5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

Σχετικά έγγραφα
Α ΕΚΔΟΣΗ:31/01/2012. R είναι δύο φορές παραγωγίσιμη και ισχύουν οι σχέσεις

( ) t, για κάθε x R. f t. xxκαι ' τις ευθείες x = 2 ΜΙΑ ΣΥΛΛΟΓΗ 60 ΑΣΚΗΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

x + lim = 1, να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού z. R R με την ιδιότητα ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ

v a v av a, τότε να αποδείξετε ότι ν <4.

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

x R, να δείξετε ότι: i)

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ

20 επαναληπτικά θέματα

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Θέματα εξετάσεων στους μιγαδικούς

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Θωμάς Ραϊκόφτσαλης 01

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

1 ο Τεστ προετοιμασίας Θέμα 1 ο

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

20 επαναληπτικά θέματα

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

Ερωτήσεις σωστού-λάθους

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

Φροντιστήρια. Κεφαλά. ( x) = + ( ) ( ) ( )

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

Για παραγγελίες των βιβλίων

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ/ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

Θέματα από τους μιγαδικούς

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Transcript:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΑ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ 4 α Να βρείτε τον γεωμετρικό τόπο των εικόνων του Έστω οι μιγαδικοί για τους οποίους ισχύει: Re + = Re ( ), ( ) β Αν Re( ), τότε: 4 i Να αποδείξετε ότι ο μιγαδικός w= + είναι πραγματικός και ισχύει 4 w 4 ii Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών c= + + 4i γ Για το προηγούμενο ερώτημα, να βρείτε το ελάχιστο και το μέγιστο του c δ Αν οι μιγαδικοί, και ικανοποιούν την σχέση () και δεν είναι φανταστικοί, να αποδείξετε ότι + + = + + ΑΣΚΗΣΗ (από Δημήτρη Κατσίποδα) Αν ισχύει η σχέση + ( ) i = 4( + ), C () : α Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι κύκλος που διέρχεται από την αρχή των αξόνων β Να βρείτε την μέγιστη τιμή του καθώς και τον μιγαδικό με το μέγιστο μέτρο γ Να προσδιορίσετε τα βγ, R,ώστε ο μιγαδικός να είναι λύση της εξίσωση δ Αν για τον μιγαδικό που ικανοποιεί την σχέση (), ισχύει 4+ i w 5i + + γ = 4 β 5, 5 = w i, τότε να αποδείξετε ότι οι εικόνες των μιγαδικών w ανήκουν σε κύκλο με κέντρο Λ (,5) και ακτίνας ρ =

ΑΣΚΗΣΗ (από Δημήτρη Ιωάννου) Έστω C, με = και + = a, όπου a R Να αποδείξετε ότι : α a β γ δ a Re( ) = + = a a + a 4 ΑΣΚΗΣΗ 4 (από pito) Έστω οι μιγαδικοί wμε, τις ιδιότητες α Να δείξετε ότι + w = w, w w + = + = β Να δείξετε ότι οι εικόνες των και w ανήκουν σε κύκλους με κέντρο την αρχή των αξόνων, των οποίων να βρείτε και την ακτίνα γ Να βρείτε την απόσταση των εικόνων των μιγαδικών και w δ Να δείξετε ότι οι εικόνες των wκαι, η αρχή των αξόνων είναι συνευθειακά σημεία ΑΣΚΗΣΗ 5 (από dennys) Δίνεται η εξίσωση δευτέρου βαθμού α οι ρίζες, και ο γεωμετρικός τόπους αυτών β το μέγιστο του γ το μέγιστο του + (cos t ) (5 4sin t), t [, π ] + = Να βρεθούν : ΑΣΚΗΣΗ 6 (από dennys) Δίνεται = t+ ( t ) it, [,] Να βρεθούν α ο γεωμετρικός τόπος των εικόνων του β το ελάχιστο Αν w ( k ) ( k ) ik, = + +, Να βρεθούν : γ ο γεωμετρικός τόπος των εικόνων του w δ το ελάχιστο w ε το ελάχιστο w στ οι μέγιστες τιμές των w και w όταν k [, 4]

