POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:
|
|
- Δείμος Χριστός Ζωγράφος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije često srećemo prilikom aproksimacije funkcije zadate preko skupa podataka 1, gde funkcija cilja predstavlja razliku izmed u modela aproksimanta i ulaznih podataka, izražena u nekoj normi u R n, a cilj problema je minimizovati tu razliku [?], [?], [?], [?], [?]. Metode bezuslovne optimizacije kojima se rešavaju problemi bezuslovne optimizacije imaju i širi značaj, jer se koriste kao polazna osnova za metode uslovne optimizacije. 1.1 Neophodni i dovoljni uslovi za egzistenciju lokalnog minimuma Uslovi optimalnosti koji su diskutovani u prethodnom poglavlju važe i u slučaju bezuslovne optimizacije, tj. uzimajući da je S = R n u odgovarajućim teoremama i njihovim posledicama. 1 engl. data fitting 1
2 2 Zorica Stanimirović Teorema 1.1 Neophodni uslovi prvog reda za lokalni minimum (NUPR). Neka je f C 1 realna funkcija na R n. Ako je X lokalni minimum funkcije f, tada važi f(x ) = 0. Tačke X R n koje zadovovoljavaju uslov f(x ) = 0 nazivaju se stacionarnim tačkama. Svi kandidati za lokalni minimum (maksimum) nalaze se med u stacionarnim tačkama. Sada ćemo se podsetiti pojma kvadratne forme i nekih njenih osobina koje ćemo koristiti u nastavku knjige. Definicija 1.1 Kvadratnom formom nazivamo funkciju a : R n R definisanu sa n n a(x) = a ij x i x j, X = [x 1,..., x n ] T R n. i=1 j=1 Ne gubeći na opštosti, za kvadratnu formu se pretpostavlja da je simetrična, tj. da važi a ij = a ji, za svako i, j = 1, 2,..., n. Matrica A = [a ij ] se naziva matricom kvadratne forme i takod e se pretpostavlja da je A simetrična. Definicija 1.2 Za kvadratnu formu a : R n R kažemo da je 1. pozitivno definitna, ukoliko je a(x) > 0, a pozitivno semidefinitna, ukoliko je a(x) 0, za svako X R n, X 0 2. negativno definitna, ukoliko je a(x) < 0, a negativno semidefinitna, ukoliko je a(x) 0, za svako X R n, X 0 3. nedefinitna, odnosno nije definitna, ukoliko ne važi ni 1. ni 2. Imajući u vidu definiciju matrice kvadratne forme, definiciju 1.2 možemo izraziti i na sledeći način. Definicija 1.3 Neka je A = [a ij ] matrica kvadratne forme a : R n R. Za kvadratnu formu a kažemo da je 1. pozitivno definitna, ukoliko je A > 0, a pozitivno semidefinitna, ukoliko je A 0,
3 Nelinearno programiranje 3 2. negativno definitna, ukoliko je A < 0, a negativno semidefinitna, ukoliko je A 0, 3. nedefinitna, odnosno nije definitna, ukoliko ne važi ni 1. ni 2. U opštem slučaju ispitivanje uslova X T AX > 0 i X T AX 0 nije jednostavno u praksi, te se za ispitivanje uslova pozitivne (semi)definitnosti koristi Silvesterov kriterijum 2, videti [?] i [?]. Teorema 1.2 Silvesterov kriterijum za pozitivnu semidefinitnost matrice. Simerična matrica A = [a ij ] dimenzije n je pozitivno definitna ako i samo ako su svi glavni minori matrice A pozitivni, tj. D 1 = a 11 > 0, D 2 = a 11 a 12 a 21 a 22 > 0,..., D n = a a 1n a n1... a nn > 0. Primer 1.1 Data je matrica A = Kako je D 1 = 4 > 0, D 2 = = 15 > 0 i D 3 = det(a) = 26 > 0, iz Silvesterovog kriterijuma sledi da je matrica A pozitivno definitna. Teorema 1.3 Silvesterov kriterijum za negativnu semidefinitnost matrice. Simerična matrica A = [a ij ] dimenzije n je negativno definitna ako i samo ako glavni minori matrice A naizmenično menjaju znak. D 1 < 0, D 2 > 0, D 3 > 0,... Karakterizacija uslova pozitivne semidefinitnosti matrice je nešto složenija, o čemu govori sledeća teorema. 2 James Joseph Sylvester ( )
