ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ

Σχετικά έγγραφα
ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 3ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος

Βιβλιογραφία Λ.Τσίτσα -Εφαρμοσμένος Απειροστικός Λογισμός

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

Ευχαριστίες Δύο λόγια από την συγγραφέα... 17

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

Α Ν Α Κ Ο Ι Ν Ω Σ Η. Σέρρες, 17 / 01 / 2014

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

O ƒ ΔÀÃπ ø À ø Ì Ï ÚˆÌ

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

ΘΕΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ «ΜΑΘΗΜΑΤΙΚΑ ΙΙ» ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΟΡΙΑ ΑΚΟΛΟΥΘΙΩΝ. lim. (β) n +

Ολοκλήρωμα πραγματικής συνάρτησης

Όριο και συνέχεια πραγματικής συνάρτησης

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

Ολοκλήρωμα πραγματικής συνάρτησης

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

Εισαγωγή στην Μακροοικονοµική Ανάλυση. Εισαγωγή στην Οικονοµική Ανάλυση. Εισαγωγή στην Οικονοµική Ιστορία

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Περιεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Στατιστική Συμπερασματολογία

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016

Αριθμητική Ανάλυση και Εφαρμογές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγή. Εαρινό Εξάμηνο, 2018

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1

Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών

ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ Γ ΛΥΚΕΙΟΥ <<ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ>> ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

Μαθηματικά Α Τάξης Γυμνασίου

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Είδη Μεταβλητών. κλίµακα µέτρησης

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ

ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΑΚ. ΕΣΟ

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

Transcript:

στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα μεταβλητής μάζας) 4. Έργο-Ενέργεια (Δυναμική ενέργεια-συντηρητικές και μη συντηρητικές δυνάμεις) 5. Δυναμική συστήματος σωματιδίων 6. Δυναμική του Στερεού Σώματος 7. Ταλαντώσεις 8. Βαρύτητα 9. Ρευστά Βιβλιογραφία: Serway: Φυσική Τόμος 1 ος ΜΗΧΑΝΙΚΗ

στην Ανάλυση Ι & Εφαρμογές (Πτυχιούχων ΤΕΙ, Κ.Α.Τ.Ε.Ε., Νηπειαγωγών, Παιδαγωγικών Ακαδημιών και Στρατιωτικών Σχολών 2ετούς φοίτησης) Ανάλυση I & Εφαρμογές Αριθμοί (φυσικοί, ρητοί, άρρητοι). Το πεδίο των πραγματικών αριθμών. Φραγμένα σύνολα αριθμών, ανώτερο και κατώτερο πέρας. Μιγαδικοί αριθμοί. Ακολουθίες (όριο, άθροισμα και γινόμενο ακολουθιών, ακολουθίες που τείνουν στο άπειρο, μονότονες ακολουθίες, η ακολουθία α ν, αναδρομικές σχέσεις). Σειρές (η γεωμετρική σειρά, η σειρά ]Γ η η _/ί, ιδιότητες των σειρών). Συνεχείς συναρτήσεις (συναρτήσεις, συμπεριφορά συναρτήσεων για μεγάλες τιμές του χ, συνεχείς συναρτήσεις, παραδείγματα, ιδιότητες συνεχών συναρτήσεων, ομαλή συνέχεια, αντίστροφες συναρτήσεις). Διαφορικός λογισμός (η παράγωγος, παράγωγος αθροίσματος-γινομένου-λόγου συναρτήσεωνσύνθετων και πεπλεγμένων συναρτήσεων, παραμετρικών εξισώσεων). Το Θεώρημα της μέσης τιμής. Ακρότατα. Σημεία καμπής, ασύμπτωτες, σχεδιασμός καμπυλών. Απροσδιόριστες μορφές. Προ-σέγγιση με πολυώνυμα και θεώρημα Ταyol. Προσεγγιστική λύση εξισώσεων. Σειρές (σειρές με θετικούς όρους, εναλλασσόμενες σειρές, απόλυτη σύγκλιση, μιγαδικές σειρές, δυναμοσειρές, ακτίνα σύγκλισης δυναμοσειρών, πολλαπλασιασμός σειρών, η σειρά του Τaylor. Θεμελειώδεις συναρτήσεις (η εκθετική και η λογαριθμική συνάρτηση, τριγωνομετρικές

συναρτήσεις, αντίστροφες τριγωνομετρικές συναρτήσεις, υπερβολικές συναρτήσεις και οι αντίστροφές τους). Στοιχεία αναλυτικής γεωμετρίας. Ολοκληρωτικός λογισμός (εμβαδόν και ολοκλήρωμα, άνω και κάτω πέρας ολοκληρώματος). Το ολοκλήρωμα ως όριο. Ιδιότητες του ολοκληρώματος. Το ολοκλήρωμα ως αντιπαράγωγος. Ολοκλήρωση κατά μέρη και με αντικατάσταση. Ολοκληρώματα τριγωνομετρικών και ρητών συναρτήσεων. Η στα-θερά π. Ολοκληρώματα σε άπειρα διαστήματα. Σειρές και ολοκληρώματα. Προσέγγιση ορισμένων ολοκληρωμάτων. Ο κανόνας του Simpon. Εφαρμογές (εμβαδόν, μήκος καμπύλης).

στις Πιθανότητες, Στατιστική & Στοιχεία Αριθμητικής Ανάλυσης Πιθανότητες, Στατιστική & Στοιχεία Αριθμητικής Ανάλυσης I. Πιθανότητες: Βασικές Αρχές. Δειγματοληψία. Συνδυασμοί - Μεταθέσεις. Συνεχείς-διακριτές κατανομές. Συνάρτηση πυκνότητας πιθανότητας. Ροπές (μέση τιμή, διασπορά κ.λπ.). Δεσμευμένη πιθανότητα. Πολυδιάστατη πυκνότητα πιθανότητας. Ανεξαρτησία - συσχέτιση. Αλλαγή μεταβλητών. Θεώρημα Βayes. Ειδικές Κατανομές: Ομοιόμορφη - διωνυμική -πολυωνυμική - κατανομή Roisson - κανονική κατανομή (Gauss) - κατανομή Βτεϊΐ-ννϊ τΐ6γ. χ 2. Πραγματικός κόσμος. Συνέλιξη, Κεντρικό Οριακό Θεώρημα. II. Στατιστική: Εκτίμηση παραμέτρων. Ιδιότητες εκτιμήτριας [Bias(προκατάληψη), consistency (συνέπεια), απόδοση]. Όριο ελάχιστης διασποράς. Μέθοδος μεγίστης πιθανοφάνειας. Ασυμπτωτική συμπεριφορά. Μέθοδος ελαχίστων τετραγώνων. Γραμμική περίπτωση. Γραμμική περίπτωση με σφάλματα στο χ και το ι/. Μη γραμμική περίπτωση. Διαστήματα εμπιστοσύνης. Κανονικά διαστήματα εμπιστοσύνης. Διαστήματα εμπιστοσύνης Ροϊδδοη. Ερμηνεία σφάλματος σε μετρούμενη ποσότητα. Διάδοση σφαλμάτων. III Υπολογιστικές εφαρμογές: Υπολογισμός μέσης τιμής. Μέθοδος ελαχίστων τετραγώνων (γραμμική περίπτωση). Ελαχιστοποίηση συνάρτησης μίας μεταβλητής (π.χ. ενός χ 2 ). Αριθμητική ολοκλήρωση τροχιάς (μονοδιάστατη κίνηση βλήματος, αρμονικός ταλαντωτής).