GEOTEHNIČKO INŽENJERSTVO
|
|
- Παντελεήμων Δουρέντης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 GEOTEHNIČKO INŽENJERSTVO POMOĆNI DIJAGRAMI, TABLICE I FORMULE ZA ISPIT dopunjeno za ak.god. 016/017
2 Slika 1. Parcijalni koeficijenti za GEO/STR za djelovanja, parametre materijala i otpore prema EC-7
3 Slika. Parcijalni koeficijenti za GEO/STR za otpore pilota prema EC-7
4 Slika 3. Iskustveni očekivani odnos karakteristične i srednje vrijednosti za tipične geotehničke parametre (Orr i Farrell 1999) Slika 4. Parcijalni koeficijenti za EQU, UPL i HYD za djelovanja prema EC-7 Slika 5. Parcijalni koeficijenti za EQU, UPL i HYD za parametre materijala, prema EC-7
5 gustoća tla [t/m 3 ] vrsta materijala N 60 opis saturirano suho pijesak 0 4 vrlo rahli 1,7 1,8 1,3 1, rahli 1,8 1,9 1,4 1, srednje zbijen 1,9,1 1,5 1, zbijen,0, 1,7,0 > 50 vrlo zbijen,,3,0, glina 0 4 vrlo meka 1,6 1,7 0,9 1,1 4 8 meka 1,7 1,9 1,1 1, srednje meka 1,8, 1,3 1, kruta vrlo kruta 1,9,3 1,8 1,9 > 60 'čvrsta' Slika 6. Procjena gustoće tla ovisno o izmjerenom broju udaraca SPT-a N 60. Slika 7. Vršni i rezidualni kut unutarnjeg trenja za sitnozrnate materijale ovisno o indeksu plastičnosti (Ortolan 009).
6 a) c u ( kpa) = f1n60 E ( kpa) = f N b) 60 Slika 8. Preporuke za određivanje čvrstoće i krutosti gline (Clayton, 1995). a) nedrenirana čvrstoća c u ; b) Youngov modul elastičnosti E. (I p Indeks plastičnosti gline).
7 a) ϕ (SPT) E ( MN / m) = f N b) 60 Slika 9. Preporuke za određivanje čvrstoće i krutosti krupnozrnatih tla. a) kut unutarnjeg trenja ϕ' (Peck 1974); b) Youngov modul elastičnosti E (Stroud 1989). q nett karakteristična vrijednost kontaktnog naprezanja ispod temelja; q ult karakteristična nosivost temeljnog tla).
8 s yi = 1 υ pb E i i I syi Slika 10. Proračun slijeganja vrha temelja po metodi prema Mayne & Poulos.
9 Slika 11. Proračun nosivosti temelja samca opterećenog kosim ekscentričnim opterećenjem
10 Slika 1. Granične vrijednosti rotacije objekta kod kojih dolazi do različitih tipova oštećenja objekta (prema EC7).
11 ZADANO: R radijus klizne plohe [m] A površina kliznog tijela [m ] x S koordinata x točke rotacije kliznog tijela [m] x A koordinata x središta kliznog tijela [m] c u nedrenirana čvrstoća na kliznoj plohi [kn/m ] α kut klizne plohe [ o ] RAČUNA SE: G težina kliznog tijela L duljina klizne plohe (kružnog luka) [m] τ f posmični otpor na kliznoj plohi G = γ A [kn] τ f = tla c u R π α L = 180 L Slika 13. Proračun stabilnosti kosine kružne klizne plohe.
