ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Σχετικά έγγραφα
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

Ασκήσεις Επανάληψης Γ Λυκείου

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

x R, να δείξετε ότι: i)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις του διαγωνίσματος στις παραγώγους

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 2018

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

3o Επαναληπτικό Διαγώνισμα 2016

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

Φροντιστήρια. Κεφαλά. ( x) = + ( ) ( ) ( )

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x.

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

5o Επαναληπτικό Διαγώνισμα 2016

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

Ασκήσεις Επανάληψης Γ Λυκείου

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Ασκήσεις Επανάληψης Γ Λυκείου

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

Για παραγγελίες των βιβλίων

20 επαναληπτικά θέματα

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

Πανελλαδικές εξετάσεις 2017

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Transcript:

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο διάστηµα = [ αβ, ], τότε το µέτρο του µιγαδικού z= + ()i έχει µέγιστη τιµή.. Η συνάρτηση () =ηµ είναι παραγωγίσιµη στο πεδίο ορισµού της.. Αν η συνάρτηση :(,) R έχει σύνολο τιµών το U (, 4) (5,7), τότε η δεν είναι συνεχής. 4. Αν α, β R και ισχύει α + βi = ( + i), τότε α + β = 5. 5. Αν ισχύει z = z τότε ισχύει z 6. Αν η συνάρτηση :[,] R έχει σύνολο τιµών το (, 4, τότε η δεν είναι συνεχής. ] 7. Αν η συνάρτηση :[,] R έχει την ιδιότητα για κάθε (,) τότε η δεν είναι συνεχής. 8. Αν ισχύει lim () = 4 τότε lim () = lim () 9. Αν ισχύει lim () = τότε lim () =.. Αν συνεχής στο R τότε 7 ( + )d = ()d. () > ή =. ΘΕΜΑ Ο ίνεται η συνάρτηση : R R µε την ιδιότητα ( o )() = m + () για κάθε R και m. Να αποδείξετε ότι. Η συνάρτηση αντιστρέφεται.. Η C διέρχεται από την αρχή των αξόνων.. () = (() ) για κάθε R αν είναι γνωστό ότι m (R) = R.

4. Αν η είναι παραγωγίσιµη να δείξετε ότι δεν έχει τοπικό ακρότατο στο =. 5. Αν η C έχει ασύµπτωτη στο + την ευθεία y = + 5m να βρείτε την ασύµπτωτη στο + της C. ΘΕΜΑ Ο ίνεται η συνάρτηση () = e +, R.. Να µελετηθεί η ως προς τη µονοτονία.. Να συγκριθούν οι αριθµοί A = e και 4 ( ) + > 5 B =. 4. Να λύσετε την ανίσωση e +, R. 4 + 4 + 4. Να λύσετε την εξίσωση e =, R. + + 5. Να βρείτε το σύνολο τιµών της. 6. Να βρείτε τις τιµές του λ R για τις οποίες η εξίσωση e λ = ( λ λ )( + ) έχει λύση στο R. ΘΕΜΑ 4 Ο ίνεται η συνάρτηση :(, + ) R η οποία είναι παραγωγίσιµη. ln Αν ισχύει '() = για κάθε (, + ) και () = να + αποδείξετε ότι:. () για κάθε (, + ).. () + ( ) = ln για κάθε (, + ).. Η εξίσωση + ln = έχει µοναδική ρίζα στο (, + ). 4. Η C έχει ένα µόνο σηµείο καµπής το M(,( )) και ισχύει ( ) + ( ) > '( ). ΘΕΜΑ 5 Ο Α.Έστω :(, + ) a R παραγωγίσιµη και κυρτή συνάρτηση στο (, + ). Αν η ευθεία ( ε ): y= + 4 είναι ασύµπτωτη της C στο +