ΑΣΚΗΣΗ 7 (από Δημήτρη Κατσίποδα) α Να λυθεί η εξίσωση w β Έστω οι μιγαδικοί, με + w+ = i Να αποδείξετε ότι: = + + = ii Να αποδείξετε ότι: + = = * ν ν iii Για ν N και +, να αποδείξετε ότι ο u = Πηγή: ΚΡεκούμης- ΚΛαγός (εκδόσεις Μεταίχμιο) ν ν ν ν + είναι φανταστικός ΑΣΚΗΣΗ 8 (από Δημήτρη Κατσίποδα) Δίνονται οι μιγαδικοί,, με εικόνες αντίστοιχα στο μιγαδικό επίπεδο τα σημεία ABΓ,,, για τους οποίους ισχύει: + = και = =, = α Να δείξετε ότι Re( ) = β i Να δείξετε ότι = + ii Να δείξετε ότι το τρίγωνο OAB είναι ορθογώνιο γ Να υπολογίσετε Re( ) καθώς και Re( ) δ i Να δείξετε ότι τα σημεία ABΓ,, είναι συνευθειακά ii Να υπολογίσετε τις αποστάσεις AΓ και BΓ Πηγή: ΧΠατήλας (εκδόσεις Κωστόγιαννος) ΑΣΚΗΣΗ 9 (από Γιάννη Σταματογιάννη) Έστω οι μιγαδικοί αριθμοί = a + bi, = c + di όπου abcd,,, θετικοί αριθμοί ώστε = = Έστω η εξίσωση + = που έχει ρίζες, Να δείξετε ότι : α Οι ρίζες, δεν είναι πραγματικές β Ισχύει = = γ Ισχύει + 4 = 8 δ Ο μιγαδικός w = + είναι πραγματικός και να βρείτε τη μικρότερη τιμή του

ΑΣΚΗΣΗ (από Περικλή Παντούλα) Θεωρούμε τον μιγαδικό ( ) ( ) α Να βρείτε το 6 8i = 6+ συν πt + 8 + ηµ π t i, µε t β Να βρείτε τον γεωμετρικό τόπο των εικόνων του γ Να βρείτε την μικρότερη και την μεγαλύτερη απόσταση της εικόνας του από την αρχή των αξόνων δ Να εξετάσετε αν υπάρχει t, ώστε η εικόνα του να βρίσκεται στην διχοτόμο της ης και ης γωνίας των αξόνων λ ε Για t = να βρείτε τον λ R, ώστε ο w= + + να είναι πραγματικός + ΑΣΚΗΣΗ (από Κώστα Τηλέγραφο) ( + y)( + i) Δίνεται ο μιγαδικός = με + yi α Να δείξετε ότι Re( ) + y + y = + y *, y R και Im( ) = y + y για κάθε β Να βρείτε τον γεωμετρικό τόπο κινείται η εικόνα του γ Να βρείτε την μέγιστη και την ελάχιστη τιμή του μέτρου του μιγαδικού δ Να βρείτε τον μιγαδικό με το μέγιστο μέτρο ΑΣΚΗΣΗ (από pito) *,y Για τους μιγαδικούς ισχύει = 9+ και έστω ότι 4 = λλ, > α Να δείξετε ότι : i ii + = + 6 λ 4 + + = ( λ ) (5λ )( ) 5λ iii β Να βρείτε που κινείται η εικόνα του γ Να βρείτε το ελάχιστο μέτρο του ΑΣΚΗΣΗ (από Δημήτρη Ιωάννου) Έστω w, C με (i + 4) + 5i =, w (4+ i) + 5iw = α Να αποδείξετε ότι + w (4 + i) + 5 i( + w) = β Να βρεθεί ο γεωμετρικός τόπος της εικόνας του q αν q = +

