Ugljovodonična veziva. Predavanje,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ugljovodonična veziva. Predavanje,"

Transcript

1 Ugljovodonična veziva Predavanje,

2 Osnovne vrste Bitumeni Katrani Ovi materijali su smjese visokomodularnih ugljovodonika, i drugih organskih jedinjenja na bazi kiseonika, sumpora i azota Primjenjuju se u oblastima putogradnje, hidroizolacije, antikorozivne zaštite Dobre osobine su: prionjivost (adhezija) za kamen, pijesak, opeku i mnoge druge materijale vodonepropusnost otpornost na atmosferske uticaje plastičnost pas č i dr.

3 Bitumen Crna, polukruta ili kruta ljepljiva masa potpuno rastvorljiva u ugljendisulfidu (CS 2 ) Dijele se na: Prirodne (čisti ili pratioci krečnjaka i pješčara) Vještačke (tzv.naftni bitumeni): postupak atmosferske ili vakum destilacije (izdvajanje benzina, kerozina i uljnih komponenti) postupak puhanja ili deparafinacije (deasfaltizacije) Sirova nafta izdvajanje benzina kerozina i dr. Mazut izdvajanje ulja ostatak BITUMEN deparfinacija Bitumen sa manjim sadržajem parafina puhanje Puhani bitumen

4 Bitumen Elementarni sastav bitumena: Ugljenik (C) 70-80% Vodonik (H) 10-15% Sumpor (S) 2-9% Kiseonik (O) 1-5% Azot (N) 0-2% Tri osnovne grupe jedinjenja: Ulja (45-60%): tečno agregatno stanje,γ s <1000kg/m 3 Smole (15-30%): čvrsto ili polučvrsto agregatno stanje,γ s =1000kg/m 3 Asfalteni (5-30%): čvrsto agregatno stanje,γ γ 3 s >1000kg/m parfini (<2,5%): čvrsto agregatno stanje u uljnoj frakciji,smanjuju ljepljivost

5 Katran Mrkocrna viskozna tečnost, specifičnog mirisa, sastavljena od mješavine različitih uljnih frakcija, katranske smole, slobodnog ugljenika i manjih količina fenola, antracena, naftalina i drugih organskih jedinjenja Dobija se suhom destilacijom organskih materija: kamenog uglja, mrkog uglja, drveta i dr. U odnosu na bitumen: Prednosti: bolja prionjivost, otporan na dejstvo naftnih derivata Mane: brže stare (usljed isparavanja lakših ulja i odvijanja procesa oksidacije i polimerizacije)

6 Osobine i ispitivanja Viskoznost Standardna viskoznost (Englerov viskozimetar): otvor za isticanje φ28mm, E odnos vremena isticanja tečnosti čiju viskoznost ispitujemo i vode na temperaturi 20 C (200cm 3 ) Bitumeni: dinamička viskoznost na 60 C Katrani: na 30 C ili 40 C, otvori mlaznice φ10mm ili 14mm (50cm 3 ) Reološke karakteristike plastometri, elastometri, reometri, konzistometri ε traj =f(sadržaj ulja, temperatura, vrijeme trajanja opterećenja t 1 )

7 Osobine i ispitivanja Penetracija dubina prodiranja igle stardanizovanih dimenzija, izražena desetim dijelom milimetra (1/10mm) bitumeni za kolovozne zastore: BIT 200, BI130, BIT 45 itd Tačka razmekšavanja po PK temperatura pri kojoj bitumen dostiže određeni stepen deformacije (kuglica zajedno sa bitumenom propada kroz prsten) duvani bitumen 85/40 (85 C, 4mm)

8 Osobine i ispitivanja Rastegljivost-duktilitet duktilometri: postepeno istezanje propisanog uzorka bitumena sve do trenutka prekida temperatura 25 C, brzina istezanja 5cm/min mjera duktilnosti: apsolutno iduženje uzorka neposredno pred lom u mm Tačka loma po Frasu temperatura na kojoj sloj bitumena određene debljine prsne, ako se pod propisanim uslovima hladi i savija pad temperature 1 C/min

9 Osobine i ispitivanja Indeks penetracije (IP) Pretpostavke mjerenja temperaturne osjetljivosti bitumena: zavisnost između logaritma penetracije i temperature (u intervalu do 60 C) je linearna etalon je meksički bitumen (40 C po PK penetracija 800, 25 C 200) IP = f(penetracije i tačke razmekšavanja po PK) IP = 0 (etalonski bitumen) (-) IP: bitumeni sa većom temperaturnom osjetljivošću (+) IP: bitumeni sa manjom temperaturnom osjetljivošću