4 4 Zorica Stanimirović Teorema 1.4 Potrebni i dovoljni uslovi za pozitivnu semidefinitnost matrice. Simerična matrica A = [a ij ] dimenzije n je pozitivno semidefinitna ako i samo ako su svi minori matrice A simetrični u odosu na glavnu dijagonalu nenegativni. Primer 1.2 Za matricu A = odredimo minore koji su simetrični u odnosu na glavnu dijagonalu. Minori reda 1: a 11 = 1 > 0, a 22 = 1 > 0 i a 33 = 2 > 0. Minori reda 2: a 11 a 12 a 21 a 22 = 0, a 11 a 13 a 31 a 33 = 1 > 0 i a 22 a 23 a 32 a 33 = 1 > 0. a 11 a 12 a 13 Minor reda 3: a 21 a 22 a 23 = det(a) = 0. a 31 a 32 a 33 Kako su svi minori matrice A simetrični u odnosu na glavnu dijagonalu nenegativni, na osnovu Silvesterovog kriterijuma matrica A je pozitivno semidefinitna. Primetimo da za veće dimenzije matrica primena Silvesterovog kriterijuma zahteva znatno više računa, jer je potrebno izračunati veliki broj minora. Recimo, za matricu dimenzije n treba ispitati ( ( n 1) + n ( 2) n n) minora. Med utim, karakterizacija definitnosti matrice se može izvesti i pomoću njenih sopstvenih vrednosti [?], [?]. Teorema 1.5 Neka su λ 1, λ 2,..., λ n sopstvene vrednosti simetricne kvadratne matrice A kvadratne forme a(x) = n n a ij x i x j, X = [x 1,..., x n ] T R n. Za kvadratnu formu kažemo da je i=1 j=1 1. pozitivno definitna, ukoliko je λ i > 0 za svako i {1, 2,.., n}, 2. pozitivno semidefinitna, ukoliko za svako i {1, 2,.., n} važi λ i 0, 3. negativno definitna, ukoliko je λ i < 0 za svako i {1, 2,.., n}, 4. negativno semidefinitna, ukoliko za svako i {1, 2,.., n} važi λ i 0,
5 Nelinearno programiranje 5 5. nedefinitna, ukoliko postoje i, j {1, 2,.., n}, takvi da su λ i i λ j različitog znaka. Teoreme koje slede odnose se na neophodne i dovoljne uslovi drugog reda za lokalni minimum. Teorema 1.6 Neophodni uslovi drugog reda za lokalni minimum (NUDR). Neka je f C 2 realna funkcija na R n. Ako je X lokalni minimum funkcije f, tada je f(x ) = 0 i Hesijan 2 f(x ) je pozitivno semidefinitna matrica. Teorema 1.7 Dovoljni uslovi drugog reda za strogi lokalni minimum (DUDR). Neka je f C 2 realna funkcija na R n. Ako je f(x ) = 0 i Hesijan 2 f(x ) je pozitivno definitna matrica, tada je X strogi lokalni minimum funkcije f. Primer 1.3 Posmatrajmo funkciju f : R 2 R definisanu sa f(x) = 1 3 x x x 1 x x2 2 x 2 + 9, X = [x 1, x 2 ] T. Uslov za stacionarnu tačku je f(x) = [x x 1 + 2x 2, 2x 1 + x 2 1] T = 0. Iz druge komponente vektora f(x) dobijamo x 2 = 1 2x 1. Uvrštavanjem dobijene veze u prvu komponentu vektora f(x), koja je takod e jednaka nuli, dobijamo x 2 1 3x = 0. Lako zaključujemo da je x 1 = 1 ili x 1 = 2, odakle sledi da postoje dve stacionarne tačke: A = [1, 1] T i B = [2, 3] T. Hesijan funkcije f u proizvoljnoj tački X R n je [ ] 2x F (X) =, 2 1 [ ] [ ] te je F (A) = i F (B) = Kako je F (B) pozitivno definitna matrica, tačka B je strogi lokalni minimum funkcije f. Kako Hesijan F (A) nije definitna matrica, tačka A nije ni minimum, ni maksimum funkcije f. Primetimo da funkcija f na svom domenu R 2 nema ni globalni minimum ni globalni maksimum, jer je f neograničena kad x 1 ±.