ΑΣΚΗΣΗ 4 (από Δημήτρη Ιωάννου) Έστω w, C με w = Αν abcdr,,, με a + b + c d > και a( + ) + ib( ) + c( ) + d( + ) =, να αποδείξετε ότι: α Η εικόνα του διαγράφει κύκλο ή ευθεία β Αν η εικόνα του διαγράφει κύκλο που διέρχεται από την αρχή των αξόνων, τότε η εικόνα του w διαγράφει ευθεία γ Αν η εικόνα του διαγράφει ευθεία που δεν περνάει από την αρχή των αξόνων, τότε η εικόνα του w διαγράφει κύκλο ο οποίος περνάει από την αρχή των αξόνων ΑΣΚΗΣΗ 5 (από pito) Έστω a, β C* και, είναι οι ρίζες της εξίσωσης α Αν a = β = τότε και + a + β = Να δείξετε ότι: β Αν =, τότε ο αριθμός a είναι πραγματικός β a γ Αν R β, και ο δεν είναι πραγματικός, να δείξετε ότι = ΑΣΚΗΣΗ 6 (από Δημήτρη Κατσίποδα) Δίνεται η εξίσωση C α Να βρεθούν οι ρίζες και της () * = ( ), () v v β Να βρεθούν οι θετικές ακέραιες τιμές του v, για τις οποίες ισχύει η σχέση + = γ Να βρεθούν οι πραγματικοί αριθμοί και y, που επαληθεύουν την ισότητα ( i) i + yi 6 + = + + δ Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών, για τους οποίους ισχύει ε Να βρεθεί ο μιγαδικός που έχει το μικρότερο μέτρο στ Να υπολογίσετε την ελάχιστη τιμή του + 7 i = 4

ΑΣΚΗΣΗ 7 (από dennys) Δίνεται ο μιγαδικός = ( k ηµ t) + ( k συνti ) με t R και k > α Να βρείτε πού κινείται ο 5 β Αν ο μιγαδικός w κινείται στην ευθεία y = ( k ), να βρείτε το k ώστε το w min = γ Για το k του (β) ερωτήματος βρείτε πού κινείται ο και το ελάχιστο και μέγιστο του δ Για το k του (β) ερωτήματος βρείτε το w + 4 i min ε Αν ο μιγαδικός u με u= ( + mηµ t) + ( + mσυνti ), να βρείτε για ποιά τιμή του m ο γεωμετρικός τόπος του u περνά από την αρχή των αξόνων στ Για τα km, του (β) και (ε) ερωτήματος, να βρείτε το ελάχιστο και μέγιστο του u ΑΣΚΗΣΗ 8 (από Κώστα Τηλέγραφο) Έστω οι μιγαδικοί, w με τις ιδιότητες 4 w =, w w = α Να δείξετε ότι w = β Να δείξετε ότι οι εικόνες των και w ανήκουν σε κύκλους με κέντρο την αρχή των αξόνων, των οποίων να βρείτε και την ακτίνα γ Να βρείτε το 6 + w δ Να βρείτε την μεγίστη και την ελάχιστη απόσταση των εικόνων των μιγαδικών και w ΑΣΚΗΣΗ 9 (από pito) Έστω οι μιγαδικοί αριθμοί και f( ) = i α Να βρείτε για ποιους μιγαδικούς ορίζεται ο f( ) β Να δείξετε ότι f( ) γ Αν f( ) = i, τότε: i Nα δείξετε ότι + Re( ) = ii Να βρείτε το διάστημα στο οποίο παίρνει τιμές το Re( ) iii Να βρείτε που κινείται η εικόνα του, όπου ο είναι μιγαδικός που επαληθεύει την εξίσωση του ερωτήματος γi ΑΣΚΗΣΗ (από Δημήτρη Κατσίποδα) α Να κάνετε τις πράξεις ( + + i)( 4 + i) β Να λύσετε την εξίσωση i i ( ) 4 + = () γ Έστω, οι ρίζες της () με Re( ) > και ABΓ,, οι εικόνες των, και = + i αντίστοιχα Να δείξετε ότι το τρίγωνο ABΓ είναι ορθογώνιο δ Να βρείτε το γεωμετρικό τόπο των σημείων M( ) που είναι εικόνες των μιγαδικών και ικανοποιούν την σχέση ( MA) + ( MB) = ( M Γ ) +

