UREĐAJU NA SKUPU REALNIH BROJEVA



Σχετικά έγγραφα
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA - TESTOVA 1. dio

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

4. Trigonometrija pravokutnog trokuta

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

IZVODI ZADACI (I deo)

TRIGONOMETRIJA TROKUTA

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

1.4 Tangenta i normala

Matematička analiza 1 dodatni zadaci

Riješeni zadaci: Nizovi realnih brojeva

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

41. Jednačine koje se svode na kvadratne

Operacije s matricama

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

ZBIRKA - TESTOVA 1. dio

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

3.1 Granična vrednost funkcije u tački

18. listopada listopada / 13

Računarska grafika. Rasterizacija linije

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

7 Algebarske jednadžbe

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

ZBIRKA - TESTOVA 1. dio

1 Promjena baze vektora

Uvod u teoriju brojeva

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

ELEKTROTEHNIČKI ODJEL

Kaskadna kompenzacija SAU

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

PRIMJER 3. MATLAB filtdemo

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zavrxni ispit iz Matematiqke analize 1

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Ispitivanje toka i skiciranje grafika funkcija

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

Grafičko prikazivanje atributivnih i geografskih nizova

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

( , 2. kolokvij)

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Računarska grafika. Rasterizacija linije

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

SISTEMI NELINEARNIH JEDNAČINA

2.7 Primjene odredenih integrala

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Linearna algebra 2 prvi kolokvij,

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dvanaesti praktikum iz Analize 1

ELEMENTARNA MATEMATIKA 1

VJEŽBE IZ MATEMATIKE 1

Trigonometrijske nejednačine

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

numeričkih deskriptivnih mera.

Na grafiku bi to značilo :

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

INTELIGENTNO UPRAVLJANJE

IZVODI ZADACI (I deo)

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Zadaci iz trigonometrije za seminar

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Teorijske osnove informatike 1

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Riješeni zadaci: Limes funkcije. Neprekidnost

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Moguća i virtuelna pomjeranja

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

radni nerecenzirani materijal za predavanja

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

1 Aksiomatska definicija skupa realnih brojeva

Tretja vaja iz matematike 1

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Periodičke izmjenične veličine

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Zadaci iz Osnova matematike

PROSTORNI STATIČKI ODREĐENI SUSTAVI

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

Transcript:

**** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE UREĐAJU NA SKUPU REALNIH BROJEVA JEDNADŽBE NEJEDNADŽBE APSOLUTNE JEDNADŽBE APSOLUTNE NEJEDNADŽBE α

Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga BESPLATNA - WEB-VARIJANTA Dodatne upute i VIDEO objašnjenja uz sve zadatke iz ove web-varijante biti će objavljene na ovoj našoj web-stranici: http://mim-sraga.com/zbirka-potpuno-rijesenih-zad-mat--uredjaj.htm dovoljno je da dvokliknete na ovaj plavi dio teksta i stranica bi se trebala otvoriti Tisak: M.I.M.-SRAGA d.o.o. CIP-Katalogizacija u publikaciji Nacionalna i sveučilišna knjižnica, Zagreb M.I.M-Sraga d.o.o. 00. Potpunu garanciju na kompletnu zbirku daje: centar za dopisnu poduku M.I.M.-SRAGA - dakle sve što vam se čini nejasno krivo ili sumnjivo - zovite 0-478-4 ili 0-479- i tražite dodatne upute i objašnjenja... Dodatne upute i objašnjenja možete zatražiti i na mail: mim-sraga@zg.htnet.hr M.I.M.-SRAGA d.o.o. zadržava sva prava na reproduciranje, umnažanje, prodaju ove zbirke potpuno riješenih zadataka isključivo u okviru svog programa poduke i dopisne poduke. Nikakva komercijalna upotreba ove zbirke nije dozvoljena bez pismene dozvole nakladnika! autor: Mladen Sraga

Linearne JEDNADŽBE 0. kvadriramo po pravilima 4) x + x+ = x a± b = a ± ab+ b + + + 4 + 4 = + x x x x x x + + 4 + + 4 = 4 + x x x x x x x x x 4x 4 6x = :6 x = x = + + = 6 Pogledaj dodatnu VIDEO uputu uz ovaj zadatak http://mim-sraga.com/zbirka-potpuno-rijesenih-zad-mat--uredjaj.htm ili direktni link na : video uputu uz 0. 4) x x+ 4) + = ( x )( x+ ) uvjet: x+ 0, x 0 x+ x x x ( x )( x ) + ( x+ )( x+ ) = ( x )( x+ ) ( x ) + x + x+ x+ = ( x 9) x 6x+ 9+ x + 4x+ = x 8 x x x x x + 6 + 4 = 9 8 x = 0 : x = Ovo nisu svi zadaci iz ove zbirke, Ovo je samo manji dio od oko 0% zadataka iz kompletne zbirke i ovdje su postavljeni samo kao ogledni primjerci. Ali vam mogu poslužiti kao solidna vježba pred testove ili ispitivanja u školi www.mim-sraga.com M.I.M.-Sraga centar za poduku

