ΙΣΤΡΙΕΣ ΦΩΤΣ (Ερωτήσεις δικιολόγησης στη εωµετρική πτική). Η πργκωνισµένη νάκλση στο προσκήνιο Τις περισσότερες ορές που ντιµετωπίζουµε έν έµ το οποίο σχετίζετι µε έν πρίσµ δινούς υλικού, έχουµε συνηίσει ν εωρούµε ως δεδοµένη τη χρήση του Νόµου του Snell κι ν σχολούµστε µε την πορεί της διλωµένης κτίνς στο πρίσµ κι τ της εξόδου ή µη υτής πό το πρίσµ. ς δούµε όµως το επόµενο έµ που νδεικνύει την ξί της νάκλσης(κτοπτρικής), λλά κι τη δικίωση του όρου εωµετρική πτική. Το έµ προϋποέτει βσικές γνώσεις Ευκλείδεις εωµετρίς. ύο πράλληλες κτίνες µονοχρωµτικού ωτός προσπίπτουν στις πλευρές κι του πρίσµτος. Μετά την νάκλση τους στις επιάνειες του πρίσµτος οι νκλώµενες κτίνες έχουν διευύνσεις που σχηµτίζουν γωνί ˆ.Η γωνί ˆ είνι :. ˆ ˆ ˆ β. γ. 3 Ν ιτιολογήσετε την πάντησή σς.. Το «µγικό κουτί» Το επόµενο έµ ποτελεί ερµογή του πως µπορεί µε την επιλογή κτάλληλης γωνίς προσπτώσεως κι διδοχικές νκλάσεις ν οδηγηεί µι ωτεινή δέσµη σε συγκεκριµένο σηµείο. Έν κουτί έχει σχήµ κύβου κµής κι στο εσωτερικό του όλες οι έδρες του είνι κρέπτες. πό το µέσο µις έδρς του εισέρχετι κτίν µονοχρωµτικού ωτός που σχηµτίζει γωνί ˆ µε την κάετη στην έδρ στο σηµείο. Η κτίν µετά πό τρεις διδοχικές νκλάσεις της σε κάε µί πό τις τρεις άλλες έδρες, εξέρχετι πό το κουτί πάλι πό το σηµείο. ι ν συµβεί υτό η γωνί ˆ πρέπει ν είνι :. 3 β. 5 γ. 6 Ν ιτιολογήσετε την πάντησή σς. ˆ 3. λωποδύτης, η στρ κι το περιδέριο * Περιδέριο είδος κοσµήµτος που περιβάλλει το λιµό, περί + δέρη (δέρη λιµός,τράχηλος) Στις ρχές του προηγούµενου ιών ο Maurice elanc(86-9) δηµιούργησε στ πλίσι της στυνοµικής περιπετειώδους µυιστοριογρίς τον ήρω Arsene upin.ένν τύπο ριστοκράτη κι γοητευτικού λωποδύτη κυρίως πλουσίων µε νεπτυγµένο ίσηµ κοινωνικής δικιοσύνης, ς πούµε ένν Ευρωπίο «Zorro».ς τον πρκολουήσουµε. δεξιοτέχνης κι γοητευτικός λωποδύτης ρσέν Λουπέν κτάερε ν «πλλοτριώσει» τ κοσµήµτ της ηοποιού κλόρι ουέτσον,µετξύ υτών κι έν περιδέριο. Το περιδέριο το έκρυψε επιµελώς σε υποδοχή που βρίσκετι σε υποδοχή στον πυµέν πισίνς βάους.το σηµείο βρίσκετι στην κτκόρυο που διέρχετι πό το κέντρο τεχνητής κυκλικής δινούς νησίδς διµέτρου 9,8m, που επιπλέει σε στερή έση στην ήρεµη επιάνει της πισίνς. δείκτης διάλσης του νερού είνι η ν 3,τ πλευρικά τοιχώµτ της πισίνς έχουν επιστρωεί µε υλικό που δεν επιτρέπει την νάκλση του ωτός κι 7,66. ι ν µην είνι ορτό το περιδέριο πό οποιδήποτε έση, πρέπει το µέγιστο βάος της πισίνς max ν είνι :. m β. 3m γ. m Ν ιτιολογήσετε την πάντησή σς.