ΑΣΚΗΣΗ (από pito) Έστω οι μη μηδενικοί μιγαδικοί, ώστε αν α Να βρείτε τον μιγαδικό β Να βρείτε κάθε ν N * ώστε να ισχύει = να ισχύει = ν ν + =, Im( ) 95 94 γ Να δείξετε ότι + + + + = δ Αν η εικόνα του μιγαδικού κινείται πάνω στην ευθεία y = +, να δείξετε ότι η εικόνα του κινείται σε ευθεία, της οποίας να βρείτε την εξίσωση ε Να δείξετε ότι το τρίγωνο OAB είναι ισοσκελές, όπου OABείναι,, οι εικόνες των μιγαδικών,, αντίστοιχα στ Να υπολογίσετε τις γωνίες του τριγώνου OAB του (ε) ερωτήματος ΑΣΚΗΣΗ (από Δημήτρη Κατσίποδα) Δίνεται ο μιγαδικός C { i} και η συνάρτηση α Για i, να δείξετε ότι f i β Να βρείτε το f( + i) ( ) = + 4 f( ) = + 8i i γ Να λύσετε την εξίσωση f i ( ) = + 4 δ Να λύσετε την εξίσωση f ( ) = i + 6 ε Αν =, να δείξετε ότι οι εικόνες των μιγαδικών f( ) είναι σημεία του κυκλικού δίσκου με κέντρο την αρχή των αξόνων και ακτίνας ρ = 7 ΑΣΚΗΣΗ (από Περικλή Παντούλα) 5 8 Έστω οι μιγαδικοί για τους οποίους ισχύει ( ) ( ) α Να βρείτε το β Να αποδείξετε ότι = γ Να λύσετε την εξίσωση () δ Έστω μιγαδικός με ( ) = Im >, που είναι λύση της εξίσωσης () και ο μιγαδικός i Να εκφράσετε το w ως συνάρτηση του λ ii Να βρείτε το λ, ώστε ο w να έχει μέγιστο μέτρο λ + w = με λ R λ

ΑΣΚΗΣΗ 4 (από pito) Έστω οι μιγαδικοί, με Im( ) > ώστε + = 4() και = 5() α Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών και β Να βρείτε το μιγαδικό w= i, ο οποίος έχει ελάχιστο μέτρο ν ν γ Έστω ν N * και ο μιγαδικός = Να δείξετε ότι υπάρχουν μιγαδικοί, ώστε ο να είναι φανταστικός ΑΣΚΗΣΗ 5 (από Δημήτρη Κατσίποδα) Έστω η εξίσωση + + = που έχει ρίζες τις = και i α β, αβ, R α Να βρείτε τους αβ, R και την ρίζα v v β Να βρείτε το v R, ώστε = 6i γ Να βρείτε το γεωμετρικό τόπο των εικόνων του μιγαδικού στο μιγαδικό επίπεδο για τον οποίο ισχύει η σχέση 6 + = () δ Αν για τον μιγαδικό ισχύει η (), να βρείτε την ελάχιστη τιμή του 4 4i ΑΣΚΗΣΗ 6 (από Κώστα Τηλέγραφο) Δίνονται οι μιγαδικοί w, αν w + w = α Να δείξετε ο μιγαδικός είναι αρνητικός πραγματικός αριθμός w β Να δείξετε ότι η διανυσματικές ακτίνες των μιγαδικών, w τέμνονται κάθετα γ Να δείξετε ότι w = + w w δ Αν επιπλέον + = i w i Να βρείτε την απόσταση της εικόνας του μιγαδικού w από το σημείο Α (, ) ii Να βρείτε τον μιγαδικό w ΑΣΚΗΣΗ 7 (από Μπάμπη Στεργίου) Δίνονται οι μιγαδικοί με την ιδιότητα : α Να αποδείξετε ότι ο δεν είναι πραγματικός β Να αποδείξετε ότι ( + + ) + ( ) = + = + + +

γ Να αποδείξετε ότι + + = δ Να βρείτε όλους τους μιγαδικούς με τη δοσμένη ιδιότητα καθώς και το μέτρο τους ε Να υπολογίσετε την τιμή της παράστασης ΑΣΚΗΣΗ 8 (από Δημήτρη Κατσίποδα) A 4 = + + Έστω ο μιγαδικός με i και η συνάρτηση α Να βρείτε το Im( f( + i)) f( ) = + 4 i β Να βρείτε το γεωμετρικό τόπο των εικόνων του στο μιγαδικό επίπεδο, για τους οποίους ισχύει f( ) R γ Να δείξετε ότι f( ) = + i δ Να βρείτε το γεωμετρικό τόπο των εικόνων του στο μιγαδικό επίπεδο, για τους οποίους ισχύει f( 5 i) + f( + i) = () ε Για τους μιγαδικούς που ικανοποιούν την (), να βρείτε τους μιγαδικούς με το μέγιστο μέτρο στ Αν οι μιγαδικοί και ικανοποιούν την (), να δείξετε ότι 8 () ΑΣΚΗΣΗ 9 (από Ηλία Καμπέλη) Έστω, οι ρίζες της εξίσωσης α+9=, α R και, R α Να βρείτε τις δυνατές τιμές του πραγματικού α + R 7 7 β Να αποδείξετε ότι ( ) γ Να βρείτε τα, δ Αν + = να βρείτε το α ε Για = α και ( ) Im > να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού στο μιγαδικό επίπεδο για τον οποίο ισχύει = 4+ ΑΣΚΗΣΗ (από Στρατή Αντωνέα) α Να λύσετε, στο σύνολο των μιγαδικών αριθμών, την εξίσωση : + 4 = β Στο σύνολο των μιγαδικών αριθμών, να βρείτε τις κοινές λύσεις των εξισώσεων: + 4 = + και + =

