ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

Σχετικά έγγραφα
ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

5o Επαναληπτικό Διαγώνισμα 2016

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 28 ΜΑΪΟΥ 2012

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

y = 2 x και y = 2 y 3 } ή

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

20 επαναληπτικά θέματα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

M z ισαπέχουν από τα 4,0, 4,0

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

x R, να δείξετε ότι: i)

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

40 επαναληπτικά θέματα

Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι 2.7) 03/01/2014. Θέμα A. Θέμα Β

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

3o Επαναληπτικό Διαγώνισμα 2016

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

ΣΥΛΛΟΓΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Transcript:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Έστω (z) = z iz, z. α) Να λύσετε την εξίσωση : (z) = i. β) Αν (z) = να βρείτε το z. γ) Αν z = να δείξετε ότι ο γεωμετρικός τόπος των εικόνων του w=(z) είναι κύκλος που διέρχεται από την αρχή των αξόνων. α) (z) = i z iz= i. Αν z= + yi τότε + y y= + y i( yi) = i ( + y y) i = i + y = y+ + y = y + 4y+ 4,y = = = 3 y = 4. Άρα = 3 z= i. 4 β) (z) = z iz = z i z = ( i) z οπότε (z) = i z = z. Άρα z= z=. γ) Αν z = τότε: w = iz iz = w οπότε w = iz w = z = z = άρα w = Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=. Δίνεται η εξίσωση : ( ) ΘΕΜΑ zz + 4R i z + 4 = (I). α) Να δείξετε ότι η εξίσωση αυτή έχει άπειρες λύσεις στο σύνολο των μιγαδικών. β) Αν z,z είναι δύο λύσεις της παραπάνω εξίσωσης, να δείξετε ότι: z z 8. γ) Αν t,t είναι αντίστοιχα οι τιμές των μιγαδικών z και z (του ερωτ. β) για τις οποίες η παράσταση z z γίνεται μέγιστη, να δείξετε ότι: v v 4v+ v t + t + (t t ) = 5 για κάθε * ν.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 α) Θέτουμε z=+yi, (,y ) και η (Ι) παίρνει την μορφή: + y + 4 + 8y + 4 = ( + ) + (y + 4) = 6. Επομένως η εξίσωση (I) έχει λύση κάθε μιγαδικό, του οποίου η εικόνα είναι σημείο του κύκλου C: ( + ) + (y + 4) = 6. β) Αν z,z δύο λύσεις της (I) τότε οι εικόνες τους M(z) και M(z) είναι σημεία του κύκλου C. Οπότε έχουμε: z z = (M M ) ρ = 4 = 8. γ) Η παράσταση z z γίνεται μέγιστη όταν η χορδή MΜ, του κύκλου C, γίνεται διάμετρος. Έτσι οι εικόνες Α, Β των μιγαδικών t και t αντίστοιχα είναι αντιδιαμετρικά σημεία. Οπότε 3 t t = ma z z = 8=. t+ t = OA + OB = OK = = 5. Έτσι έχουμε: v v 4v v 4v v 4v v 4v+ v t+ t + (t t ) = 5 + 5 = 5 = 5. ΘΕΜΑ 3 Έστω μια συνάρτηση : τέτοια ώστε: (I) 3 () + () = 3ημ 3 για κάθε (). Αν lim = α τότε: α) Να δείξετε ότι α=. (ημ) (()) ( ) β) Να βρείτε τα όρια: i) lim, ii) lim και iii) lim 3 +. 3 () 3 () ημ 3 α) Για διαιρούμε με την (I) οπότε έχουμε: ( ) + = 3( ) και 3 υπολογίζοντας τα όρια των δύο μελών παίρνουμε : α + α = 3 α =. β) Παρατηρούμε ότι σε περιοχή του έχουμε (ημ) (ημ) ημ i) = ημ όπου (ημ) (y) lim για y=ημ γίνεται lim =. y y