6. NEJEDNADŽBE Tehnika rješavanja linearnih nejednadžbi slična je rješavanju linearnih jednadžbi nepoznanice idu lijevo a brojevi desno. Kada nejednadžbu množimo ili dijelimo negativnim brojem mijenjamo joj smisao: x < 4 /: Nekoliko primjera: Primjer: x > dakle samo okrenemo znak nejednakosti! + x > 4+ x x x> 4+ x > /:( ) x < Pogledaj dodatnu VIDEO uputu uz ovaj zadatak direktni link na uputu: zadatak: 6. ) do 4) 4 autor: Mladen Sraga

6. ) x+ < x+ 6 x+ < x+ x+ < 4x+ x 4x< Pogledaj dodatnu VIDEO uputu uz ovaj zadatak na YouTube direktni link na uputu: zadatak: 6. ) do ) x < / : x > + x, + x+ x x 6) 6 ( x+ ) ( x ) ( x ) 6.a još jedan zadatk na tu temu: x+ x+ x 6 x x x 6 x / : x + x, + www.mim-sraga.com M.I.M.-Sraga centar za poduku

7. Sustav linearnih nejednadžbi U ovom zadatku rješavamo sustav dvije linearne nejednadžbe. Tehnika rješavanja je takva da svaku nejednadžbu riješimo za sebe isto kao što smo to radili u zadatku.6 Rješenje sustava je presjek rješenja prve i druge nejednadžbe. Dakle na istom brojevnom pravcu nacrtamo rješenja obadvije nejednadžbe tako da svako rješenje ima svoj nagib ( šrafuru ) pokažimo to na. zadatku: prvo rješimo svaku nejednadžbu za sebe: ) x+ 0, x < 0 x x< rješenje ove jed. je: rješenje ove jed. je: Sada na istoj slici nacrtamo obadva rješenja: Područje u kojem se sijeku ta rješenja je rješenje sustava x, Uobičajeno je da se ovaj zadatak rješava na kraći način: ) x+ 0, x < 0 x x< Područje u kojem se sijeku ta rješenja je rješenje sustava x, x < ili drugačije zapisano isto rješenje: Pogledaj dodatnu VIDEO uputu uz ovaj zadatak na YouTube direktni link na uputu uz: zadatak: 7. ) do 6) 6 autor: Mladen Sraga

) x x+ x+ x + >, 6 4 4 x + x+ > x+ x ( 4x 4+ x+ 6> x+ 6 x 4x+ x > + 4 6 x x 6 7x > 0 x 4 x > 0 7 ) 0 4 7 0 x,4 7 YouTube direktni link na uputu uz: zadatak: 7. ) do 6) 6) x+ x 4x x+ + 6, > + 6 + + 6 4 > + + ( x ) ( x ) ( x) ( x ) x+ 9 x + 6 x> 6x+ + x x + 6 9 x 6x> + x 8x> / : 8 x < 8 8 x, 7 www.mim-sraga.com M.I.M.-Sraga centar za poduku

8. a) ( x )( x ) ) + 0 I II x 0, x+ 0 x 0, x+ 0 x x x x + x [, + ukupno rješenje je: I. II. x, + x,, + [ YouTube direktni link na uputu uz: zadatak: 8.a. pod - ) ( x )( x ) ) + < 0 I II x > 0, x+ < 0 x < 0, x+ > 0 x> x< x< x> x x, ukupno rješenje je: I. II. x, 8 autor: Mladen Sraga

8) x > 0 x + I II x > 0, x+ > 0 x < 0, x+ < 0 x > x > x< x< + x, + x, ukupno rješenje je: I. II. + x,, + YouTube direktni link na uputu uz: zadatak: 8.a. pod - 8) x 4 6) < 0 x + rješenje : YouTube video uputa i objašnjenje zadatak: 8. pod - 6) 9 www.mim-sraga.com M.I.M.-Sraga centar za poduku

8. b) 7) < 0 x + I II > 0, x+ < 0 < 0, x+ > 0 netočno točno pa I otpada svi x R su rj. x > + x, + ukupno rješenje je: I. II. x, + YouTube direktni link na uputu uz : zadatak: 8.b. pod - 7) 0 autor: Mladen Sraga

8. c) ) > x > 0 x ( x ) x x + > 0 x x > 0 x > 0 " jedinicu prebaci na ljevu stranu " YouTube direktni link na uputu uz: zadatak: 8.c. pod - ) I II x> 0, x > 0 x< 0, x < 0 x> /: x> x< /: x< x< x> x, x ukupno rješenje je: I. II. x, ( x )( x 4) ( x+ )( x ) 8. d) 8) 0 video uputa i objašnjenje uz ovaj: zadatak: 8.d) pod - 8) na YouTube www.mim-sraga.com M.I.M.-Sraga centar za poduku