10 Osobine i ispitivanja Stabilnost bitumena u posudi prečnika 128mm, sloj bitumena debljine 4mm, zagrijava se na 163 C u vremenu 5h mjeri se gubitak mase i vrše se neke od opisanih metoda ispitivanja Parafinski broj kod bitumena procentualno učešće č parafina u bitumenu (težinskim procentima) destilacijom bitumena na 420 C i naknadno odvajanje parafina iz destilata pomoću alkohola i hlađenjem do -20C Određivanje pojedinih frakcija pri destilaciji do 350 C kod katrana Voda Laka ulja do 170 C Srednja ulja do 270 C Teška ulja do 300 C Antracenska ulja preko 300 C Smolni ostatak

11 Primjena ugljovodoničnih veziva kod kolovoznih zastora na putevima Bitumeni za kolovozne zastore prema penetraciji: BIT 200, BIT 130, BIT 45, BIT 25 i BIT 15 Indeks penetracije od -1,0 do 0,7 Primjena: izrada asfaltnih kolovoza, sirovina za izradu bitumenskih emulzija i razrjeđenih bitumena, kod proizvodnje hidroizolacionih materijala Razrjeđeni bitumeni za kolovozne zastore dodajemo rastvarače kojim privremeno smanjimo viskoznost, a koji poslije ugrađivanja potpuno ili djelomično ispare prema viskoznosti: RB 0/1, RB 5/10, RB 30/50, RB 100/170 i RB 200/300 Primjena: za tzv. površinske obrade, za stabilizaciju tla bitumenom Bitumenske emulzije bitumen i voda sa određenim emulgatorima (stabilizatori) prema stabilnosti (brzini raspadanja): NE 50(nestabilne), PE 55 (polustabilne), SE 55 (stabilne) anjonske (bazne): agregat karbonatnih stijena i katjonske (kisele): eruptivne stijene Primjena: površinske obrade i stabilizacija, kao i pri proizvodnji asfaltnih mješavina za duže lagerovanje (kod popravke kolovoznih zastora)

12 Primjena ugljovodoničnih veziva kod kolovoznih zastora na putevima Katrani za kolovoze katranske smole razrjeđene katranskim uljima prema viskoznosti: K 10/17, K 20/35, K 80/125, K 140/240 i K 250/500 Primjena: izrada asfaltnih kolovoznih zastora, sami ili u kombinaciji sa bitumenom u odnosu katran : bitumen = 85:15 Hladni katran za kolovoze 85% katrana i 15% razređivača (rastvarača) ulje za razrjeđivanje poslije ugrađivanja oksidiše ili isparava Primjena: kolovozni zastori Asfalti mješavina ugljovodoničnih veziva (bitumena i/ili katrana), kamenog brašna i krupnijeg kamenog agregata (pjeska, šljunka ili drobljenog kamena) Primjena: nosivi, vezni i habajući slojevi kolovoznih konstrukcija Podjela: Površinske obrade Penetracije, polupenetracije i zasuti makadam Asfaltni betoni Liveni asfalti Specijalni asfalti

13 Primjena ugljovodoničnih veziva kod kolovoznih zastora na putevima Asfaltni betoni Podjela: vrući asfaltni betoni (asfaltni betoni koji se ugrađuju po vrućem postupku) na mjestu spravljanja C, na mjestu ugrađivanja C hladni asfaltni betoni (asfaltni betoni koji se ugrađuju po hladnom postupku) na mjestu spravljanja C, pri transportu i izlivanju se potpuno rashladi Ugljovodoničnih veziva 5-12% vrući asfalti betoni: bitumeni za kolovozne zastore hladni asfaltni betoni: razrjeđeni bitumeni za kolovozne zastore, katrani za kolovoze Kameno brašno (filer) 5-20%(<0,09mm): kombinacija ugljovodonično vezivo-filer obezbjeđuje: dobru vezu sa krupnijim zrnima agregata, zadovoljavajuću čvrstoću i neosjetljivost na temperaturne promjene ne smije da sadrži organske sastojke i sastojke koji bubre (glina) Pijesak (0,09-2mm) prirodni ili drobljeni ne smije da sadrži organske sastojke, sastojke koji bubre (glina), čestice <0,002mm Kamena sitnjež: (2-22,4mm za vruće asfaltne betone) (2-12,5mm za hladne asfaltne betone) obična i plemenita=f(način drobljenja) Površinski aktivni dodaci 0,2-5% u odnosu na ugljovodonična veziva poboljšavaju pokretljivost (ugradnja), ubrzavaju proces formiranja strukture asfaltnog betona, usporavaju proces starenja