ΑΣΚΗΣΗ (από Περικλή Παντούλα) Έστω η συνάρτηση f, που είναι συνεχής στο κλειστό διάστημα [ ab, ], με a > και παραγωγίσιμη στο ανοιχτό ( ab, ) Έστω επιπλέον και οι μιγαδικοί: = a + if ( a) και = b + if ( b) + =, να αποδείξετε ότι υπάρχει ( ab), ώστε ( ) α Αν ισχύει, f = β Έστω οι πραγματικοί αριθμοί A και B, με A B, ώστε: A + B = Να αποδείξετε ότι: i Ο μιγαδικός είναι πραγματικός ii Ισχύει ( ) f ( b) f a a = iii Υπάρχει ( ab, ), ώστε f ( ) o iv Υπάρχει εφαπτομένη της b = o f ( ) o o C f που διέρχεται από την αρχή των αξόνων ΑΣΚΗΣΗ (από Δημήτρη Κατσίποδα) Έστω παραγωγίσιμη συνάρτηση f : [ αβ, ] R με f ( α) > α > τέτοια ώστε, ο μιγαδικός αριθμός β + if ( β) = να είναι φανταστικός Να αποδείξετε ότι: α if ( α) α Η εξίσωση f( ) = έχει τουλάχιστον μια ρίζα στο ( αβ, ) β Υπάρχει τουλάχιστον ένα ( αβ, ) τέτοιο ώστε f ( ) < γ Αν η εξίσωση f( ) υπάρχει εφαπτομένη της = έχει λύσεις στο διάστημα (, ) C f που διέρχεται από την αρχή των αξόνων αβ τους αριθμούς, με <, τότε ΑΣΚΗΣΗ (από Χρήστο Κανάβη) Έστω η συνάρτηση f( ) = ( + ), όπου = ρ > το μέτρο του μιγαδικού α i Να βρεθεί ο θετικός αριθμός ρ ώστε η γραφική παράσταση της συνάρτησης f να εφάπτεται στο γεωμετρικό τόπο των εικόνων του μιγαδικού, καθώς και ii το σημείο επαφής β Να βρεθεί το διάστημα που ανήκει ο αριθμός ρ ώστε να ισχύουν οι προϋποθέσεις του θεωρήματος Bolano για τη συνάρτηση f στο [, ] γ Έστω ο μιγαδικός ( ) w= f + ( + ) i, να βρεθεί ο γεωμετρικός τόπος των εικόνων του w