8. d) ( x )( x+ 4) ) 0 x uvjet: x 0 x x = 0 x+ 4 = 0 x = 0 x = x = 4 x = 4 + x + 4 0 + + + x 0 + + x 0 + 0 + + x [ 4,], + ( x+ )( x) 4) 0 x + uvjet: x + 0 x x+ = 0 x = 0 x+ = 0 x = x = / : x = x = + x + 0 + + + x + 0 + + x + + + 0 0 + + x,, ( x )( x 4) ( x+ )( x ) 8. d) 8) 0 video uputa i objašnjenje uz ovaj: zadatak: 8.d) pod - 8) na YouTube autor: Mladen Sraga

70. Izračunaj ) = = = = + ( ) ( ) ( ) =+ = + = = + = + = 4 ) = = = ( + ) ( ) ( ) = = + = = + = + = = Pogledaj dodatnu VIDEO uputu uz ovaj zadatak http://mim-sraga.com/zbirka-potpuno-rijesenih-zad-mat--uredjaj.htm ili direktni link na YouTube- www.mim-sraga.com M.I.M.-Sraga centar za poduku

84. ) x = x = x = + ) x = x = x = x = x =+ x = + x = ) x = x = x = x = / : x = x =+ x = + x = 8 / : x = 4 YouTube direktni link na uputu uz: zadatke: 84. od - ) do 4) 4) 4x = 4x = 4x = 4x = / : 4 x = 4 4x =+ 4x = 4x = / : 4 x = 4 4 autor: Mladen Sraga

8. ) x = x + za: x < 0 x < / : x < ( x ) = x + x+ = x+ x x = x = 4 / : x = 4 uvjet: x < za: x 0 x / : x ( x ) + = x + x = x+ x x = + x = 6/: x = 6 uvjet: x x 4 6 = 4 x = 6 ne zadovoljava uvjet x i to nije rješenje jednadžbe dakle, jedino rješenje jednadžbe je x = 4 Pogledaj dodatnu VIDEO uputu uz ovaj zadatak http://mim-sraga.com/zbirka-potpuno-rijesenih-zad-mat--uredjaj.htm ili direktni link na YouTube- www.mim-sraga.com M.I.M.-Sraga centar za poduku

86. 4) x x = x = 0 x = 0 x = / : x = / : x = x = + x 0 + + x + + 0 I II III ( + ) I, x, ( ++ ) II, x, ( + ) [, III, x + ( x ) ( ( x) ) x ( x) + = + = x+ + x = x x = + x = 4/: x = 4 ( x ) ( ( x) ) x ( x) = + + = x + x = x+ x = + + x = 6 / : x = ( x ) ( ( x) ) x + ( x) = + = x + x = x x = + x = 0 4 0 x = 4 x = x = 0 nije rješenje jer ne zadovoljava uvjet Pogledaj dodatnu VIDEO uputu uz ovaj zadatak http://mim-sraga.com/zbirka-potpuno-rijesenih-zad-mat--uredjaj.htm ili direktni link na YouTube- 6 autor: Mladen Sraga

. Pravila:. x < a a< x< a. x > a x< a ili x> a ) x x po pravilu br. x ili x x,, + ) x < x < primjenimo pravilo br.. < x < ili x, 7 www.mim-sraga.com M.I.M.-Sraga centar za poduku

) x + x + po pravilu br.. x + x x x + x x + ] [ x,, + ili x ili x ili drugačije zapisano isto rješenje:. Riješi sustav nejednadžbi ) < x + < I II < x + x + < / : x + > x + < x + < x < x < x + > x > x > 0 < x + < < x < < x < 0 + x, x, 0, + ukupno rješenje je: I. II. 0 + x, 0, 8 autor: Mladen Sraga

Ovo su ogledni primjeri stranica iz ZBIRKE POTPUNO RIJEŠENIH ZADATAKA UREĐAJU NA SKUPU REALNIH BROJEVA -poglavlja: JEDNADŽBE NEJEDNADŽBE APSOLUTNE JEDNADŽBE APSOLUTNE NEJEDNADŽBE PRIRUČNIK ZA SAMOSTALNO UČENJE Autor: Mladen Sraga izdavač: M.I.M.-Sraga kompletnu zbirku možete kupiti preko: www.mim-sraga.com ili narudžbom na 0-478-4 ili na mail: mim-sraga@zg.htnet.hr Puna cijena kompletne zbirke UREĐAJU NA SKUPU REALNIH BROJEVA za PRVI razred srednje škole je 00 kn trenutno sa popustom od 0% prodaje se za 99 kn 9 www.mim-sraga.com M.I.M.-Sraga centar za poduku

Cijena kompletne zbirke UREĐAJU NA SKUPU REALNIH BROJEVA za PRVI razred srednje škole je 00 kn sa popustom = 99 kn Sve dodatne informacije i narudžbe na: 0-478-4 ili 098-7-4 ili na mail: mim-sraga@zg.htnet.hr iz naše ponude izdvajamo: Sve dodatne informacije o ovim zbirkama zatražite na mail: mim-sraga@zg.htnet.hr asasa ili na naše telefone 0-478-4, 479-0 0 autor: Mladen Sraga

www.mim-sraga.com M.I.M.-Sraga centar za poduku