. Το χρονικό ενός προνγγελέντος ριµού ολικών νκλάσεων Είνι γνωστό ότι η σύγχρονη τεχνολογί εκµετλλεύετι το ινόµενο της ολικής νάκλσης στη διάδοση ηλεκτροµγνητικών κυµάτων στις οπτικές ίνες. Στο επόµενο έµ δούµε ότι ο ριµός των ολικών νκλάσεων που συµβούν σ έν οπτικό µέσο µπορεί ν προκοριστεί πό τ γεωµετρικά χρκτηριστικά του µέσου (µήκος, πάχος), το δείκτη διάλσης κι τη γωνί προσπτώσεως της κτινοβολίς. Μί πηγή λέιζερ εκπέµπει κτίν µονοχρωµτικού ωτός η οποί προσπίπτει στο µέσο της πλευράς ενός πλκιδίου δινούς υλικού Λ µήκους cm κι πάχους 6cm όπως στο σχήµ. Η γωνί A προσπτώσεως της κτίνς είνι µε ηµ,9. δείκτης διάλσης του Λ υλικού της πλάκς είνι η,5. ριµός των ολικών (εσωτερικών) νκλάσεων που συµβούν στο πλκίδιο µέχρι η κτίν ν εξέλει πό την πλευρά Λ του πλκιδίου είνι:. 5 β. γ. Ν ιτιολογήσετε την πάντησή σς. 5. Η κίνηση του ωτεινού «στίγµτος» είνι περιοδική. Φίλοι κι συνάδελοι έχουµε υποστηρίξει σε συζητήσεις σ υτό το δίκτυο διορετικές πόψεις γι την πλή ρµονική τλάντωση, το περιστρεόµενο διάνυσµ, γι την κίνηση του ωτεινού ίχνους µις δέσµης laser.ς δούµε το επόµενο έµ ως µι πόπειρ ν κτδειχεί ότι το ως µις δέσµης laser µπορεί ν κινηεί περιοδικά.ίσως η εξγωγή κάποιων υσικών συµπερσµάτων γι την κίνηση της δέσµης ν είνι πιο χρήσιµη πό την χρησιµοποίησή της γι την πρενόχληση των λητών της ντίπλης οµάδς. Έν δωµάτιο έχει σχήµ κύβου κµής. πό το κέντρο του δπέδου του δωµτίου εισέρχετι κτίν µονοχρωµτικού ωτός που πράγετι πό πηγή laser, η οποί προσπίπτει σ έν σύστηµ που ποτελείτι πό µι πλάκ σχήµτος ορογωνίου πρλληλεπιπέδου µελητέου πάχους που οι εξωτερικές της επιάνειες είνι κρέπτες κι βρίσκετι στο κτκόρυο επίπεδο που διέρχετι πό το κέντρο του δωµτίου. Η πλάκ µπορεί ν περιστρέετι σ υτό το επίπεδο µε στερή γωνική τχύτητ µέτρου ω κι οράς ντίετης υτής των δεικτών του ρολογιού γύρω πό οριζόντιο κλόνητο άξον,που διέρχετι πό το t K κέντρο της το οποίο τυτίζετι µε το κέντρο του δωµτίου. ώς το O σύστηµ ρχίζει ν περιστρέετι τη χρονική στιγµή t πό την οριζόντι έση, η κτίν νκλάτι κι δηµιουργεί έν ωτεινό στίγµ το οποίο σρώνει τους τοίχους του δωµτίου. Θεωρούµε ως ετική ορά γι την κίνηση του ωτεινού στίγµτος επί του κτκόρυου τοίχου, την προς τ πάνω. Ι. Ότν το ωτεινό στίγµ κινείτι επί του κτκόρυου τοίχου κι η ποµάκρυνσή του πό το µέσο (x) του τοίχου είνι x, η τχύτητά του υ είνι: x + x + x +. ω β. ω γ. ω Ν ιτιολογήσετε την πάντησή σς. ΙΙ. ώς το ωτεινό στίγµ κινείτι επί του κτκόρυου τοίχου, το χρονικό διάστηµ t που µεσολβεί, ώστε η τχύτητ του ωτεινού στίγµτος πό την ελάχιστη τιµή της ν ποκτήσει τη µέγιστη είνι: π π π. β. γ. ω ω 8ω Ν ιτιολογήσετε την πάντησή σς.