ii) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 (()) (()) () = όπου () () lim () = lim( ) = = και (()) (y) lim για y=() lim =. y y ( ) ( ) ( ) ( ) ( ) iii) = = = 3+ 3+ ( )( ) Εύκολα βρίσκουμε ότι σε περιοχή του είναι: ΘΕΜΑ 4 ( ) lim = ( ) =. 3+ Έστω μια συνάρτηση :, που είναι γνησίως αύξουσα και συνεχής. Αν () lim = (ημ) α) Να βρείτε το όριο: lim π συν β) Να δείξετε ότι: ()= (), γ) Να βρείτε την τιμή του k, ώστε η συνάρτηση g() = να είναι k, = συνεχής στο. δ) Για την τιμή του k= να δείξετε ότι η γραφική παράσταση της g τέμνει την ευθεία (ε): y= σε ένα τουλάχιστον σημείο με τετμημένη (,). α) Παρατηρούμε ότι σε περιοχή του (ημ) (ημ) (ημ) (ημ) συν = συν = συν = συν συν ημ ημ- + ημ π έχουμε (ημ) (y) (ημ) όπου για y=ημ έχουμε lim = lim =. Άρα lim = =. π y ημ- y- π συν () β) Επειδή συνεχής στο έχουμε: ()= lim () = lim( ) = =. () γ) g()= lim g() = lim = άρα k=. δ) Εφαρμόζουμε θεώρημα Bolzano για την h()=g()- στο [,]. Παρατηρήστε ότι: h()=g()=-() όμως γνησίως αύξουσα στο, οπότε: () < () =. Επομένως h() >. Ακόμα είναι: h()=g()-=- <. 3

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ 5 Έστω μια συνάρτηση : τέτοια ώστε: (I) () για κάθε. () α) Να δείξετε ότι: lim =. + β) Να βρείτε τα όρια: () * i) lim, v, ii) lim[ ( )], iii) lim [ + v + ( )]. + + α) Για > έχουμε: () () () + και () εφαρμόζοντας το κριτήριο παρεμβολής βρίσκουμε: lim =. + β) i) Έχουμε: () () Για ν> lim = lim [ ] = = + v v + () () Για ν= lim = lim =. + v + ( ) ii) = και για + + lim () =. + ( ) ( )(+ ) iii) Είναι ( ) = ( ) = ( ) + + + () + ( ) () και θέτοντας = βρίσκουμε: lim + = lim = + + + οπότε από την + () παίρνουμε: lim [ ( )] = +. + + ΘΕΜΑ 6 Έστω μια συνάρτηση συνεχής στο τέτοια ώστε: (I). ημ α) Να δείξετε ότι: lim =. + β) Να βρείτε το (). γ) Να δείξετε ότι υπάρχει π π (, ) π-6 π- ημ ( ) = τέτοιο ώστε: ( ) =. για κάθε 4

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ημ ημ ημ α) Για κάθε > έχουμε: = με κριτήριο - - ημ παρεμβολής βρίσκουμε: lim =. + β) Από την (I) παίρνουμε: lim ( ) =. Θέτουμε y = τότε + = lim ( ) = lim(y) και επειδή η είναι συνεχής στο έχουμε: + y () = lim(y) =. y π π γ) Εφαρμόζουμε το θεώρημα του Bolzano για την στο [, ] π-6 π-. -Για - Για π = 6 η (I) δίνει: π = η (I) δίνει: π 3 ( ) = = < π-6 π π 6 6 π ( ) = = >. π- π π Σημείωση: Παρατηρείστε ότι από την σχέση (I) μπορεί να βρεθεί ο τύπος της συνάρτησης για κάθε, οπότε τα ερωτήματα β) και γ) επιλύονται διαφορετικά. ΘΕΜΑ 7 Έστω συνάρτηση παραγωγίσιμη στο [, + ) με ()> για κάθε [, + ). Αν το εμβαδό του χωρίου που περικλείεται από τη γραφική παράσταση της, τους άξονες, y y και την ευθεία = είναι E() = () για κάθε τότε: i) να αποδείξετε ότι () + () = για κάθε [, + ) () ii) lim =. iii) να βρείτε τον τύπο της συνάρτησης. iv) να λύσετε την εξίσωση () = ημ. i) Επειδή η είναι συνεχής στο [, + ) και ()> για κάθε [, + ), το εμβαδόν ου χωρίου που περικλείεται από την C, τους άξονες, y y και την ευθεία =, 5 ()d= () είναι E() = ()d οπότε για κάθε είναι (). Η ως παραγωγίσιμη είναι και συνεχής στο [, + ), το [, + ) άρα ( ()d) = ()

Για κάθε είναι ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 = = + =. ( ()d) ( ()) () () () () Άρα για κάθε [, + ) είναι () + () = (). Από τη σχέση () για = έχουμε ()= και από τη σχέση () για = έχουμε () =. () () () Είναι lim = lim = () = από υπόθεση). ii) Για κάθε [, + ) είναι (η είναι παραγωγίσιμη στο [, + ) () + () = () + () = ( () ) = ( ) οπότε () = + c, (3). Για = από την (3) έχουμε = + c c= επομένως για κάθε είναι () = + () = ( + ),. iii) Για κάθε [, + ) είναι () = ( ), οπότε η εξίσωση () = ημ ισοδύναμα γράφεται ( ) = ημ = ημ (4). Παρατηρούμε ότι = ημ = αληθές, άρα το είναι ρίζα της εξίσωσης. Θεωρούμε τη συνάρτηση g() = + ημ,. Για κάθε [, + ) είναι g() = + συν=( + ) + ( συν) > άρα η g είναι γνησίως αύξουσα > στο [, + ), οπότε η ρίζα της εξίσωσης είναι μοναδική. Επομένως - () = ημ = ημ =. ΣΗΜΕΙΩΣΗ: Είναι γνωστό ότι α + για κάθε α> και αφού > είναι α +. Επίσης -συν> αφού συν για κάθε. 6