12 Koeficijent aktivnog tlaka Ako β ϕ θ K AE = cosθ sin α sin Ako β > ϕ θ sin ( α + φ θ) K = AE cosθ sin α sin( α δ θ) sin ( α + ϕ θ ) sin ( ) ( ϕ + δ a ) sin( ϕ β θ ) α δ a θ 1 + sin( α δ θ ) sin( α + β ) kh tgθ = 1 m kv Zasip je suh γ kh tgθ = γ γw 1 m kv Voda prisutna u zasipu Gravitacijski i gabionski zidovi a a δ a koeficijent trenja na kontaktu gravitacijskog zida ili gabiona i tla = ϕ (za gravitacijske zidove betonirane na terenu i gabionske zidove) = /3 ϕ (za montažne betonske elemente ili naknadno zasipavanje tla iza gravitacijskog zida) Nagib sile P A u odnosu na okomicu na poleđinu zida δ a - za gabionske i gravitacijske zidove
13 1 Pγ AE = γ ( 1± kv ) H K P AE qae = qhkae 1 Pγ A = γ H K P A qa = qhka Pγ DYN = Pγ AE Pγ A PqDYN = PqAE PqA Komponente sila pritiska P AγH P AγV P A cos ( α + δ ) P = cos( 90 α + δ ) = 90 P A a AqH P AqV sin ( α + δ ) = sin( 90 α + δ ) = 90 a P A P A a a γ' efektivna (uronjena) zapremninska težina tla [kn/m 3 ] Konzolni zidovi δ a = 0 α = 90
14 Nagib sile P A u odnosu na okomicu na virtualnu poleđinu zida β - za konzolne zidove 1 Pγ AE = γ ( 1± kv ) H K P AE qae = qhkae 1 Pγ A = γ H K P A qa = qhka Pγ DYN = Pγ AE Pγ A PqDYN = PqAE PqA Komponente sila pritiska - konzolni zidovi P Aγ H P AV γ = P cos( 90 + β ) P = P cos( 90 + β ) A AqH = P sin( 90 + β ) P = P sin( 90 +β ) A AqV A A γ' efektivna (uronjena) zapremninska težina tla [kn/m 3 ]
15 GP-SP SP-GP SP a) Slika 14. Nosivost sidara za a) krupnozrnata tla; b) sitnozrnata tla (Smoltczyk 003).
16 KOHERENTNA TLA (glina C, prah M) c = c u ; ϕ = 0 NEKOHERENTNA TLA (šljunak G, pijesak S) c = 0 ; ϕ 0 Specifičan otpor na stopi pilota izražen na glavi pilota (za bušene pilote) q b = N c c c u [kn/m ] N c 5 6,5 50 8, ,7 00 9,0 c u nedrenirana čvrstoća 'ALFA' postupak u [ kn m ] d d q b / = 60 N 60 za 10 10b b q b [ kn / m ] 60 N 60 d = za > 10 b N 60 broj udaraca SPT reduciran na 60% teoretske energije zabijanja Specifičan otpor po plaštu (za bušene pilote) 'BETA' postupak q = α s c u cu α = 0,55 za 1, 5 p atm cu α = 0,55 0,1 1, 5 za patm cu 1,5,5 p atm p atm atmosferski pritisak (100 kn/m ) q s = β σ ' σ ' ysr - vertikalno efektivno naprezanje u sredini lamele za koju računamo trenje - za pijeske: N N60 β = ( 15, 05, y sr ) 15 N 60 >15 β = 1., za y sr < 5. m β = 1, 5 0, 5 y sr, za. 5 < y sr < β = 05., za y 614. m sr ysr - za šljunke: β = 18., za y 147. m sr, 0 075, 0, 15( y sr ), za y sr β = < < β = 05., za y 614. m sr - za vlačno opterećene pilote: q 0, 75 svlak q stlak Slika 15. Postupak proračuna nosivosti pilota prema revidiranoj API-metodi.
17 KARAKTERISTIČNA NOSIVOST PILOTA: R k R = min ξi srednje R ; min imaln o ξ j PRORAČUNSKA NOSIVOST PILOTA: R d Rk Rks = ili γ R γ s + R γ kb B Slika 16. Primjena korelacijskog koeficijente i parcijelnih koeficijenata nosivosti pilota. R b / R b,max s / Ds R b S, G C, M % R b,00 0,37 0,77 3 % R b,003 0,51 0,88 10 % R b,010 1,00 1,00 s slijeganje glave pilota D s promjer pilota R b otpor na bazi pilota za pomak s R b,max nosivost baze pilota s sg ( cm) = 0,5 Rs( MN ) + 0,5 < 3, 0cm Slika 17. Postupak proračuna slijeganja pilota prema revidiranoj API-metodi.