. ΠΝΤΗΣΕΙΣ Φέρουµε την πράλληλη Ε προς τις κτίνες που διέρχετι 9 ο - πό την κορυή του πρίσµτος. ˆ Ε ˆ + ΕΗ ˆ 9 ο -β, λλά Ε ˆ 9 ˆ κι ΕΗ ˆ 9 βˆ ως εντός ενλλάξ. Άρ ˆ 8 ( ˆ + ˆβ ) () ν το σηµείο τοµής των νκλωµένων,έρουµε την κι β πό το τρίγωνο : ˆ ˆ ˆ + 9 ( ως εξωτερική Η β γωνί του τριγώνου ισούτι µε το άροισµ των εντός κι πένντι). ντίστοιχ πό το τρίγωνο Ε H : ˆ ˆ ˆ + 9 β ( ως εξωτερική γωνί του τριγώνου ισούτι µε το άροισµ των εντός κι πένντι).άρ ˆ ˆ + ˆ ˆ ˆ + ˆ +8 ( ˆ + ˆβ ) ˆ ˆ ˆ ˆ. () ˆ ˆ A ˆ ˆ ˆ +. β Η κτίν εισέρχτι πό το µέσο της πλευράς κι µε γωνί ˆ ως προς την κτκόρυη που διέρχετι πό το. Η κτίν νκλστεί διδοχικά στο, όπου οι γωνίες προσπτώσεως κι νκλάσεως είνι 9 - ˆ, στο Η όπου οι γωνίες προσπτώσεως κι νκλάσεως είνι ˆ κι τέλος στο Θ όπου οι γωνίες προσπτώσεως κι νκλάσεως είνι 9 - ˆ.ν η νκλώµενη στο Θ περνάει πό το, τότε πρέπει η Θ ν σχηµτίζει µε την κτκόρυη στο γωνί ˆ. Τ ορογώνι τρίγων OBZ πλευρά ίση,()() κι OAΘ κι µί γωνί ίση, είνι ίσ διότι έχουν µι (Θ) Θ 9 ο - 9 ο - ω (H) Η 9 ο - 9 ο - () ˆ ω ˆ 9 - ˆ.Άρ (Θ)() () πό το τρίγωνο OBZ : ε ˆ () () πό το τρίγωνο OAΘ : ε ˆω ε(9 - ˆ )σ ˆ (Θ) (3) πό (), (), (3): ε ˆ σ ˆ κι < ˆ < 9,άρ ˆ 5. * ι δικεκοµµένες ντιστοιχούν στην πργµτική πορεί που κολουήσει η κτίν ώστε ν εξέλει πό το. 3. γ ι ν µην εξέρχετι το ως που εκπέµπει το περιδέριο πό τη έση όπου βρίσκετι, πρέπει η κτίν που έχει τη δυντότητ ν εξέλει ορικά ν προσπίπτει στην επιάνει του νερού της πισίνς µε γωνί ˆ µεγλύτερη πό την κρίσιµη ˆ crit.ηλδή : ˆ ˆ crit ηµ ˆ ηµ ˆ crit () λλά ηµ ˆ crit η ν ηµ ˆ crit 3 (). πό το ορογώνιο 3
τρίγωνο : ηµ ˆ ηµ ˆ + + (3). πό () () (3) + 3 + 9 6 36 7 7 6 m max m.. πό το νόµο του Snell στο σηµείο : ηµ ˆ ηµˆ η ηµ ˆ ηµ ˆ,6 () η x y y y y κι A Ε Θ ˆ συν ˆ - ηµ ˆ ηµ - η η - ηµ ˆ συν ˆ,8 () η ˆ () ηµ ε ˆ συνˆ ε ˆ 3 Η () (3) Η διλωµένη υίσττι ολική νάκλση γι πρώτη ορά στο σηµείο που πέχει πό το άκρο του πλκιδίου πόστση x. πό το ορογώνιο τρίγωνο : ε ˆ x x () εˆ Στην επόµενη ολική νάκλση που συµβεί στο σηµείο, λλά κι σε όλες τις επόµενες το σηµείο πρόσπτωσης µεττοπίζετι κάε ορά κτά y κτά µήκος του πλκιδίου. Λ πό το ορογώνιο τρίγωνο Ε : y ε ˆ λλά ˆ 9 - ˆ, άρ y σ ˆ (5). ν ο συνολικός ριµός των ολικών νκλάσεων που συµβούν µέχρι η κτίν ν εξέλει πό την πλευρά Λ του πλκιδίου είνι Ν, τότε: (5) x + (Ν-)y () ε ˆ +(Ν-) σ ˆ - ε ˆ + Ν ˆ ε ˆ ε (3) εˆ + N εˆ + N N 5,5. Άρ συµβούν 5 ολικές νκλάσεις µέχρι η εˆ ˆ ε κτίν ν εξέλει πό το πλκίδιο. *Η κτίν προσπίπτει µε γωνί ˆ στην πλευρά Λ, άρ σύµων µε την ρχή της ντίστροης πορείς του ωτός εξέλει κι µε γωνί ˆ. ( Θ) O ˆ ˆ εo ˆ ε ˆ εo ˆ (6) 3 ( ) 3 Επειδή το τµήµ Θ που περισσεύει είνι (Θ)-x-y-- 8cm (Θ) cm (7) (7) πό (6) ( )3cm. Η κτίν εξέλει πό το µέσο Θ της πλευράς Λ.