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ 8 Έστω συνάρτηση παραγωγίσιμη στο με () > 7 για κάθε. Να αποδείξετε ότι η C τέμνει την ευθεία με εξίσωση y=6+ σε ένα ακριβώς σημείο. Αρκεί να δείξω ότι η εξίσωση () =6+ έχει μία ακριβώς ρίζα στο. Θεωρούμε τη συνάρτηση g()=()-( 6+),. H g είναι παραγωγίσιμη στο ως διαφορά παραγωγισίμων με g ()= ()- 6>7-6=> (), για κάθε, οπότε η g είναι γνησίως αύξουσα στο, άρα η εξίσωση g()= έχει το πολύ μια ρίζα στο. Η g ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ του διαφορικού λογισμού σε κάθε διάστημα της μορφής [,] με > άρα θα υπάρχει ξ (,) τέτοιο ώστε g()-g() > g(ξ )= g()=g (ξ ) +g()>+g() (αφού g(ξ )> g (ξ )> ). Είναι lim ( + g() ) =+ άρα και lim g() = +, οπότε θα υπάρχει διάστημα της + + μορφής (β, + ) με β> τέτοιο ώστε g()> για κάθε (β, + ). Επομένως g(λ)> για λ (β, + ). Η g ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ του διαφορικού λογισμού σε κάθε διάστημα της μορφής [,] με < άρα θα υπάρχει ξ (,) τέτοιο ώστε g()-g() < g(ξ )= g()=g (ξ ) +g()<+g() (αφού g(ξ )> g (ξ )< ). Είναι lim ( + g() ) = άρα και lim g() =, οπότε θα υπάρχει διάστημα της μορφής (,α) με α< τέτοιο ώστε g()< για κάθε (,α). Επομένως g(κ)< για κ (,α). Η g ικανοποιεί λοιπόν τις προϋποθέσεις του Θεωρήματος Bolzano στο [κ.λ]. Επομένως θα υπάρχει ένα τουλάχιστον (κ,λ) τέτοιο, ώστε g( )=. Δείξαμε λοιπόν ότι η g()= έχει: μια τουλάχιστον ρίζα και μια το πολύ ρίζα στο Άρα η g()= έχει μια ακριβώς ρίζα στο, που σημαίνει ότι η C τέμνει την ευθεία με εξίσωση y=6+ σ ένα ακριβώς σημείο. ΘΕΜΑ 9 Δίνεται συνάρτηση συνεχής στο (, + ) η οποία ικανοποιεί τη σχέση (t) () dt = + για κάθε (, +. ) α) Να αποδείξετε ότι () = ln(+ ) β) Να αποδείξετε ότι η αντιστρέφεται και να ορίσετε την αντίστροφή της. γ) Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C και τους ημιάξονες Ο και Oy. 7

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 δ) Να βρείτε τη γραμμή που διαγράφουν οι εικόνες του μιγαδικού αριθμού z () με Rz στο μιγαδικό επίπεδο, αν ισχύει + z + για κάθε (, +. ) α) Η συνάρτηση (, + ) άρα η συνάρτηση (t) είναι συνεχής στο (, ) (t) dt είναι παραγωγίσιμη στο (, ) () ( (t) () dt) () είναι παραγωγίσιμη στο (, + ) με + ως σύνθεση συνεχών, το +, οπότε και η = + = () = () () () () () () = [ ] = () = + c, c (). Για = από την αρχική σχέση έχουμε ()=, ενώ από τη σχέση () είναι () = c c=. () Έχουμε λοιπόν = + () = ln(+ ), >-. β) Από τη σχέση () έχουμε () = () > άρα η είναι γνησίως αύξουσα στο (, + ), οπότε είναι και -. Επομένως η αντιστρέφεται. Για να βρούμε την αντίστροφη της θέτουμε y=() και λύνουμε ως προς. Έχουμε λοιπόν y y y y = () y = ln( + ) + = = (y) =, y. Άρα η αντίστροφη της είναι η : με () =. γ) Συντεταγμένες Α Για y= είναι ln( + ) = ln( + ) = ln + = = οπότε Α(-,). Είναι Ε(Ω)= ln( + )d = ln( + )d = [ ln( + )] (ln( + )) d = d = + - - - - + = ( )d = ( )d = d d = ( + ) d d = + + + + + = [ln + ] [ ( )] = + = τ.μ. - - - - - - δ) Θεωρούμε συνάρτηση () g() z = +, (, + ). Για κάθε () () (, + ) είναι + z + + z g() g(). Δείξαμε ότι g() g() για κάθε (, + ), άρα η g παρουσιάζει ελάχιστο στο εσωτερικό σημείο = του πεδίου ορισμού της. Η g είναι παραγωγίσιμη στο 8

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 () (, + ) με g() = () + z άρα είναι παραγωγίσιμη και στο = με () () () g() = () + z g() = + z g() = 3 z. Ισχύει λοιπόν το () Θεώρημα Frmat, οπότε g() = 3 z = z = 3. Άρα οι εικόνες του μιγαδικού αριθμού z ανήκουν στον κύκλο με κέντρο Ο(,) και ακτίνα ρ=3 που έχει εξίσωση + y = 9. Όμως το Rz επομένως οι εικόνες των μιγαδικών αριθμών z πάνω στο μιγαδικό επίπεδο διαγράφουν το ημικύκλιο BAB του κύκλου + y = 9 όπου Β (,-3). Α(3,), και Β(,3). ΘΕΜΑ Έστω συνάρτηση που ικανοποιεί τη σχέση () = () ( ) για κάθε με ()=. α) Να αποδείξετε ότι [()-] = [ ( )] για κάθε. β) Να αποδείξετε ότι () για κάθε. γ) Αν η C έχει με τον άξονα δύο μόνο κοινά σημεία, τότε να αποδείξετε ότι για = η παίρνει μέγιστη τιμή ()=. α) Για κάθε είναι () = () ( ) () () = ( ) () () + = ( ) [() ] = [ ( )]. [ () ] * β) Για είναι ( ) = οπότε ( ) για κάθε. Επίσης είναι ( ) = () =. Άρα ( ) για κάθε. Αν όπου θέσουμε το - έχουμε ( ( )) () για κάθε. γ) Για = από την αρχική σχέση έχουμε () = () () () = () ()[ () ] = () = ή () =. Για = επίσης έχουμε () = () =. Επειδή () = και ()= δεν είναι δυνατόν να είναι και ()= αφού η C έχει με τον άξονα δύο μόνο κοινά σημεία. Υποχρεωτικά λοιπόν είναι ()=. Άρα () () για κάθε. Επομένως η παίρνει μέγιστη τιμή το για =. 9

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Έστω, g δύο συναρτήσεις παραγωγίσιμες στο. Αν η συνάρτηση g είναι -, ( g)() = και για κάθε ισχύει η σχέση g() (t)dt + ( g)(t)dt =, τότε να αποδείξετε ότι: * α) g ()=- για κάθε και β) g() + (t)dt=,. α) Η είναι συνεχής στο, το και η g είναι παραγωγίσιμη στο, επομένως η g() (t)dt είναι παραγωγίσιμη στο. Η g είναι συνεχής στο ως σύνθεση συνεχών, το άρα η συνάρτηση παραγωγίσιμη στο. Για κάθε έχουμε g() ( (t)dt + ( g)(t)dt) = ( g)(t)dt είναι (g())g () + ( g)() = ( g)()[g () + ] = (). Επειδή η συνάρτηση g είναι - και ( g)() = ισχύει ( g)() = ( g)() = ( g)() =. Δηλαδή η εξίσωση ( g)() = έχει μοναδική λύση την =. Επομένως η () ισοδύναμα γράφεται = ή g() + =, για κάθε β) Θεωρούμε τη συνάρτηση *. g() + h() = (t)dt,. () Η είναι συνεχής στο, το, η g()+ είναι παραγωγίσιμη στο, άρα η h παραγωγίζεται στο με h () = (g() + ) (g() + ) h () = (g() + ) (g () + ),. Για = έχουμε h () = (g()) (g () + ) = (g () + ) =. Για έχουμε h () = (g() + ) =. Παρατηρούμε λοιπόν ότι h() = για κάθε, άρα η h είναι σταθερή στο, δηλαδή h() = c,. Για = από την αρχική σχέση έχουμε την () έχουμε g() + h() = (t)dt =. g() g() (t)dt= και από h() = (t)dt c =. Άρα για κάθε είναι