9. Matriqnoe predstavlenie line nyh operatorov. Diagonalizuemostь matricy line nogo operatora.



Σχετικά έγγραφα
PRILOЖENIE 3 RAZDEL WIE REXENI I OTNOXENIE POR DKA

100 Doliqanin i Antonova esli rassmatrivat~ prostranstva C S n i 0 C S n kak vpolne geodeziqeskie poverhnosti v gruppah ih dvißeniρ, sostoχwih iz proi

A. Hovanski i. 2 c n 1. 1, gde (n 1, n 2 ) komponenty tipa n

Elementi spektralne teorije matrica

Vopros 49. Dinamiqeskie sistemy v metriqeskih prostranstvah. Toqki poko, periodiqeskie, poqti periodiqeskie i rekurrentnye dviжeni.

œj œ œ œ œ œ œ b œ œ œ œ œ œ w

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

MATEMATIKA, REGIONALЬNYI TUR. 23 nvar 1999 g. VII klass

Linearna algebra 2 prvi kolokvij,

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

Zadaqi spektral~no teorii differencial~nyh operatorov. Dmitri Vassiliev (University College London)

œ œ œ œ œ œ œ œ œ l Bo/g Go-spo/d' i «- vi/ - sq na/m=, bla - go -

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 4. Σύντομες Λύσεις

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Funktorialьnostь i vzaimnostь 1. Robert Lenglends

Μορφές και πρόσημο τριωνύμου

Gimnazija Krˇsko. vektorji - naloge

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Dijagonalizacija operatora

Operacije s matricama

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

n! k! (n k)!, = k k 1

SISTEMI NELINEARNIH JEDNAČINA

= k. n! k! (n k)!, k=0

Tretja vaja iz matematike 1

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

March 14, ( ) March 14, / 52

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

1 Promjena baze vektora

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

2 4 Έστω A= , οι υπο-πίνακες 2x2 είναι: η ορίζουσα είναι det. --> µε διαγραφή της 2 ης γραµµής:,,

Zavrxni ispit iz Matematiqke analize 1

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

Sheet H d-2 3D Pythagoras - Answers

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

APROKSIMACIJA FUNKCIJA

-! " #!$ %& ' %( #! )! ' 2003

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Numerička matematika 2. kolokvij (1. srpnja 2009.)

ZBIRKA TESTOVA IZ ALGEBRE

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

IZPIT IZ ANALIZE II Maribor,

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

FICHA TΙCNICA Tνtulo original em russo: Na Rubeje - (1901) Traduzido para o portuguκs por: Vicente Paulo Nogueira

5. Karakteristične funkcije

Το άτομο του Υδρογόνου

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

[A I 3 ] [I 3 A 1 ].

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A =

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα

Sistemi linearnih jednačina

( A = A = 3 5 A 2 + B 2.

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

Iterativne metode - vježbe

RIJEŠENI ZADACI IZ MATEMATIKE

6 Polinomi Funkcija p : R R zadana formulom

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Trigonometrijske nejednačine

Linearna algebra Materijali za nastavu iz Matematike 1

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 10/06/2019

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0

Επιτραπέζια μίξερ C LINE 10 C LINE 20

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Osnovne teoreme diferencijalnog računa

Norme vektora i matrica

Determinante. Inverzna matrica

1 Γραμμικές συναρτήσεις

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Sim pro lit po li sti rol be ton

Linearni operatori. Stepenovanje matrica

) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις

Konačno dimenzionalni vektorski prostori

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Transcript:

A Utexev 9 Matriqnoe predstavlenie line nyh operatorov Diagonalizuemostь matricy line nogo operatora 1 Matriqnoe predstavlenie line nyh operatorov Budem oboznaqatь qerez V line noe vektornoe prostranstvo (vewestvennoe ili kompleksnoe) razmernosti n: dim V = n; ego зlementy propisnymi bukvami: X, Y,, X, Y,, a skal ry stroqnymi: x, y,, α, β, Opredelenie Funkci A, otobraжa wa V v seb : A : V V, nazyvaets line nym preobrazovaniem V ili operatorom na V esli ona obladaet svo stvom line nosti: A (α 1 X 1 + α 2 X 2 ) = α 1 A (X 1 ) + α 2 A (X 2 ) dl { {X1, X 2 } V {α 1, α 2 } R ili C (1) (zdesь α 1, α 2 konstanty iz R esli oba prostranstva vewestvenny, i iz C, esli hot by odno iz prostranstv kompleksnoe) Rassmotrim operator A na V i pustь {X 1,, X n } bazis V Na dem koordinaty vektorov A (X 1 ),, A (X n ) v bazise {X 1,, X n } : Opredelenie Matrica A (X 1 ) = α 11 X 1 + α 21 X 2 + + α n1 X n, A (X 2 ) = α 12 X 1 + α 22 X 2 + + α n2 X n,, A (X n ) = α 1n X 1 + α 2n X 2 + + α nn X n A = α 11 α 12 α 1n α 21 α 22 α 2n α n1 α n2 α nn n n, (2) v kotoro po stolbcam sto t koordinaty obrazov bazisnyh vektorov, nazyvaets matrice operatora A v vybrannom bazise 1

Primer 1 V line nom prostranstve P 3 polinomov stepene ne vyxe 3 rassmotrim differencialьny operator A def = 2 d d x 1 : p(x) 2 p (x) p(x) Na ti ego matricu v bazise {1, x, x 2, x 3 } Rexenie V зtom primere X 1 = 1, X 2 = x, X 3 = x 2, X 4 = x 3 Formuly (2) priobreta t vid: A (X 1 ) = 2X 1 X 1 = 1 = 1 X 1, A (X 2 ) = 2X 2 X 2 = 2 x = 2 X 1 1 X 2, A (X 3 ) = 2X 3 X 3 = 4 x x 2 = 4 X 2 1 X 3, A (X 4 ) = 2X 4 X 4 = 6 x 2 x 3 = 6 X 3 1 X 4 Vybiraem koзfficienty iz pravyh qaste poluqivxihs formul i formiruem iz nih stolbcy matricy operatora: 1 2 0 0 A = 0 1 4 0 0 0 1 6 0 0 0 1 Primer 2 Izvestny obrazy bazisnyh vektorov R 3 pod de stviem operatora A : A 5 3 = 2 1, A 1 3 = 1 3, A 1 2 = 2 3 1 0 2 0 1 0 Na ti matricu зtogo operatora v ishodnom bazise Rexenie Komponenty matricy A iwuts po formulam (2), kotorye moжno zapisatь v matriqnom vide: Otkuda [X 1,, X n ] A = [A (X 1 ),, A (X n )] A = [X 1,, X n ] 1 [A (X 1 ),, A (X n )], i dl naxego primera зta formula daet A = 5 1 1 1 2 1 2 3 3 2 1 3 3 1 2 1 0 0 0 = 1 4 7 1 3 5 3 11 18 2 1 2 1 3 3 0 0 0 = = 5 10 7 6 13 10 17 36 27 2

Teorema 1 Koordinaty proizvolьnogo vektora X = X 1 + + X n i ego obraza Y = A (X) = y 1 X 1 + + X n sv zany formulo y 1 = A (3) Dokazatelьstvo S odno storony, Y = A (X) = y 1 X 1 + + X n S drugo storony, s pomowь formul (2) poluqaem: A (X) = A ( X 1 + + X n ) = A (X 1 ) + + A (X n ) = = (α 11 X 1 + + α n1 X n ) + + (α 1n X 1 + + α nn X n ) = = ( α 11 + + α 1n )X 1 + + ( α n1 + + α nn )X n Poskolьku koordinaty vektora v fiksirovannom bazise opredel ts edinstvennym obrazom, imeem: y 1 = α 11 + + α 1n, = α n1 + + α nn, qto i sootvetstvuet matriqno forme zapisi (3) Teorema 1 pozvol et svesti issledovanie operatora, de stvuwego v proizvolьnom prostranstve V, k issledovani operatora, de stvu wego nad vektorami-stolbcami v R n ili C n Posledni vsegda moжno zadatь v vide A (X) = AX, te de stvie A na stolbec X зkvivalentno domnoжeni зtogo stolbca sleva na podhod wu kvadratnu matricu por dka n Ostalosь tolьko vy snitь kak izmen ets matrica operatora pri perehode ot odnogo bazisa k drugomu i podobratь zatem tako bazis, v kotorom matrica priobrela baibolee prostu strukturu Teorema 2 Esli C matrica perehoda ot starogo bazisa k novomu, to matricy A i B operatora v starom i novom bazisah sv zany formulo : B = C 1 A C (4) Dokazatelьstvo Pustь {X 1,, X n } stary bazis, {X 1,, X n } novy bazis i nam izvestny koordinaty vektorov X i A (X) v oboih bazisah: X = X 1 + + X n = X 1 + + X n, Y = A (X) = y 1 X 1 + + X n = y 1 X 1 + + X n 3

Matrica perehoda C sv zyvaet koordinaty vektorov v starom i novom bazisah: y 1 y 1 = C, = C Poluqaem cepoqku ravenstv: y 1 B = = C 1 y 1 = C 1 A = C 1 AC Ravenstvo imeet mesto dl l byh stolbcov (,, ), sledovatelьno i dl stolbcov 1 0 0 0 1 0 0, 0,, 1 Obъedin poluqennye n ravenstv v odno matriqnoe, poluqim B E = C 1 A C E, otkuda i sleduet (4) Opredelenie Matricy A i B, sv zannye sootnoxeniem (4) (pri kako -to neosobenno matrice C) nazyva ts podobnymi: A = B 2 Sobstvennye qisla i sobstvennye vektory Rassmotrim operator nad kompleksnym prostranstvom V Opredelenie Vektor X V nazyvaets sobstvennym vektorom operatora A, esli a)x O, i b) λ C takoe, qto A (X) = λx V зtom sluqae qislo λ nazyvaets sobstvennym (ili harakteristiqeskim) qislom operatora, sootvetstvu wim dannomu sobstvennomu vektoru; obratno, govor t, qto vektor X prinadleжit sobstvennomu qislu λ Geometriqeski smysl vewestvennyh sobstvennyh qisel i vektorov: cobstvenny vektor zadaet napravlenie, na kotorom de stvie operatora svodits k rast жeni, togda koзfficient rast жeni i budet sobstvennym qislom Teorema 3 V kompleksnom prostranstve l bo operator imeet po kra ne mere odin sobstvenny vektor 4

Dokazatelьstvo Pustь {X 1,, X n } proizvolьny bazis V i A matrica operatora A v зtom bazise Togda dl togo qtoby vektor X = X 1 + + X n O byl sobstvennym, prinadleжawim sobstvennomu qislu λ, N i D qtoby vypoln losь ravenstvo A x 2 = λ x 2 α 11 λ α 12 α 1n α 21 α 22 λ α 2n α n1 α n2 α nn λ x 2 = O n 1 (5) Pokaжem, qto suwestvu t kompleksnye qisla λ i ne vse nulevye,,, udovletvor wie sisteme (5) Neobhodimym usloviem suwestvovani netrivialьnogo rexeni u odnorodno sistemy (5) vl ets ravenstvo nul ee opredelitel : det(a λe) = α 11 λ α 12 α 1n α 21 α 22 λ α 2n α n1 α n2 α nn λ = 0 (6) Зtot opredelitelь vl ets polinomom stepeni n po λ Po osnovno teoreme vysxe algebry зtot polinom imeet po kra ne mere odin kompleksny korenь λ = λ 1 Podstaviv ego v (5), poluqaem odnorodnu sistemu uravneni s nulevym opredelitelem U tako sistemy vsegda suwestvuet netrivialьnoe rexenie (x 1,, x n), no togda vektor def X 1 = x 1X 1 + + x nx n budet sobstvennym vektorom operatora A, prinadleжawim λ 1 Opredelenie Uravnenie (6) nazyvaets harakteristiqeskim ili vekovym uravneniem, a polinom v levo ego qasti harakteristiqeskim polinomom matricy A Primer 3 Har polinomy matric vtorogo i tretьego por dkov a 11 λ a 12 a 21 a 22 λ = λ2 (a 11 + a 22 )λ + (a 11 a 22 a 12 a 21 ) ; a 11 λ a 12 a 13 a 21 a 22 λ a 23 a 31 a 32 a 33 λ = { } = λ 3 + (a 11 + a 22 + a 33 )λ 2 a 11 a 12 a 21 a 22 + a 22 a 23 a 32 a 33 + a 11 a 13 a 31 a 33 λ + det A voznika t v zadaqe o klassifikacii lini i poverhnoste vtorogo por dka 1 1 Sm vopros 11 5