ηµ ˆ + εˆ + συνˆ **Η τελευτί σχέση N γράετι N κι µε την βοήει των () κι () ηµ ˆ + η - ηµ ˆ ηµ ˆ+ ( η - ηµ ˆ) γίνετι: Ν N κι ποδεικνύει την εξάρτηση του ( η - ηµ ˆ) ριµού των ολικών νκλάσεων που συµβούν πό το µήκος,το πάχος κι το δείκτη διάλσης η του πλκιδίου κώς κι την γωνί πρόσπτωσης ˆ της κτίνς στο πλκίδιο, άρ κι τη δυντότητ προκορισµού του ριµού των ολικών νκλάσεων που συµβούν σε έν οπτικό µέσο. 5. Ι Το σύστηµ έχει περιστρεί κτά γωνί ˆ ωt, ότν το ωτεινό στίγµ που σχηµτίζετι στην έση έχει ποµάκρυνση x ως προς το (x). πό το ορογώνιο τρίγωνο : x x + ηµ ˆ. λλά ˆ ωt-( π -ωt) π ˆ ωt -, άρ ω K ωt ωt O ωt x π x x + ηµ ωt - x x + ηµ ωt - x -ηµ ωt - ηµ ωt - x συν ωt - ηµ ωt - x ε ωt - () µε κπ π κπ 3π + t + ω 8ω ω 8ω Το πεδίο ορισµού της (), προκύπτει πό το γεγονός ότι οι διστάσεις του δωµτίου επιβάλουν τον περιορισµό x -. Ότν x ±, πό τη σχέση () : ε ωt - ± : π ωt - κπ - π κπ π t + ω 8ω κ,, () κι π ωt - κπ + π κπ 3π t 3 + ω 8ω κ,, (3) Η τχύτητ του ωτεινού στίγµτος στη έση είνι υ x () ω υ t συν ωt - ω υ ηµ ωt (). πό το ορογώνιο τρίγωνο π x : ηµˆ ηµ( ωt - ) x + 5
x ηµ ωt - x + συν ωt x x + x - ηµ ωt x + ηµ ωt x + (5) (5) x + πό () υ ω (6) Πρτήρησεις.Η σχέση () εξκολουεί ν δίνει τις υποετικές µεττοπίσεις του ωτεινού στίγµτος κι εκτός των προηγούµενων χρονικών ορίων (χωρίς την προυσί των οριζόντιων τοίχων), οι προβολές των οποίων στους οριζόντιους τοίχους µπορούν ν χρησιµοποιηούν γι τον υπολογισµό των έσεων του ωτεινού στίγµτος..ότν η γωνί περιστροής του συστήµτος ωt είνι, π, π, 3π, π, η κτίν προσπίπτει κάετ στους κρέπτες, νκλάτι κι επιστρέει στο σηµείο. Ι Ι. γ πό τη σχέση (6) προκύπτει ότι η τχύτητ του ωτεινού στίγµτος έχει ελάχιστη τιµή υ min ω, ότν x.πό τη σχέση () : ε ωt - π κπ π ωt - κπ t + ω ω κ,, (7) ντίστοιχ η τχύτητ του ωτεινού στίγµτος µέγιστη τιµή υ max ω, ότν x ±. () Το ζητούµενο χρονικό διάστηµ t είνι : tt t t π (3) (7) 8ω ή tt 3 t t π (7) 8ω. Σχόλιο Επειδή βρισκόµστε στις πρµονές των επικείµενων εξετάσεων, προτείνετι οι ίλοι υποψήιοι που υτήν την περίοδο δοκιµάζοντι ν σχοληούν µε τις ερωτήσεις (3) κι () πρότι κι οι υπόλοιπες βρίσκοντι εντός των ορίων της εξετστές ύλης, λλά πευύνοντι σε συνδέλους κι σε υτούς που έχουν ιδιίτερο ενδιέρον γι τη Φυσική. 6