6 6 Zorica Stanimirović Primer 1.4 Data je funkcija f : R 2 R izrazom f(x) = x 2 1 x 2 2, X = [x 1, x 2 ] T. Grafik funkcije f je prikazan na Slici 1.1 (hiperbolički paraboloid). Prema NUPR, da bi tačka X bila kandidat za lokalni minimum ili maksimum, mora da važi f(x) = [2x 1, 2x 2 ] T = 0, odakle sledi da funkcija ima samo jednu stacionarnu tačku O = [0, 0] T. Med utim, Hesijan funkcije f je [ ] 2 0 F (X) = 0 2 i nije definitan ni za jednu tačku iz X R 2, pa ni za O = [0, 0] T. Dakle, u taǩi O nisu zadovoljeni DUDR, te ona nije ni lokalni minimum, niti lokalni maksimum. Slika 1.1: Grafik funkcije f(x) = x 2 1 x 2 2, X R 2 Važno je primetiti da je moguća izvesna neodred enost kod neophodnih i dovoljnih uslova za minimum funkcije. Naime, neodred enost može nastati u slučaju da je tačka X stacionarna ( f(x ) = 0), a Hesijan F (X ) pozitivno semidefinitna matrica. Posmatrajmo, na primer, tri jednostavne funkcije jedne promenljive f 1, f 2, f 3 : R R, definisane sa f 1 (x) = x 3, f 2 (x) = x 4 i f 3 (x) = x 4. Za tačku x = 0 važi f i (0) = f i (0)f i (0) = 0, i = 1, 2, 3, te je x stacionarna tačka za sve tri funkcije. Med utim, samo funkcija f 2 ima minimum u
7 Nelinearno programiranje 7 tački x. Za funkciju f 3, tačka x = 0 je lokalni maksimum, dok za f 1 predstavlja prevojnu tačku (videti Sliku 1.2). Da bi se ova neodred enost otklonila, potrebni su dodatni uslovi koji uključuju izvode višeg reda. Slika 1.2: Neodred enost uslova optimalnosti u tački O(0, 0) za funkcije f 1 (x) = x 3, f 2 (x) = x 4 i f 3 (x) = x Zadaci za vežbu Zadatak 1.1 Posmatrajmo funkciju f : R R definisanu sa f(x) = 3x 3 + 7x 2 15x 3. Naći sve stacionarne tačke funkcije i odrediti da li su u pitanju tačke minimuma ili maksimuma (ili ni jedno ni drugo). Ispitati karakter minimuma odnosno maksimuma, ako postoje (lokalni, globalni, strogi,...). Zadatak 1.2 Neka je funkcija f : R 2 R definisana izrazom f(x) = cx x 2 2 2x 1 x 2 2x 2, X = [x 1, x 2 ] T, gde je c R neki skalar. a) Odrediti stacionarne tačke funkcije f u zavisnosti od parametra c. b) Za koje vrednosti parametra c funkcija f može imati minimum? c) Za koje vrednosti parametra c funkcija f može imati maksimum?
8 8 Zorica Stanimirović Diskutovati karakter minimuma/maksimuma u zavisnosti od vrednosti parametra c (lokalni, globalni, strogi,...). Zadatak 1.3 Odrediti sve vrednosti parametra α tako da tačka A = [1, 0] T predstavlja (lokalni) minimum ili (lokalni) maksimum funkcije f : R 2 R definisane sa f(x) = α 3 x 1 e x 2 + 2α 2 ln(x 1 + x 2 ) (α + 2)x 1 + 8αx x 1 x 2, X = [x 1, x 2 ] T. Zadatak 1.4 Data je funkcija f : R 2 R definisana sa f(x) = (x 2 x 2 1)(x 2 2x 2 1), X = [x 1, x 2 ] T. Posmatrajmo problem min f(x), X R 2 a) Pokazati da tačka O = [0, 0] T zadovoljava NUPR i NUDR za zadatu funkciju. b) Pokazati da je tačka O = [0, 0] T lokalni minimum funkcije f duž svake prave koja prolazi kroz koordinatni početak (tj. oblika x 2 = mx 1 ). c) Pokazati da tačka O = [0, 0] T nije lokalni minimum funkcije f (uputstvo: posmatrati na primer, krive oblika x 2 = kx 2 1). Zadatak 1.5 Dat je problem min f(x), gde je f : R 2 R funkcija definisana sa f(x) = (x 1 2) 2 + (x 2 3) 2 + 1, pri čemu je X = [x 1, x 2 ] T R 2. Naći sve stacionarne tačke funkcije f i odrediti da li su u pitanju tačke minimuma ili maksimuma (ili ni jedno ni drugo) Ispitati karakter minimuma odnosno maksimuma, ako postoje (lokalni, globalni, strogi,...). Zadatak 1.6 Posmatrajmo probleme a) min R 2 f 1 (X), gde je f 1 (X) = (x 1 2) 2 + (x 2 3) 2 + 1, b) min R 2 f 2 (X), gde je f 2 = (x 1 2) 2 + (x 2 3) 2, c) min R 2 f 3 (X), gde je f 3 (X) = (x 1 2) 2 + (x 2 3) 2,
9 Nelinearno programiranje 9 i pritom je X = [x 1, x 2 ] T R 2. U kakvom su odnosu rešenja problema: min R 2 f(x) iz Zadatka 1.5, min R 2 f 1 (X), min R 2 f 2 (X) i min R 2 f 3 (X)? Da li svi problemi imaju isto optimalno rešenje? Obrazložiti odgovor. Zadatak 1.7 Posmatrajmo kvadratnu formu f : R n R oblika f(x) = 1 2 XT QX c T X, gde je argument X = [x 1,..., x n ] T R n, Q = [q ij ] realna kvadratna matrica dimenzije n, a c = [c 1,..., c n ] T n dimenzioni vektor čije su koordinate realni brojevi. a) Napisati NUPR za zadatu funkciju. Kada postoji stacionarna tačka funkcije f? b) Koje uslove mora zadovoljiti matrica Q da bi funkcija f imala lokalni minimum? c) Pod kojim uslovima za matricu Q funkcija f ima stacionarnu tačku, ali ne i tačke lokalnog minimuma i maksimuma? Zadatak 1.8 Data je funkcija f : R n R definisana sa f(x) = Ax b 2 2, gde je A realna matrica m n, m n i b vektor dužine m. Pretpostavimo da je rang(a) = n i posmatrajmo problem min f(x). a) Napisati NUPR za zadatu funkciju. Da li je to istovremeno i dovoljan uslov? b) Odrediti optimalno rešenje problema u zatvorenoj formi. Zadatak 1.9 Ako je X tačka lokalnog minimuma funkcije f : R n R, tada je f(x ) T d 0 u pravcu proizvoljnog vektora dopustivog pravca d. Dokazati da je, u slučaju problema bezuslovne optimizacije, ovaj uslov zadovoljen samo ako je gradijent u tački X jednak nuli.