14 Primjena ugljovodoničnih veziva kod kolovoznih zastora na putevima Liveni asfalti Podjela: liveni asfalti (obični) spravljaju se sa malo kamene sitnježi (30-40%) tvrdo liveni asfalti spravljaju se sa mnogo kamene sitnježi ( preko 40%) Ugljovodoničnih veziva 6,5-9% svi bitumeni za kolovozne zastore liveni asfalti (obični): gornja granica tvrdo liveni asfalti: donja granica Kamena sitnjež: (2-12,5mm) Pijesak i filer plemenita: dva ili više puta drobljena, prosijana i očišćena od prašine bez glinovitih sastojaka, postojan na dejstvo atmosferilija i mraza, čvrst, žilav, dobre prionjivosti za ugljovodonična veziva isti uslovi kao kod asfaltnih betona: dobru vezu sa krupnijim zrnima agregata, zadovoljavajuću čvrstoću i neosjetljivost na temperaturne promjene ne smije da sadrži organske sastojke i sastojke koji bubre (glina)

15 Primjena ugljovodoničnih veziva kod kolovoznih zastora na putevima Liveni asfalti Optimalni sadržaj pojedinih komponenti (eksperimentalno): Kamena sitnjež (plemenita): u tvrdo livenom asfaltu 40-50% u livenom asfaltu (običnom) 30-40% Filer najmanje 20% Bitumen 659% 6,5-9% Pijesak dopuna do 100% Procenat šupljina zbijene mase: za tvrdo liveni asfalt najviše 18% (zapreminski) za liveni asfalt (obični) 22% (zapreminski) Spravljanje: u stalnim ili pokretnim kazanima ili u stalnim postrojenjima za proizvodnju livenog asfalta na asfaltnim bazama na temperaturi C uz stalno mehaničko mješanje j Transportovanje: naročiti pokretni kazani snadbjeveni uređajima za mješanje mase i održavanje njene temperature Ugrađivanje: ručno ili mašinski ne smije se ugrađivati po kiši, na potpuno suhu podlogu Obrada: drvene lopatice i glačala (pegle) ili specijalni finišeri površina se uvijek posipa eruptivnom kamenom sitnježi preko tople ugrađene mase i valja lakim zupčastim valjcima

16 Primjena ugljovodoničnih veziva u hidroizolacijama Zahtjevi: nepropustljiv za vlagu i vodu i otporan prema njihovim štetnim uticajima dovoljno plastičan na niskim i postojan na povišenim temperaturama sposoban da bez oštećenja prati deformacije podložne konstrukcije i da premosti eventualne manje pukotine u njoj prionjiv na druge materijale otporan prema mehaničkim i atmosferskim uticajima primjenjiv pri različitim uslovima rada (vlažnost podloge, skučenost prostora, nemogućnost zračenja prostora, brzina izvođenja radova i dr.) dobar izolator u električnom pogledu bez štetnog djelovanja na materijale, ljude i okolinu pogodan za upotrebu u smislu male težine, lake nabavke, postavljanjai sl. U ovu svrhu koriste se: Bitumenski hidroizolacioni materijali Hidroizolacioni materijali na bazi katrana

17 HVALA NA PAŽNJI

UGLjOVODONIČNA VEZIVA I MATERIJALI Uvod: Bitumeni i katrani

UGLjOVODONIČNA VEZIVA I MATERIJALI Uvod: Bitumeni i katrani Uvod: Bitumeni i katrani Bitumeni i katrani mogu se svrstati u građevinske materijale i sirovine za industrijske proizvode koji se vrlo široko koriste u oblastima: putogradnja, hidroizolacije i antikoroziona

Διαβάστε περισσότερα

UGLjOVODONIČNA VEZIVA I MATERIJALI Uvod: Bitumeni i katrani

UGLjOVODONIČNA VEZIVA I MATERIJALI Uvod: Bitumeni i katrani Uvod: Bitumeni i katrani Bitumeni i katrani mogu se svrstati u građevinske materijale i sirovine za industrijske proizvode koji se vrlo široko koriste u oblastima: putogradnja, hidroizolacije i antikoroziona

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif.   SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU AGREGAT Asistent: Josip Crnojevac, mag.ing.aeif. jcrnojevac@gmail.com SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK 1 Pojela agregata PODJELA AGREGATA - PREMA

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Osobine i karakteristike građevinskih materijala. Predavanje,

Osobine i karakteristike građevinskih materijala. Predavanje, Osobine i karakteristike građevinskih materijala Predavanje, 15.03.2012. Parametri stanja i strukturne karakteristike Fizičke osobine Fizičko-mehaničke osobine Konstrukcione osobine Reološke osobine Tehnološke

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI

VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI O betonu... Beton je konstruktivni materijal koji nastaje očvršćavanjem mešavine: kamenih agregata, mineralnog veziva i vode aditivi Aktivne komponente

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

DINAMIČKA MEHANIČKA ANALIZA (DMA)

DINAMIČKA MEHANIČKA ANALIZA (DMA) Karakterizacija materijala DINAMIČKA MEHANIČKA ANALIZA (DMA) Dr.sc.Emi Govorčin Bajsić,izv.prof. Zavod za polimerno inženjerstvo i organsku kemijsku tehnologiju Da li je DMA toplinska analiza ili reologija?