ΑΣΚΗΣΗ 4 (από Χρήστο Τσιφάκη) Im( ) Αν για τον μιγαδικό = + yi, ισχύει + + i = : α Να δειχθεί ότι η εικόνα My (, ) του διαγράφει κύκλο του οποίου να προσδιοριστεί το κέντρο και η ακτίνα β Ποιος από τους παραπάνω μιγαδικούς έχει το μεγαλύτερο πραγματικό μέρος ; γ Αν είναι κάποιος από τους παραπάνω μιγαδικούς, να δειχθεί ότι Im( ) < ΑΣΚΗΣΗ 5 (από Κώστα Τηλέγραφο) Δίνεται η f συνεχής στο R, f ( ) R με α Να δειχτεί ότι f( ) > β Να βρεθεί ο γεωμετρικός τόπος των γ Να βρείτε το όριο lim ( ) ( ) + + + f ( ) d = και f() = δ Αν το εμβαδόν της f με ' από τη = μέχρι τη = είναι μικρότερο του +, να δειχτεί ότι η εξίσωση f t dt () = + 6 6έχει τουλάχιστον μια ρίζα στο (,) ΑΣΚΗΣΗ 6 (από Χρήστο Κανάβη) Δίνεται η συνεχής στο διάστημα [ αβ, ] συνάρτηση f και οι μιγαδικοί αριθμοί α if ( α) w = β if ( β) με αβ και f ( α) f ( β) Υποθέτουμε ότι w+ < w και f ( α) < f ( γ) < f ( β) Να δειχθεί ότι α υπάρχει ( αβ) ώστε f ( ) =, β υπάρχει ( αβ) ώστε f ( ) = f ( γ ), = + και ΑΣΚΗΣΗ 7 (από Χρήστο Κανάβη) α Δίνονται οι μιγαδικοί, για τους οποίους ισχύει + Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών w= f ( ) β Δίνονται οι μιγαδικοί = + iα και = + f ( ) + i που ικανοποιούν τη σχέση του ερωτήματος ( ) (α) και f είναι μια παραγωγίσιμη συνάρτηση στο R με f ( ) = και ( ) Να δειχθεί ότι < α < f

γ Αν για τη συνάρτηση g με τύπο g ( ) = Im( ) ισχύει το θεώρημα Rolle στο [, ] e e f f ( γ ) ( δ ) + f ( δ ) =, f ( γ ) + f ( γ ) γδ να δείξετε ότι ΑΣΚΗΣΗ 8 (από Δημήτρη Κατσίποδα) Η συνάρτηση f : R R είναι συνεχής και η γραφική παράστασή της διέρχεται από το σημείο A(, ) Δίνονται ακόμα οι μιγαδικοί αριθμοί = f( ) + f( ) i και α Να βρείτε τον τύπο της συνάρτησης f = με = ( e + ) w f( ) f ( i ) β Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για κάθε R γ Να αποδείξετε ότι η συνάρτηση g( ) = Re( w ) δεν έχει ακρότατα ΑΣΚΗΣΗ 9 (από pito) Δίνεται η συνάρτηση f : R R συνεχής και C έτσι ώστε να ισχύουν f ( ) + ηµ = f ( ) f( ) για κάθε πραγματικό και lim = ll, = α Να δείξετε ότι: i = ii Οι εικόνες των μιγαδικών αριθμών ανήκουν στον μοναδιαίο κύκλο f( ηµ ) β Να βρείτε το lim γ Να δείξετε ότι η συνάρτηση g ( ) = f( ) διατηρεί σταθερό πρόσημο σε καθένα από τα διαστήματα (,) και (, + ) δ Να βρείτε όλους τους δυνατούς τύπους της f ε Να δείξετε ότι η εξίσωση ( 4 i 5) + + = + έχει μια τουλάχιστον ρίζα στο [, ] ΑΣΚΗΣΗ 4 (από Απόστολο Τιντινίδη) = + + +, όπου [, π ) Θεωρούμε το μιγαδικό ( συν ) ( ηµ ) i α Να αποδείξετε ότι η εικόνα M του κινείται σε κύκλο ( C) του οποίου να βρείτε το κέντρο και την ακτίνα β Να βρείτε για ποια τιμή του το γίνεται ελάχιστο και για ποια μέγιστο Να υπολογίσετε και την ελάχιστη και μέγιστη τιμή του

γ Έστω, οι τιμές του για τις οποίες το παίρνει τη μέγιστη και την ελάχιστη τιμή του και έστω M, M οι αντίστοιχες εικόνες του Θεωρούμε τη συνεχή συνάρτηση f : R R της οποίας η γραφική παράσταση διέρχεται από τα σημεία M, M Αποδείξτε ότι η γραφική παράσταση της f τέμνει τον άξονα σε ' ένα τουλάχιστον σημείο που βρίσκεται στο εσωτερικό του κύκλου ( C ) Πρότειναν οι: Απόστολος Τιντινίδης Γιάννης Σταματογιάννης Δημήτρης Ιωάννου Δημήτρης Κατσίποδας Ηλίας Καμπέλης Κώστας Τηλέγραφος Μπάμπης Στεργίου Περικλής Παντούλας Στρατής Αντωνέας Χρήστος Κανάβης Χρήστος Τσιφάκης dennys pito (*)http://wwwmathematicagr/forum/viewtopicphp?f=5&t=7