10 10 Zorica Stanimirović Zadatak 1.10 Posmatrajmo problem min R n f(x). Ako je f : R n R konveksna funkcija na R n, tada je svaka stacionarna tačka funkcije f istovremeno i tačka globalnog minimuma. Dokazati. Zadatak 1.11 Navesti primere funkcija koje imaju sledeće osobine: a) f ima tačku lokalnog minimuma, ali ne i globalnog minimuma, b) f nema ni tačku lokalnog, ni globalnog minimuma, c) f ima i tačku lokalnog i globalnog minimuma, d) f ima više tačaka globalnog minimuma. Zadatak 1.12 Navesti primer funkcije f : R 2 R koja ima sledeću osobinu: a) f je diferencijabilna na R 2 i f ima beskonačno mnogo tačaka minimuma na R 2, ali ne i tačku maksimuma; b) f je diferencijabilna na R 2 i f ima samo jednu stacionarnu tačku koja je tačka lokalnog minimum, ali ne i globalnog minimuma.
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
POGLAVLJE 1 UVOD. Problem matematičkog programiranja u opštem slučaju može biti zapisan
POGLAVLJE 1 UVOD Problem matematičkog programiranja u opštem slučaju može biti zapisan na sledeći način. pri uslovima: min f(x) (1.1) g i (X) 0, za svako i = 1, 2,..., m, (1.2) gde su f(x), g i (X) realne
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne
POGLAVLJE 1 GRADIJENTNE METODE
POGLAVLJE 1 GRADIJENTNE METODE Posmatrajmo problem bezuslovne optimizacije min f(x), X R n gde je f : R n R zadata realna funkcija definisana na R n. Metode bezuslovne optimizacije mogu se podeliti u dve
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum
16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
4 Numeričko diferenciranje
4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Jednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Diferencijabilnost funkcije više promenljivih
Matematiči faultet Beograd novembar 005 godine Diferencijabilnost funcije više promenljivih 1 Osnovne definicije i teoreme, primeri Diferencijabilnost je jedan od centralnih pojmova u matematičoj analizi
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
1. Funkcije više promenljivih
1. Funkcije više promenljivih 1. Granične vrednosti funkcija više promenljivih Definicija 1. Funkcija f : D( R n R ima graničnu vrednost u tački (x 0 1, x 0 2,..., x 0 n D i jednaka je broju α R ako važi
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
POGLAVLJE 1 NJUTNOVA METODA
POGLAVLJE 1 NJUTNOVA METODA U prethodnom poglavlju videli smo da gradijentne metode koriste samo prvi izvod (gradijent) kao pravac duž koga se minimizuje zadata funkcija. Medutim, to nije uvek najefikasniji
3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1
Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
8 Funkcije više promenljivih
8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
Geometrija (I smer) deo 1: Vektori
Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Na grafiku bi to značilo :
. Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa
Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
4 Izvodi i diferencijali
4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije
3.1. Granične vrednosti funkcija
98 3. FUNKCIJE: GRANIČNE VREDNOSTI I NEPREKIDNOST 3.1. Granične vrednosti funkcija 3.1.1. Definicija i osnovne osobine Da bismo motivisali definiciju granične vrednosti funkcija, dajemo dva primera. Posmatrajmo
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Analitička geometrija
1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i
Granične vrednosti realnih funkcija i neprekidnost
Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Dužina luka i oskulatorna ravan
Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom
Norme vektora i matrica
2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće
ELEMENTARNE FUNKCIJE
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )