 1 a 1,. a pn(k) n a n. 19

5 No (a pn(k) ) k je podniz svih prethodnih podnizova, pa prema Propoziciji 4.15 vrijedi a pn(k) 1 a 1,. a pn(k) n a n. Slijedi a pn(k) (a 1,...,a n ). Napomena B-W teorem smomogli iskazati i kao: svaki ograničeni nizur n ima gomilište. Nizove možemo iskoristiti za karakterizaciju zatvorenih skupova. Teorem Skup A R n je zatvoren ako i samo ako svaki niz u A koji konvergira u R n ima limes u A. Dokaz. Neka je A zatvoren. Pretpostavimo (a k ) k A i a k a. Dvije su mogućnosti: (a) Postoji k 0 N takav da je a k = a za svaki k k 0. Onda je a A. (b) Svaka otvorena okolina točke a tada sadrži beskonačno elemenata niza (a k ) k, pa onda i elemenata iz A. Stoga je a gomilište skupa A. Onda je prema Teoremu 3.24 a A. Obratno, neka svaki konvergentan niz u A ima limes u A. Neka je a A gomilište skupa A. Iz definicije slijedi da za svaki k N postoji točka a k A takva da je a k K(a, 1 k ). Budući da za svaki ε > 0 postoji k 0 N takav da je ε > 1/k 0, slijedi da za njega vrijedi k k 0, a k K(a,ε). Stoga a k a. Iz pretpostavke je onda a A. Stoga skup A sadrži sva svoja gomilišta pa je po Teoremu 3.24 zatvoren. Zadatak Neka je dan konvergentan niz (a k ) k R n takav da je a k K za sve k N. Pokažite da tada i njegov limes a zadovoljava a K. Ako je a k < K za sve k N, vrijedi li nužno a < K? Zadatak Koristeći Teorem 4.19 odredite A, ako je A = { 1 n : n N}. Propozicija Neka je B R n. Tada je x B ako i samo ako postoji niz u B kojem je x limes. Definicija Niz (a k ) k R n je Cauchyjev niz ako vrijedi ( ε > 0)( k 0 N)( k,l k 0 )(d(a k,a l ) < ε). Skup A R n je potpun ako svaki Cauchyjev niz u A konvergira. Opća svojstva Cauchyjevih nizova navedena su u narednoj propoziciji. 20

6 Propozicija U R n vrijedi: 1 Svaki konvergentan niz je Cauchyjev niz. 2 Cauchyjev niz je ograničen. 3 Ako podniz Cauchyjevog niza konvergira prema a onda i čitav niz konvergira prema a. Za n = 1 poznato je da svaki Cauchyjev niz konvergira, pa je (R,d), s uobičajenom metrikom d(x,y) = x y, potpun. Naredni teorem kaže da je i (R n,d) potpun. Teorem Svaki Cauchyjev niz u R n je konvergentan. Dokaz. Neka je (a k ) k R n Cauchyjev niz. Prema Propoziciji taj niz je ograničen. Prema B-W teoremu on ima konvergentan podniz. Sada opet Propozicija povlači da čitav niz konvergira. Napomena Teorem 4.25 smo mogli dokazati i bez poziva na B-W teorem. Naime, korištenjem ekvivalencije normi iz Primjera 2.13 za Cauchyjev niz u R n slijedi da su mu koordinatni nizovi Cauchyjevi u R. No kako znamo da je R potpun slijedi da koordinatni nizovi konvergiraju, što opet povlači konvergenciju čitavog niza. Propozicija Podskup A R n je zatvoren ako i samo ako je potpun. Dokaz. Neka je A zatvoren i neka je (a k ) k A Cauchyjev niz. Kako je (a k ) k Cauchyjev u R n, a ovaj je potpun, slijedi da niz konvergira. Jer je A zatvoren, slijedi da mu je limes u A, pa je A potpun. Obratno neka je A potpun. Neka je (a k ) k A konvergentan niz s limesom a. Slijedi da je on i Cauchyjev niz, no onda je Cauchyjev u A. Zbog potpunosti od A niz konvergira limesu u A, a zbog jedinstvenosti limesa, konvergira baš prema a. Zaključujemo a A, pa je skup A zatvoren. 21

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

2. Konvergencija nizova

2. Konvergencija nizova 6 2. KONVERGENCIJA NIZOVA 2. Konvergencija nizova Niz u skupu X je svaka funkcija x : N X. Vrijednost x(k), k N, se zove opći ili k-ti član niza i obično se označava s x k. U skladu s tim, niz x : N X

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Zadaća iz kolegija Metrički prostori 2013./2014.

Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća nosi 5 bodova. Sve tvrdnje u zadacima obrazložiti! Renato Babojelić 31 Lea Božić 13 Ana Bulić 7 Jelena Crnjac 5 Bernarda Dragin 19 Gabriela Grdić

Διαβάστε περισσότερα

1. Topologija na euklidskom prostoru R n

1. Topologija na euklidskom prostoru R n 1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Diferencijalni i integralni račun I. Prirodoslovno matematički fakultet

Diferencijalni i integralni račun I. Prirodoslovno matematički fakultet Diferencijalni i integralni račun I Saša Krešić-Jurić Prirodoslovno matematički fakultet Sveučilište u Splitu Sadržaj Skupovi i funkcije. Skupovi N, Z i Q................................. 4.2 Skup realnih

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

1 / 79 MATEMATIČKA ANALIZA II REDOVI

1 / 79 MATEMATIČKA ANALIZA II REDOVI / 79 MATEMATIČKA ANALIZA II REDOVI 6.. Definicija reda Promatrajmo niz Definicija reda ( ) n 2 :, 2 2 3 2 4 2,... Postupno zbrajajmo elemente niza: = + 2 2 = 5 4 + 2 2 + 3 2 = 49 36 + 2 2 + 3 2 + 4 2 =

Διαβάστε περισσότερα

1 Svojstvo kompaktnosti

1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti U ovoj lekciji će se koristiti neka svojstva realnih brojeva sa kojima se čitalac već upoznao tokom kursa iz uvoda u analizu. Na primer, važi Kantorov princip:

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

METRIČKI PROSTORI 0 METRIČKI PROSTORI. Literatura: S. Mardešić. Matematička analiza, 1. dio, Školska knjiga, Zagreb, 1974.

METRIČKI PROSTORI 0 METRIČKI PROSTORI. Literatura: S. Mardešić. Matematička analiza, 1. dio, Školska knjiga, Zagreb, 1974. METRIČKI PROSTORI 0 METRIČKI PROSTORI Šime Ungar http://www.mathos.unios.hr/~sime/ Literatura: S. Mardešić. Matematička analiza, 1. dio, Školska knjiga, Zagreb, 1974. Š. Ungar. Matematička analiza 3, PMF-Matematički

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Nermin Okičić Vedad Pašić. Metrički prostori

Nermin Okičić Vedad Pašić. Metrički prostori Å Ì Å ÌÁÃ Nermin Okičić Vedad Pašić Metrički prostori 2016 Å Ì Å ÌÁÃ Sadržaj 1 Metrički prostori 1 1.1 Metrika i osobine......................... 2 1.2 Konvergencija u metričkim prostorima.............

Διαβάστε περισσότερα

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Sveučilište u Zagrebu PMF-Matematički odsjek Franka Miriam Brückler, Vedran Čačić, Marko Doko, Mladen Vuković ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Zagreb, 2009. Sadržaj 1 Osnovno o skupovima, relacijama

Διαβάστε περισσότερα

OSNOVE MATEMATIČKE ANALIZE. Boris Guljaš. predavanja. Zagreb,

OSNOVE MATEMATIČKE ANALIZE. Boris Guljaš. predavanja. Zagreb, OSNOVE MATEMATIČKE ANALIZE Boris Guljaš predavanja Zagreb, 3.2.2014. ii Posljednji ispravak: utorak, 18. travanj 2017. Sadržaj 1 Skupovi N, Z, Q, R, C, R n 1 1.1 Skupovi N, Z, Q, R........................

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

Slučajni procesi Prvi kolokvij travnja 2015.

Slučajni procesi Prvi kolokvij travnja 2015. Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Matematička Analiza 3

Matematička Analiza 3 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet MATEMATIČKI ODJEL Šime Ungar Matematička Analiza 3 Zagreb, 2002. Sveučilište u Zagrebu Prirodoslovno-matematički fakultet MATEMATIČKI ODJEL Šime

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Osnove matematičke analize

Osnove matematičke analize Osnove matematičke analize prof.dr.sc. Nikola Koceić Bilan FPMOZ Sveučilište u Mostaru FPMOZ Sveučilište u Mostaru 1 / Sadržaj 1 Topološka i metrička struktura normiranog vektorskog prostora R n. Konvergencija

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin Matematika (PITUP) FOI, Varaždin Dio III Umijeće postavljanja pravih pitanja i problema u matematici treba vrednovati više nego njihovo rješavanje Georg Cantor Sadržaj Matematika (PITUP) Relacije medu

Διαβάστε περισσότερα

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc.

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Brigita Švec REKURZIVNE FUNKCIJE Diplomski rad Voditelj rada: Doc.dr.sc. Zvonko Iljazović Zagreb, Rujan, 2014. Ovaj diplomski

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

KOMPAKTNI OPERATORI. Prof. dr. sc. Hrvoje Kraljević. Predavanja održana na PMF Matematičkom odjelu. u zimskom semestru akademske godine 2007./2008.

KOMPAKTNI OPERATORI. Prof. dr. sc. Hrvoje Kraljević. Predavanja održana na PMF Matematičkom odjelu. u zimskom semestru akademske godine 2007./2008. KOMPAKTNI OPERATORI Prof. dr. sc. Hrvoje Kraljević Predavanja održana na PMF Matematičkom odjelu Sveučilišta u Zagrebu u zimskom semestru akademske godine 2007./2008. Zagreb, siječanj 2008. 2 SADRŽAJ 3

Διαβάστε περισσότερα

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom:

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom: Nizovi Defiicija Niz je fukcija Ozake: (a ) ili a } a: R Zadatak Napišite prvih ekoliko člaova izova zadaih općim člaom: a = a = ( ) (c) a = Zadatak Odredite opće člaove izova: 3 5 7 9 ; 3 7 5 3 ; (c)

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza.

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza. 2. NIZOVI 1 / 78 Niz i podiz 2 / 78 Niz i podiz Defiicija Svaku fukciju a : N S zovemo iz u S. Za N pišemo a() = a i azivamo -tim člaom iza. Ozaka za iz je (a ) N ili (a ) ili samo (a ). Kodomea iza može

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) MJERA I INTEGRAL 1. kolokvij 29. travnja 2016. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je I kolekcija svih ograničenih jednodimenzionalnih intervala

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

1. Nizovi - definicija i osnovni pojmovi

1. Nizovi - definicija i osnovni pojmovi . Nizovi - definicija i osnovni pojmovi Definicija i osnovni pojmovi Definicija... Svako preslikavanje a : N R, skupa prirodnih brojeva u skup realnih brojeva, nazivamo realnim nizom. Broj koji se ovim

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Metrički prostori i Riman-Stiltjesov integral

Metrički prostori i Riman-Stiltjesov integral Metrički prostori i Riman-Stiltjesov integral Dragan S. Djordjević Niš, 2009. 0 Sadržaj Predgovor 3 1 Metrički prostori 5 1.1 Primeri metričkih prostora................. 5 1.2 Konvergencija nizova i osobine

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora). UVOD U TEORIJU BROJEVA Drugo predavanje - 10.10.2013. Prosti brojevi Denicija 1.4. Prirodan broj p > 1 zove se prost ako nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a > 1 nije

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Operatori na normiranim prostorima vježbe 2015/2016. Tomislav Berić

Operatori na normiranim prostorima vježbe 2015/2016. Tomislav Berić Operatori na normiranim prostorima vježbe 2015/2016 Tomislav Berić tberic@math.hr Sadržaj 1 Operatori na Hilbertovim prostorima 1 1.1 Normalni operatori..................................... 3 1.2 Unitarni

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LIMES NIZOVA LIMES MONOTONIH NIZOVA GEOMETRIJSKOG REDA LIMES FUNKCIJA 1 2.4. LIMES NIZA I TEOREMI O LIMESIMA 2.4.1. Definicija limesa i konvergentnog niza 2.4.1.1 Riješeni

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

3 Funkcije. 3.1 Pojam funkcije

3 Funkcije. 3.1 Pojam funkcije 3 Funkcije 3.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Uvod. Aksiome polja realnih brojeva. Supremum skupa.

Uvod. Aksiome polja realnih brojeva. Supremum skupa. АНАЛИЗА I припрема испита Оно што следи представља белешке које сам правио непосредно пред полагање усменог дела испита (јул, 2002. године). Због тога нису потпуне, и може понешто бити нетачно, или пропуштено.

Διαβάστε περισσότερα

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f} Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f} nazivamo inverznom korespondencijom korespondencije f. A f B A f 1 B

Διαβάστε περισσότερα