18 Slika 18. Postupak proračuna nosivosti i slijeganja grupe pilota.
19 a) b) c) Slika 19. Seizmički geotehnički proračun. a) Tipovi tla prema seizmičnosti; b) vrijednosti parametara elastičnog spektra odziva tipa 1; c) parametar horizontalnog koeficijenta seizmičnosti ovisno o vrsti potpornog zida i dozvoljenoj teformaciji uslijed potresa.
Q (promjenjivo) P (stalno) c uk=50 (kn/m ) =17 (kn/m ) =20 (kn/m ) 2k=0 (kn/m ) N 60=21 d=0.9 (m)
L = L 14.1. ZADATAK Zadan je pilot kružnog poprečnog presjeka, postavljen kroz dva sloja tla. Svojstva tla i dimenzije pilota su zadane na skici. a) Odrediti graničnu nosivost pilota u vertikalnom smjeru.
Διαβάστε περισσότεραKolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,
Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj
Διαβάστε περισσότεραIzravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )
Posmična čvrstoća tla Posmična se čvrstoća se često prikazuje Mohr-Coulombovim kriterijem čvrstoće u - σ dijagramu c + σ n tanφ Kriterij čvrstoće C-kohezija φ -kut trenja c + σ n tan φ φ c σ n Posmična
Διαβάστε περισσότεραTABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II
TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo
Διαβάστε περισσότεραOsnovni elementi klizišta
STABILNOST KOSINA Klizište 1/ Klizanje kao geološki fenomen: - tektonski procesi - gravitacijske i hidrodinamičke sile 2/ Klizanja nastala djelovanjem ljudi: - iskopi, nasipi, dodatno opterećenje kosina
Διαβάστε περισσότεραPREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
Διαβάστε περισσότεραZadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
Διαβάστε περισσότεραTemelji i potporni zidovi
Temelji i potporni zidovi Temelj Temelj je dio konstrukcije koji omoguava prijenos reaktivnih sila i momenata oslonaca u tlo. 3 Temelj mora: 1. prenositi reaktivne sile i momente u tlo s dovoljnom sigurnošu
Διαβάστε περισσότερα3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Διαβάστε περισσότερα10.1. ZADATAK. =20 (kn/m 3 ). Pretpostaviti da nema trenja na dodiru tla i potporne konstrukcije ( =0 ). RJEŠENJE
.. ZDTK Za zaani primjer zasjeka sa lomljenom linijom tla iza zia, grafičkim postupkom prema Culmann-u, oreiti silu aktivnog tlaka. Za tlo su zaana svojstva: k = (ka), k =4, = (kn/m ). retpostaviti a nema
Διαβάστε περισσότερα9.1. ZADATAK. Parametri tla: Dimenzije temelja: RJEŠENJE. a) Terzaghi. Granična nosivost tla ispod temelja prema Terzaghi-ju:
9.1. ZADATAK Za entrično opterećen temelj stalnom konentriranom silom, koji se nalazi na vooravno uslojenom tlu za koje su laboratorijskim mjerenjem oređeni parametri tla, treba oreiti: a) graničnu nosivost
Διαβάστε περισσότεραTroosni posmik. Troosni posmik. Troosni posmik. Priprema neporemećenog uzorka. Troosnaćelija. Uzorak je u gumenoj membrani Ćelija se ipuni sa vodom
Troosnaćelija Ploha loma Priprema neporemećenog uzorka Uzorak je u gumenoj membrani Ćelija se ipuni sa vodom 1 Oprema za troosna ispitivanja (Institut IGH Zagreb) Test Animation σ1= = σdev = σ1= = σdev
Διαβάστε περισσότεραPRIJENOS VERTIKALNIH SILA KOD DUBOKIH TEMELJA
PRIJENOS VERTIKALNIH SILA KOD DUBOKIH TEMELJA Nosivost se može odrediti (prema EN 1997-1): - statičkim probnim opterećenjem - dinamičkim probnim opterećenjem (metoda dokazana usporedbom sa statičkim opterećenjem)
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραVIJČANI SPOJ VIJCI HRN M.E2.257 PRIRUBNICA HRN M.E2.258 BRTVA
VIJČANI SPOJ PRIRUBNICA HRN M.E2.258 VIJCI HRN M.E2.257 BRTVA http://de.wikipedia.org http://de.wikipedia.org Prirubnički spoj cjevovoda na parnom stroju Prirubnički spoj cjevovoda http://de.wikipedia.org
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Διαβάστε περισσότερα5. ANALIZE STABILNOSTI KOSINA
5. ANALIZE STABILNOSTI KOSINA 1 UVOD Analize stabilnosti kosine provode se radi utvrđivanja moguće pojave sloma u prirodnoj ili umjetnoj kosini ili radi utvrđivanja parametara čvrstoće materijala u kosinama
Διαβάστε περισσότερα10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Διαβάστε περισσότεραOpšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
Διαβάστε περισσότεραANALIZA DJELOVANJA (OPTEREĆENJA) - EUROKOD
GRAĐEVINSKO - ARHITEKTONSKI FAKULTET Katedra za metalne i drvene konstrukcije Kolegij: METALNE KONSTRUKCIJE ANALIZA DJELOVANJA (OPTEREĆENJA) - EUROKOD TLOCRTNI PRIKAZ NOSIVOG SUSTAVA OBJEKTA 2 PRORAČUN
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραSVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15.09.2015. Saša Horvat SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI
Διαβάστε περισσότεραP z. =1.1MN/m _ =0.68MNm/m. k b =460.0MN/m 3 z. Dispozicija opterećenja grupe šipova preko krute naglavnice
BROJNI PRIMER - 9 Na slici 9.1 je orečni resek trakastog temelja obalnog zida. Temelj zida je kruta naglavnica na šiovima. Oterećenje otornog zida je redukovano u težište naglavnice. Podužno rastojanje
Διαβάστε περισσότεραNERASTAVLJIVE VEZE I SPOJEVI. Zakovični spojevi
NERASTAVLJIVE VEZE I SPOJEVI Zakovični spojevi Zakovice s poluokruglom glavom - za čelične konstrukcije (HRN M.B3.0-984), (lijevi dio slike) - za kotlove pod tlakom (desni dio slike) Nazivni promjer (sirove)
Διαβάστε περισσότεραOPTIMIZIRANJE MASIVNOG POTPORNOG ZIDA
OPTIMIZIRANJE MASIVNOG POTPORNOG ZIDA Vol. 4, No. 1, 2016. DOI: 10.19279/TVZ.PD.2016-4-1-09 Matija Lozić 1, Sonja Zlatović 2 1 Student TVZ-a 2 Tehničko veleučilište u Zagrebu Sažetak Optimizacija građevina
Διαβάστε περισσότεραProračun potrebne glavne snage rezanja i glavnog strojnog vremena obrade
Zaod a tehnologiju Katedra a alatne strojee Proračun potrebne glane snage reanja i glanog strojnog remena obrade Sadržaj aj ježbe be: Proračun snage kod udužnog anjskog tokarenja Glano strojno rijeme kod
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραMANUELA KANIŠKI ZAVRŠNI RAD
SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET VARAŽDIN MANUELA KANIŠKI PRORAČUN POPREČNO OPTEREĆENIH PILOTA ZAVRŠNI RAD VARAŽDIN, 2010. 2 SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET VARAŽDIN ZAVRŠNI RAD PRORAČUN
Διαβάστε περισσότεραSVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET
SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature
Διαβάστε περισσότερα3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
Διαβάστε περισσότεραSTATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM
STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Autor: Ivan Volarić, struč. spec. ing. aedif. Zagreb, Siječanj 2017. TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNOG ZADATKA Projektni zadatak prema kojem je
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραPRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
Διαβάστε περισσότεραDimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Διαβάστε περισσότεραProgram testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Διαβάστε περισσότεραBUŠENJE I Fo F r o m r ul u e l
BUŠENJE I Formule Površina prstenastog presjeka NIZ BUŠAĆIH ALATKI A = π (D 2 4 d 2 ) A površina prstenastog presjeka (m 2 ) D vanjski promjer prstenastog presjeka (m) d unutarnji promjer prstenastog presjeka
Διαβάστε περισσότεραEUROKOD 1 Dejstva na konstrukcije
INŽENJERSKA KOMORA CRNE GORE EUROKOD 1 Dejstva na konstrukcije DIO 1-4 Dejstvo vjetra Podgorica 08.10.2013. Oblast primjene Uticaji od vjetra određuju se za: - zgrade i druge građevinske objekte visine
Διαβάστε περισσότεραDIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Διαβάστε περισσότεραGEOTEHNIČKE KONSTRUKCIJE POTPORNE KONSTRUKCIJE. Predavanje: POTPORNE KONSTRUKCIJE Prof.dr.sc. Leo MATEŠIĆ 2012/13
GEOTEHNIČKE KONSTRUKCIJE POTPORNE KONSTRUKCIJE Predavanje: POTPORNE KONSTRUKCIJE Prof.dr.sc. Leo MATEŠIĆ 2012/13 Sadržaj predavanja 1 TLAK I OTPOR TLA (ponavljanje) 1.1 Općenito - Horizontalni (bočni)
Διαβάστε περισσότεραPILOTI METODA DUBOKOG TEMELJENJA
PILOTI METODA DUBOKOG TEMELJENJA Toranj crkve Sv. Marka u Veneciji, temeljen na drvenim pilotima. Sagrañen oko 900 god., visine 100 m, nagnut 80 cm od vertikale Drveni piloti 1902. se srušio zbog loše
Διαβάστε περισσότερα6. Plan armature prednapetog nosača
6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραLOGO ISPITIVANJE MATERIJALA ZATEZANJEM
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul
Διαβάστε περισσότεραTeorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότερα1. Primjer proračuna graničnih stanja nosivosti elemenata i spojeva prema normi HRN EN
1. Primjer proračuna graničnih stanja nosivosti elemenata i spojeva prema normi HRN EN 1995-1-1 Treba proračunati granična stanja nosivosti elemenata i karakterističnih priključaka konstrukcije prikazane
Διαβάστε περισσότεραLEVANIĆ SILVIO DIPLOMSKI RAD
SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET LEVANIĆ SILVIO GEOTEHNIČKI I GEOFIZIČKI ISTRAŽNI RADOVI ZA POTREBE TEMELJENJA TRGOVAČKOG CENTRA IKEA DIPLOMSKI RAD VARAŽDIN, 2012. SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραMETALNE KONSTRUKCIJE II
METALNE KONSTRUKCIJE II 1 Predmet br. teme Dodatne napomene objašnjenja uputstva NASLOV PODNASLOV PODNASLOV Osnovni sadržaj. Važniji pojmovi i sadržaji su štampani kao bold. Legenda dodatnih grafičkih
Διαβάστε περισσότεραFUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI
1/11/013 FUNDIRANJE TEEJI SACI 1. CENTRIČNO OPTEREĆEN TEEJ SAAC. EKSCENTRIČNO OPTEREĆEN TEEJ SAAC 1 Temelj samac ekscentrično oterećen rostor 1 1/11/013 Dimenzionisanje A temelja samca 3 Određivaje visine
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραSVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD. Josipa Tomić. Osijek, 15. rujna 2016.
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujna 2016. Josipa Tomić SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK
Διαβάστε περισσότεραdr. sc. Tomislav Hrestak, dipl. ing. rud. VIADUKT d.d. Zagreb
2D I 3D MODELIRANJE METODOM KONAČNIH ELEMENATA NA PRIMJERIMA NEDAVNO IZVEDENIH TUNELA U HRVATSKOJ dr. sc. Tomislav Hrestak, dipl. ing. rud. VIADUKT d.d. Zagreb 1 Sadržaj 1. Uvod 2. Analitička rješenja
Διαβάστε περισσότεραNasute i potporne građevine 12
Sveučilište u Zagrebu Diplomski sveučilišni studij Građevinski fakultet Smjer: GEOTEHNIKA Sidrenje ugrađenih potpornih stijena Položaj zida / bloka za usidrenje žmurje uzdužna greda Nasute i potporne građevine
Διαβάστε περισσότεραZadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?
Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότεραZIDANE KONSTRUKCIJE STRUČNI STUDIJ GRAĐEVINARSTVA
SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE BRANIMIR PAVIĆ ZIDANE KONSTRUKCIJE STRUČNI STUDIJ GRAĐEVINARSTVA ZAVRŠNI RAD PRORAČUN NOSIVE KONSTRUKCIJE ZIDANE GRAĐEVINE SPLIT, 2017.
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότερα1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2
OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI
Διαβάστε περισσότεραDINAMIČKA MEHANIČKA ANALIZA (DMA)
Karakterizacija materijala DINAMIČKA MEHANIČKA ANALIZA (DMA) Dr.sc.Emi Govorčin Bajsić,izv.prof. Zavod za polimerno inženjerstvo i organsku kemijsku tehnologiju Da li je DMA toplinska analiza ili reologija?
Διαβάστε περισσότεραSrednjenaponski izolatori
Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότερα1. Uvod. Mehanika tla i stijena str. 1 PLITKI TEMELJI
Mehanika tla i stijena str. 1 PLITKI TEMELJI 1. Uvod Temelji su dijelovi konstrukcije preko kojih se ona oslanja o tlo. Preko njih se djelovanja na konstrukciju prenose na tlo. Kako je tlo u pravilu bitno
Διαβάστε περισσότεραSveučilište u Zagrebu Građevinski fakultet. Preddiplomski studij GEOTEHNIČKO INŽENJERSTVO. 9. predavanje. Temeljenje na stijeni
Sveučilište u Zagrebu Građevinski fakultet Preddiplomski studij GEOTEHNIČKO INŽENJERSTVO 9. predavanje Temeljenje na stijeni SADRŽAJ PREDAVANJA Temeljenje na stijeni Uvod Raspodjela naprezanja ispod djelujućih
Διαβάστε περισσότεραMasa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραKrute veze sa čeonom pločom
Krute veze sa čeonom pločom Metalne konstrukcije 2 P6-1 Polje primene krutih veza sa čeonom pločom Najčešće se koriste za : Veze greda sa stubovima kod okvirnih nosača; Montažne nastavke nosača; Kontinuiranje
Διαβάστε περισσότεραANKERI TIPOVI, PRORAČUN I KONSTRUISANJE
KERI TIPOVI, PRORČU I KOSTRUISJE SPREGUTE KOSTRUKCIJE OD ČELIK I BETO STDRDI E 992-4- Proračun ankera za primenu u betonu E 992-4-2 Ubetonirani ankeri sa glavom E 992-4-3 nker kanali E 992-4-4 aknadno
Διαβάστε περισσότεραΠ Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Διαβάστε περισσότερα4. ANALIZA OPTEREĆENJA
4. 11 4.1. OPĆENITO Opterećenja na građevinu međusobno se razlikuju s obzirom na niz gledišta usmjerenih na svojstva njihovih djelovanja i očitovanja tih djelovanja na konstrukciju. S obzirom na uobičajenu
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραProstorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραGeometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
Διαβάστε περισσότεραZavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Διαβάστε περισσότεραZdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
Διαβάστε περισσότερα5. NAPONI I DEFORMACIJE
MEHANIKA TLA: Naponi i deformacije 59 5. NAPONI I DEFORMACIJE Klasifikacija tla i poznavanje osnovnih pokazatelja fizičkih osobina tla je potrebno ali ne i dovoljno da bi se rešio najveći broj zadataka
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραSTABILNOST KOSINA. (ponavljanje)
KLIZIŠTA STABILNOST KOSINA (ponavljanje) Definicija faktora sigurnosti F S τ τ f = τ d ϕ ' ϕ d ' < ϕ ' c ' c d ' < c ' σ Prikaz efektivnih graničnih i mobiliziranih parametara čvrstoće Vrijedi, dakle,
Διαβάστε περισσότεραSveučilište u Zagrebu. Građevinski fakultet. Zavod za Geotehniku OJAČANJE TLA I STIJENA. 8. predavanje
Sveučilište u Zagrebu Građevinski fakultet Zavod za Geotehniku OJAČANJE TLA I STIJENA 8. predavanje Vibracijsko punjenje - Šljunčani stupovi Metoda izvedbe stupova od kamena, korištenjem teške vibracijske
Διαβάστε περισσότεραODREĐIVANJE MODULA STIŠLJIVOSTI U EDOMETRU
SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET ZORAN BAJSIĆ ODREĐIVANJE MODULA STIŠLJIVOSTI U EDOMETRU ZAVRŠNI RAD VARAŽDIN, 2012. SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET ZAVRŠNI RAD ODREĐIVANJE MODULA
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE. Program
BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραPOTPORNI ZIDOVI NA PROMETNICAMA
TEHNIČKO VELEUČILIŠTE U ZAGREBU STRUČNI STUDIJ GRADITELJSTVA Ante Grabovac POTPORNI ZIDOVI NA PROMETNICAMA ZAVR NI RAD br. G 38 Zagreb, rujan,011 TEHNIČKO VELEUČILIŠTE U ZAGREBU STRUČNI STUDIJ GRADITELJSTVA
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 1 -
Betonske konstrukcije 1 - vežbe 1 - Savijanje pravougaoni presek Sadržaj vežbi: Osnove proračuna Primer 1 vezano dimenzionisanje Primer 2 slobodno dimenzionisanje 1 SLOŽENO savijanje ε cu2 =3.5ä β2x G
Διαβάστε περισσότεραPopis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t.
Popis oznaka A el A meh A a a 1 a 2 a a a x a y - rad u električnom dijelu sustaa [Ws] - mehanički rad; rad u mehaničkom dijelu sustaa [Nm], [J], [Ws] - mehanički rad [Nm], [J], [Ws] - polumjer kugle;
Διαβάστε περισσότεραFAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Διαβάστε περισσότερα, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Διαβάστε περισσότεραMJERENJE MALIH DEFORMACIJA U LABORATORIJU
MJERENJE MALIH DEFORMACIJA U LABORATORIJU RAZLOZI MJERENJA DEFORMACIJA U TLU Pri projektiranju dinamički opterećenih temelja treba odrediti sljedeće: kriterije ponašanja (dozvoljene amplitude, brzine,
Διαβάστε περισσότεραSila otpora oblika tijela u struji fluida
Praktikum iz hidraulike Str. 15-1 XV vježba Sila otpora oblika tijela u struji fluida Tijelo koje se nađe u struji fluida je izloženo djelovanju sila koje su posljedica neravnomjernog rasporeda tlakova
Διαβάστε περισσότεραOSNOVI AERODINAMIKE DRUMSKIH VOZILA
OSNOVI AERODINAMIKE DRUMSKIH VOZILA OSNOVI AERODINAMIKE DRUMSKIH VOZILA Pretpostavke Bernulijeve jednačine: Nestišljiv fluid Konzervacija energije p DIN + p ST = p TOT = const Prema: T.D. Gillespie ρ v
Διαβάστε περισσότερα7. Proračun nosača naprezanih poprečnim silama
5. ožujka 2018. 7. Proračun nosača naprezanih poprečnim silama Primjer sloma zbog djelovanja poprečne sile SLIKA 1. T- nosač slomljen djelovanjem poprečne sile Do sloma armirano-betonske grede uslijed
Διαβάστε περισσότεραGauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραPROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
Διαβάστε περισσότερα