Primer 4 Na ti sobstvennye qisla i sobstvennye vektory matricy 3/2 1/2 1/2 1/2 A = 1 0 1 1 1/2 1/2 3/2 1/2 1 1 1 0 Rexenie Vyqisl em harpolinom i nahodim ego korni: det(a λe) = λ 4 3 λ 3 + λ 2 + 3 λ 2 = (λ + 1)(λ 2)(λ 1) 2 Podstavl em kaжdy iz зtih korne v sistemu (5), rexaem ee po metodu Gaussa i stroim fundamentalьnu sistemu rexeni (fsr) { (A + 1 E)X = O = fsr = X 1 = (0, 1, 0, 1) } L bo vektor vida αx 1 budet sobstvennym, prinadleжawim λ = 1 { (A 2 E)X = O = fsr = X 2 = ( 1, 0, 1, 0) } L bo vektor vida αx 2 budet sobstvennym, prinadleжawim λ = 2 { (A 1 E)X = O = fsr = X 3 = (0, 0, 1, 1), X 4 = ( 1, 1, 0, 0) } L bo vektor vida αx 3 + βx 4 budet sobstvennym, prinadleжawim λ = 1 Sledstvie 1 L bo korenь harpolinoma vl ets sobstvennym qislom operatora A i obratno: l boe sobstvennoe qislo operatora A vl ets kornem harpolinoma Teorema 4 Harpolinomy podobnyh matric odinakovy Dokazatelьstvo A = B neosobenna matrica C, taka qto B = C 1 AC Imeem: det(b λe) = det(c 1 AC λe) = = det(c 1 AC λc 1 EC) = det C 1 (A λe)c = det(a λe) Inaqe govor, dl dannogo operatora A harpolinom ego matricy ne zavisit ot vybora bazisa prostranstva Poзtomu moжno govoritь o harpolinome operatora A 6

3 Diagonalizuemostь matricy operatora Teorema 5 Sobstvennye vektory operatora, prinadleжawie razliqnym sobstvennym qislam, line no nezavisimy Dokazatelьstvo Pustь λ 1,, λ k razliqnye sobstvennye qisla operatora A, a X 1,, X k prinadleжawie im sobstvennye vektory: A (X j ) = λ j X j Dokaжem teoremu indukcie po k Dl k = 1 utverжdenie oqevidno Pustь ono verno dl k 1 vektora, no neverno dl k vektorov: α 1 X 1 + + α k 1 X k 1 + α k X k = O (7) pri kakom-to iz koзfficientov otliqnom ot nul ; pustь α 1 0 K obeim qast m ravenstva (7) primenim operator A Poluqim A (α 1 X 1 + +α k 1 X k 1 +α k X k ) = O = α 1 λ 1 X 1 + +α k 1 λ k 1 X k 1 +α k λ k X k = O Domnoжim ravenstvo (7) na λ k i vyqtem iz poslednego: α 1 (λ 1 λ k )X 1 + + α k 1 (λ k 1 λ k )X k 1 = O Zdesь α 1 (λ 1 λ k ) 0 tk λ 1 λ k Vektory X 1,, X k 1 poluqilisь line no zavisimymi, qto protivoreqit indukcionnomu predpoloжeni Teorema 6 Esli operator imeet n = dim V line no nezavisimyh sobstvennyh vektorov, to v bazise imi obrazuemom matrica operatora diagonalьna Obratno: esli matrica operatora v nekotorom bazise diagonalьna, to kaжdy vektor зtogo bazisa sobstvenny dl operatora Dokazatelьstvo Esli A (X 1 ) = λ 1 X 1,, A (X n ) = λ n X n (8) i sistema {X 1,, X n } lnz, to vz v ee v kaqestve bazisa prostranstva V poluqim sootvetstvu wu matricu operatora A v vide: λ 1 O A diag = (9) O Obratno, esli matrica operatora v nekotorom bazise {X 1,, X n } imeet vid (9), to зto oznaqaet, naprimer, qto A (X 1 ) = λ 1 X 1, te X 1 sobstvenny vektor, prinadleжawi λ 1 Analogiqno dokazyvaets i dl ostavxihs vektorov λ n 7

Opredelenie Bazis line nogo prostranstva, sosto wi iz sobstvennyh vektorov operatora A, nazyvaets kanoniqeskim Sledstvie 1 (Matriqny analog teoremy) Pustь A matrica operatora A v zadannom bazise Neosobenna matrica C, udovletvor wa ravenstvu C 1 AC = A diag suwestvuet togda i tolьko togda, kogda suwestvuet bazis prostranstva, sosto wi iz sobstvennyh vektorov Togda matrica C vl ets matrice perehoda ot zadannogo bazisa k kanoniqeskomu bazisu, a na diagonali A diag sto t sobstvennye qisla matricy A Opredelenie Pri vypolnenii uslovi predyduwego sledstvi govor t, qto matrica A diagonalizuema (ili privodits k diagonalьno forme) Teorema 5 pozvol et sformulirovatь dostatoqnoe uslovie diagonalizuemosti Teorema 7 Esli harpolinom operatora ne imeet kratnyh korne, to matrica operatora diagonalizuema Uslovie teoremy 7 prover ets qisto algebraiqeski: vyqisleniem naibolьxego obwego delitel harpolinoma i ego proizvodno 2 Podqerknem ewe raz: зto uslovie ne vl ets neobhodimym dl diagonalizuemosti, kak pokazyvaet primer 4 S drugo storony, ime ts primery matric s kratnymi sobstvennymi qislami, kotorye ne vl ts diagonalizuemymi Tak, dl matric A = ( 0 1 1 2 ) i A = ( 1 0 1 1 popytka podobratь matricu C, udovletvor wu ravenstvu ( ) α1 0 AC = C α 0 α 1 C, α 2 C, 2 zakanqivaets neobhodimym usloviem: det C = 0 Dl togo, qtoby vy snitь diagonalizuema ili net danna konkretna matrica, ime wa kratnye sobstvennye qisla, kaжdoe iz poslednih issleduets otdelьno na koliqestvo line no-nezavisimyh sobstvennyh vektorov, emu prinadleжawih Qislo takih vektorov ne prevoshodit kratnosti sobstvennogo qisla v harpolinome Takim obrazom, matrica operatora diagonalizuema togda i tolьko togda, kogda dl kaжdogo sobstvennogo qisla λ j vypolneno: n rank(a λ j E) = kratnostь λ j (10) 2 Ili жe diskriminanta harpolinoma ) 8

Primer 5 Na ti vse vewestvennye znaqeni parametra α, pri kotoryh matrica 1 2 1 1 2 α α 2 2 0 3 diagonalizuema Rexenie Harpolinom f(λ) = λ 3 + 3 λ 2 (3 α 1) imeet kratnye korni tolьko dl teh znaqeni parametra α, pri kotoryh odnovremenno f(λ) = 0, f (λ) = 0, te pri α = 0 i α = 2/3 Pri α = 0 korenь λ = 1 imeet kratnostь 2 Na dem rang matricy A + E: 1 3 1 2 0 2 2 0 2 1 0 1 0 3 0 0 0 0 = rank = 2, n rank = 1 Uslovie (10) ne vypolneno Ono ne budet vypolneno i pri α = 2/3 (zdesь korenь λ = 1 imeet kratnostь 2) Otvet Matrica diagonalizuema pri vseh znaqeni h parametra, za iskl qeniem α = 0 i α = 2/3 Suwestvuet cely klass diagonalizuemyh matric Teorema 8 L ba simmetriqna matrica diagonalizuema Esli, vdobavok, зta matrica vewestvenna, to i ee diagonalьny vid toжe budet vewestvennym Zameqanie Dl nediagonalizuemyh matric stavits zadaqa ob ih privedenii k tak nazyvaemo жordanovo normalьno forme 9