. Να βρείτε το όριο L= lim[ (+ ) () ]. Να δείξετε ότι () ( ) < '() < ( + ) (), >.. Να βρείτε το όριο L= lim'() Β. ίνεται η συνάρτηση : R R παραγωγίσιµη στο = και () lim = k R. Να αποδείξετε ότι:. () =. '() = ΘΕΜΑ 6 Ο A. Έστω α> και µία συνάρτηση η οποία είναι συνεχής στο [ α, α ] και ισχύει () για κάθε [ α, α. ] Αν βγδ [,, α, α] και () = να αποδείξετε ότι υπάρχει ένα τουλάχιστον ξ [ α, α] ώστε ( ξ ) = ( β) ( γ) ( δ) B. ίνεται η συνάρτηση η οποία είναι παραγωγίσιµη στο R.Αν α<β<γ και ισχύει ( α ) < ( γ ) < ( β ).Nα αποδείξετε ότι υπάρχει ένα τουλάχιστον αγ (, ) ώστε '( ) =. Γ. Έστω ότι η συνάρτηση είναι δύο φορές παραγωγίσιµη στο[ αβ, ]. Αν α<γ<δ<β και ισχύει ( γ ) < ( α ) < ( β ) < ( δ ) να αποδείξετε ότι υπάρχει ένα τουλάχιστον ( α, β ) ώστε ''( ) =. ΘΕΜΑ 7 Ο A. Μια συνάρτηση είναι ορισµένη και συνεχής στο διάστηµα [,] και ισχύει : () = (). Να δείξετε ότι η εξίσωση: () = + () έχει µια τουλάχιστον πραγµατική ρίζα. B. ίνεται η συνεχής συνάρτηση : R R για την οποία ισχύει: < () < + για κάθε R. Α. Να δείξετε ότι η C τέµνει την ευθεία ε : y= σε ένα τουλάχιστον σηµείο µε τετµηµένη (,). Β. Αν η συνάρτηση είναι γνησίως αύξουσα να αποδείξετε ότι:

α. Η συνάρτηση g() =, R () + e είναι γνησίως φθίνουσα στο R. β. Η εξίσωση e + () = e () έχει µοναδική ρίζα στο (,). γ. Να βρείτε το ηµ +. lim ( ) ln ΘΕΜΑ 8 Ο Α. Αν η συνάρτηση είναι δύο φορές παραγωγίσιµη στο = [,] και για κάθε ισχύουν: () + () i) (), ii) () Nα αποδείξετε ότι: α) () = () β) () = γ) Η έχει στο δύο τουλάχιστον κρίσιµα σηµεία και µία πιθανή θέση σηµείου καµπής δ) () Β. Μια συνάρτηση είναι ορισµένη και συνεχής στο R µε ()=9 και για κάθε χ R ισχύει : () (()) =. () Να βρείτε το (5). ΘΕΜΑ 9 Ο Για κάθε R ορίζουµε τη συνάρτηση και t α+ e g() = dt, α> το µιγαδικό z= g() + i µε z + i z. Να αποδείξετε ότι : α). Η συνάρτηση g αντιστρέφεται. β). Οι εικόνες του z ανήκουν στη γραφική παράσταση της g.. Να αποδείξετε ότι : α. Re(z) Im(z) για κάθε R. β. α=

γ. < dt dt < t t + e α+ e α+ e + e ΘΕΜΑ o Α. Έστω : R R µία συνάρτηση παραγωγίσιµη στο η οποία εφάπτεται στον άξονα ' στο σηµείο (,( ) τότε συµπληρώστε τα παρακάτω ( ) =..., '( ) =... Β. Έστω :R R µία παραγωγίσιµη συνάρτηση µε '() και () για κάθε R.. Αν g :R R µία παραγωγίσιµη συνάρτηση ώστε οι γραφικές παραστάσεις των,g να έχουν κοινή εφαπτοµένη στο σηµείο (,y ) να αποδείξετε ότι η γραφική παράσταση g() της H() = εφάπτεται στον άξονα '. (). Αν οι γραφικές παραστάσεις των συναρτήσεων k () Φ () = e () και G() = e έχουν κοινή εφαπτοµένη στο σηµείο µε τετµηµένη να βρείτε: την τιµή του k και το ( ). Γ. Αν οι συναρτήσεις,g είναι παραγωγίσιµες στο R και έχουν την ιδιότητα ( ) = g() για κάθε R να δείξετε ότι οι γραφικές παραστάσεις αυτών έχουν στο O(,) κοινή εφαπτοµένη.