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

OSNOVNI TEHNIČKI UVJETI ZA KAKVOĆU MATERIJALA I IZVEDBU KOLNIKA

OSNOVNI TEHNIČKI UVJETI ZA KAKVOĆU MATERIJALA I IZVEDBU KOLNIKA OSNOVNI TEHNIČKI UVJETI ZA KAKVOĆU MATERIJALA I IZVEDBU KOLNIKA Izvođač je dužan dostaviti potrebnu dokumentaciju za sve građevinske materijale koji će se koristiti u izgradnji a kojom se dokazuju tražena

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O. Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100

Διαβάστε περισσότερα

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Projektovanje sastava betona

Projektovanje sastava betona Projektovanje sastava betona Predavanje, 04.12.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Opće postavke Izbor komponentnih materijala Agregat Cement Voda Aditivi Sastav

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

Beton. Predavanje,

Beton. Predavanje, Beton Predavanje, 21.09.2012. Betoni Vještački kameni materijal dobijen očvršćavanjem mješavine nekog vezivnog materijala i agregata (granulata) Vezivni materijal: gips, kreč, cement, asfalt, epoksi smole

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

Komponente betona: Agregat, Voda i Aditivi

Komponente betona: Agregat, Voda i Aditivi Komponente betona: Agregat, Voda i Aditivi Predavanje, 05.11.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Osnovni uslovi kvaliteta agregata Granulometrijski sastav agregata

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar)

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar) REGIONALNO-METAMORFNE STENE (200-800ºC; 2-10 kbar) PODELA PREMA TEKSTURI 1. ŠKRILJAVE I 2. MASIVNE METAMORFNE STENE PODELA PREMA STEPENU KRISTALINITETA (NE ZAVISI OD STEPENA METAMORFIZMA) 1. STENE VISOKOG

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Posebne vrste betona Izvođenje betonskih radova u ekstremnim klimatskim uslovima

Posebne vrste betona Izvođenje betonskih radova u ekstremnim klimatskim uslovima Posebne vrste betona Izvođenje betonskih radova u ekstremnim klimatskim uslovima Predavanje, 25.12.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Posebne vrste betona: Hidrotehnički

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 9.

Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 9. Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa Presentation 9. Destilacione krive S obzirom da su nafta i njene frakcije složene smese ugljovodonika, njihovo temeljno svojstvo isparljivosti je područje

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Zagreb, travanj, Godine. Izradio:

Zagreb, travanj, Godine. Izradio: ELBORAT O INSPEKCIJSKOM PREGLEDU I TEHNIČKO RJEŠENJE SANACIJE VIŠEPROFILNIH PRIJELAZNIH NAPRAVA NA VIJADUKTU ZEČEVE DRAGE NA AUTOCESTI A6 Rijeka Zagreb DIONICA: Vrbovsko - Bosiljevo Izradio: Zagreb, travanj,

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

1. Uvod. 2. Opis eksperimenta

1. Uvod. 2. Opis eksperimenta Univerzitet u Nišu Mašinski fakultet TEHNIČKI MATERIJALI - Nemetalne materije VEŽBA VI ODREĐIVANJE KARAKTERISTIKA DIZEL GORIVA A KRIVA ISPARAVANJA UZORKA DIZEL GORIVA 1. Uvod Dizel-gorivo (gorivo za dizel

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ ) Posmična čvrstoća tla Posmična se čvrstoća se često prikazuje Mohr-Coulombovim kriterijem čvrstoće u - σ dijagramu c + σ n tanφ Kriterij čvrstoće C-kohezija φ -kut trenja c + σ n tan φ φ c σ n Posmična

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Kontrola kvaliteta betona Projekat betona

Kontrola kvaliteta betona Projekat betona Kontrola kvaliteta betona Projekat betona Predavanje, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Kontrola kvaliteta betona: Opće postavke Partije betona Kontrola

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu.

Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu. VISKOZNOST VISKOZNOST Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu. VISKOZNOST Da li očekujete da će glicerol imati veću ili manju

Διαβάστε περισσότερα

MIKROARMIRANI BETONI I MALTERI

MIKROARMIRANI BETONI I MALTERI MIKROARMIRANI BETONI I MALTERI VRSTE VLAKANA ZA MIKROARMIRANJE MALTERA I BETONA Prirodnog porekla celulozna pamučna jutana od konoplje od bambusa,, i dr. VLAKNA Vešta tačkog porekla čelična (od običnog

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα