ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ C Το σύνολο των μιγαδικών αριθμών C, αποτελείται από αριθμούς της μορφής =α+βi,όπου α,βr Το στοιχείο i είναι τέτοιο ώστε : i = - Το σύνολο C είναι υπερσύνολο του R Οι πράξεις της πρόσθεσης και του πολ/σμού επεκτείνονται σ αυτό και ισχύουν οι ιδιότητες τους όπως στο R Το α λέγεται πραγματικό μέρος του και σημειώνεται Re(), ενώ ο β λέγεται φανταστικό μέρος του και σημειώνεται Im() Οι μιγαδικοί της μορφής =α+0i είναι πραγματικοί, ενώ της μορφής =0+βi, λέγονται φανταστικοί Γεωμετρική παράσταση μιγαδικού αριθμού Κάθε μιγαδικό αριθμό =α+βi μπορούμε να τον παραστήσουμε σε ένα σημείο Μ(α,β) ενός επιπέδου και αντιστρόφως Το σημείο αυτό το συμβολίζουμε και Μ() Οι πραγματικοί αριθμοί παριστάνονται στον άξονα x x (πραγματικός άξονας), ενώ οι μιγαδικοί στον άξονα y y Το μιγαδικό αριθμό =α+βi μπορούμε να τον παραστήσουμε επίσης και με την διανυσματική ακτίνα του σημείου Μ(α,β) Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω =α+βi και =γ+δi δύο μιγαδικοί (α,β,γ,δr) = α=γ και β=δ =0 α=0 και β=0 =(αγ)+(βδ)i =(αγ-βδ)+(αδ+βγ)i y M ( ) M( + ) - = i Ο M ( ) x Δύναμη μιγαδικού Για κάθε θετικό ακέραιο ν, με ν> ορίζουμε : ν = ν- Ειδικά: 0 = αν 0, = και ν = για κάθε θετικό ακέραιο ν και 0 Ιδιαίτερα για τις δυνάμεις του i έχουμε: i 0 =, i =i, i = -, i 3 =-i Γενικά : i ν =i 4ρ+υ =i υ όπου υ=0,,,3 (υπόλοιπο της διαίρεσης του ν δια 4)
Συζυγείς -ιδιότητες Aν =α+βi είναι ένας μιγαδικός αριθμός, τότε ο μιγαδικός =α-βi, λέγεται συζυγής του Ισχύουν οι ιδιότητες ) + =Re()=α ενώ - =Im()i=βi οπότε: Re()= και Im()= i ) = και γενικά: 3) - = - = + + + 4) = και γενικά: = και 5) Επίλυση της εξίσωσης α +β+γ=0 με α,β,γr Βρίσκω την διακρίνουσα Δ=β -4αγ Αν Δ>0 τότε η εξίσωση έχει δύο πραγματικές λύσεις : β, = α β Αν Δ=0 τότε έχει μια διπλή πραγματική λύση: =- α Δ β i Αν Δ<0 τότε η εξίσωση έχει δύο μιγαδικές συζυγείς λύσεις :, = α Ισχύουν οι γνωστές σχέσεις : + =- α β και = α γ - Δ Μέτρο μιγαδικού αριθμού y Ορίζουμε ως μέτρο του =α+βi την απόσταση της εικόνας του Μ(α,β) από την αρχή Ο β M ( a, β ) Δηλαδή = OM = α Ιδιότητες : Ο a x = = = = (προσοχή!! =, ισχύει μόνο αν R)
= και Γενικά ισχύει: ν = ν και ν = ν Γεωμετρικοί τόποι Αν Μ, Μ είναι οι εικόνες των μιγαδικών αριθμών και αντίστοιχα τότε το - =( M M ), δηλαδή ισούται με την απόσταση των εικόνων τους Η εξίσωση - o = α με α>0,παριστάνει κύκλο με κέντρο το Μ( o ) και ακτίνα ρ=α Η εξίσωση - =- παριστάνει την μεσοκάθετη του ευθ τμήματος Μ Μ Η εξίσωση - +- =α, α>0, παριστάνει έλλειψη με εστίες τα σημεία Μ και Μ και εστιακή απόσταση γ= - =(M M ) όπου γ<α Η εξίσωση - -- = α, α>0, παριστάνει υπερβολή με εστίες τα σημεία Μ και Μ και εστιακή απόσταση γ= - =(M M ) όπου γ>α ΠΡΟΣΟΧΗ!!! Στο σύνολο των μιγαδικών αριθμών δεν ορίζεται η διάταξη Οι δυνάμεις στους μιγαδικούς ορίζονται μόνο όταν οι εκθέτες είναι ακέραιοι Στο σύνολο των πραγματικών ισχύει : α +β =0 α=0 και β=0 Αυτό δεν ισχύει στο C!!! Πράγματι: +w =0 -(iw) =0 (-iw)(+iw)=0 (=iw ή =-iw) Ισχύουν οι ισοδυναμίες : R = και Ι =- Αν =w τότε =w Το αντίστροφο δεν ισχύει Αν =w τότε δεν ισχύει ότι =w ή = -w Ισχύει ότι: = = = = 3
ΑΣΚΗΣΕΙΣ Να βρεθούν οι τιμές των παραστάσεων: ΠΡΑΞΕΙΣ ΜΙΓΑΔΙΚΩΝ i i 003 i 004 i 005 i 006 ii 5ν+ 5ν+ 5ν+3 5ν+4 i i i i Να γίνουν οι πράξεις: i 3i4i 3i 5 ii 3i+4 ii i i i i i i i i 3 Για τις διάφορες τιμές του ν Ν να βρεθεί η τιμή της παράστασης f (ν) = i i ------ 4 Να βρεθούν οι τιμές των παραστάσεων: 00 00 i i i ii x i xi x i xi 5 Nα βρεθούν τα αθροίσματα: ν i 3 0 S i+i i i ii S 3 ν i+i i i (όπου ν φυσικός αριθμός) 6 Να αποδείξετε ότι για κάθε ν Ν ισχύει ( + i) 0ν = ( - i) 0ν ------ 7 Να γραφούν στη μορφή α+βi (κανονική μορφή) οι μιγαδικοί αριθμοί: i 3 5i 7 3i 3 3i 3 3 i ii +i i 3 3 i 3 3i 8 Να βρεθεί η τιμή της παράστασης: Re()+iIm() Re( ) i Im( ) Α= Im() ire() Im( ) ire( ) 4
9 Αν φανταστικός αριθμός με - i να αποδείξετε ότι ο αριθμός ω = αρνητικός πραγματικός αριθμός 3 i είναι - i 0 Δίνεται ο μιγαδικός αριθμός = x + yi, x, y R α) Να γράψετε στη μορφή α + βi τον μιγαδικό w = 8i 6 β) Να βρείτε τη σχέση που συνδέει τα x και y, αν Im (w) = 0 γ) Να βρείτε τη σχέση που συνδέει τα x και y, αν Re (w) = 0 δ) Να δείξετε ότι η προηγούμενη σχέση (γ) είναι εξίσωση κύκλου και να βρείτε το κέντρο του και την ακτίνα του ε) Να δείξετε ότι ο προηγούμενος κύκλος διέρχεται από την αρχή των αξόνων ------ ( i) (3 i)u= 5i Να λυθεί το σύστημα: (+i)+(+3i)u=7+8i ------ Έστω ο μιγαδικός = i 3 a Να υπολογίσετε τους αριθμούς, 3, 4 και -+ b Να αποδείξετε ότι - + 3-4 + 5-6 =0 ------ 5
ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ 3 Να βρεθούν οι τιμές των παραμέτρων α και β ώστε να είναι συζυγείς οι μιγαδικοί,w i =α+4βi, w= 3β (5α+9)i ii =α αβ β+ 3α+β i, w=αβ α β 3 α β i 4 Aν,w είναι μιγαδικοί αριθμοί να δειχθεί ότι: Α είναι πραγματικοί οι αριθμοί: α) i i β) i +i i +i B είναι φανταστικοί οι αριθμοί: α) +i w i w i i +i i β) 3 +i i 3 ------ 5 Αν,w είναι μιγαδικοί αριθμοί να βρεθούν οι συνθήκες μεταξύ των πραγματικών αριθμών α,β ώστε να ισχύουν: i ii +i i + w φανταστικός με =α+βi πραγματικός με =α+βi και w=α γi ------ 6 Να δείξετε ότι αν ω = και ω R τότε ο είναι φανταστικός αριθμός i ------ 7 Να δειχθεί ότι αν το τετράγωνο ενός μιγαδικού αριθμού είναι ίσο με το τετράγωνο του συζυγούς του τότε ο αριθμός είναι πραγματικός ή φανταστικός ---- 8 Αν,w,u μιγαδικοί αριθμοί να αποδειχθούν οι ισότητες: i w Re Re +w +w και ii u u Re()Re(u)+Im()Im(u) w Im Im 0 +w +w 6
9 Αν =3 i και w=+3i να βρεθεί η τιμή της παράστασης: w w w+w S= w w w 7
ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ 0 Να βρεθούν τα μέτρα των μιγαδικών αριθμών: 4+i 3 i = ii 3i i i 3 i Να βρεθεί το μέτρο του μιγαδικού αριθμού όταν ισχύουν: 3 i i 3= i+4i ii 6 7 i iii 3 i 3i Να βρεθεί το μέτρο του μιγαδικού αριθμού όταν ισχύουν οι ισότητες: ii ++4i ++i i 8 3 5 5 3 Με υπόθεση ότι ισχύει να αποδειχθεί ότι o + είναι πραγματικός αριθμός ν ( w) 4 Έστω οι μιγαδικοί και w με w Να αποδειχθεί ότι u είναι ν ν w πραγματικός για κάθε θετικό ακέραιο ν --------------------------------------------------------------------------------------------------------- 5 Ο μιγαδικός αριθμός ικανοποιεί και τις τρείς παρακάτω σχέσεις: - Re () () Im () () (3) Να γραμμοσκιάσετε στο μιγαδικό επίπεδο το χωρίο που αντιπροσωπεύει το σύνολο των εικόνων του και να βρείτε το εμβαδόν του ------ 6 Αν C και 9 = 3, αποδείξτε ότι = 3 ---- 7 Αν C * και +i+-i=, να δειχθεί ότι: = --------------------------------------------------------------------------------------------------------- 8 i Στο σύνολο των μιγαδικών αριθμών να δειχθεί ότι ισχύει: +w w w (κανόνας παραλληλογράμμου) ii Nα δειχθεί στο η ισοδυναμία: +u w u+w u=w --- 8
9 Nα αποδειχθούν στο σύνολο των μιγαδικών αριθμών τα παρακάτω: i ii + w 0 +w w iii log +00 log 0 iv w + 6 w w v w +w+3w +w w+3 30 Για κάθε u, να δειχθεί ότι: i ii u u u u u 0 iii u +u u iv Aν 3 +5 3 τότε +6 3 v Αν w, ό -w w ---- 3 είξτε ότι: -u -u ---- 3 Εάν +u+w=0, δείξτε ότι: +uw ---- 33 Αν x,y να δειχθεί ότι: i x x y x+y ii y x x x+y x y 0 y y ---- 34 Αν για το μιγαδικό αριθμό ισχύει: - >, δείξτε ότι Re () < ------ 35 Αν και Re() Im() να δειχθεί ότι + +i ---- 36 Aν στο * ισχύει η ισότητα: u u να δειχθεί ότι: Re 0 u ---- 9
37 Να λυθούν στο σύνολο οι εξισώσεις: ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ i 6 6 i +(+i) ( i) + 5i ii 4+5=0 iii 4+5=0 iv 3 (4 6i)-8i=0 v 3 +8=0 vi +4=0 vii =3-4i viii 3 + -=0 38 Να λύσετε την εξίσωση (+3) +(-) =0 i) στο και ii) στο C ---- 39 Να λυθούν στο οι εξισώσεις: i 3 i i 4 4i ii 8 40 Να βρείτε τους μιγαδικούς αριθμούς που επαληθεύουν την ισότητα: + ( - ) = 3 + i ------ 4 Η εξίσωση + α + β =0, α, β R έχει ρίζα τον μιγαδικό αριθμό - i α) Να βρείτε την άλλη ρίζα β) Να βρείτε τα α και β ------ 4 Να βρεθούν τα α,βr ώστε ο w =3-i να είναι ρίζα της εξίσωσης: -(α-βi)-5i-α-β=0 ---- 43 Να βρεθεί ο μιγαδικός αριθμός που ικανοποιεί την ισότητα + = + i ------ 44 Να βρείτε τον μιγαδικό που ικανοποιεί τη σχέση: (-i) (+i)-(+i) (-i)=3+i και να τον γράψετε στη μορφή α+βi ------ 45 Να λυθούν στο σύνολο των μιγαδικών οι εξισώσεις: i) (x -x) +3(x -x)+=0 ii) +i=+4i ------ 46 Nα βρείτε τους μιγαδικούς για τους οποίους ισχύει: ------ 47 Να λυθούν οι εξισώσεις: i 3+3 i=0 ii 8i 0
ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ - ΜΕΓΙΣΤΟ ΚΑΙ ΕΛΑΧΙΣΤΟ ΜΕΤΡΟ 48 Να βρείτε που ανήκουν οι εικόνες των μιγαδικών που ικανοποιούν την παρακάτω σχέση; α) Re()= -3 β) Im()= γ) Im()= και -3 Re() 3 δ) ε) i 3 στ) i ζ) i η) 3 i θ) i 5 ------ 49 Να βρεθεί ο γεωμετρικός τόπος των εικόνων του στο μιγαδικό επίπεδο αν ο i αριθμός είναι πραγματικός ------ 50 Aν η εικόνα του μιγαδικού αριθμού κινείται στον κύκλο C : x + y = να βρεθεί η γραμμή πάνω στην οποία κινείται ο μιγαδικός w = ---- 5 Να βρεθεί ο μιγαδικός αριθμός όταν ισχύουν οι ισότητες: i 4 i 8i ii + 5 και ++i 5 Να βρείτε τους μιγαδικούς αριθμούς για τους οποίους ισχύει: = = - ------ 53 Στο μιγαδικό επίπεδο δίνονται τα σημεία Α(0,6), Β(3,0) και Μ() Αν ισχύει (ΜΑ)=(ΜΒ) τότε: i) Να δειχθεί ότι =(4+i)+(4-i) () ii) Να γραφεί η εξίσωση της καμπύλης στην οποία κινούνται τα σημεία M() που ικανοποιούν την () ---- 54 Δίνεται η εξίσωση - = - 3i, C α) Να δειχθεί ότι ο γεωμετρικός τόπος των εικόνων του στο μιγαδικό επίπεδο είναι η μεσοκάθετος (ε) του ευθυγράμμου τμήματος ΑΒ με άκρα Α (, 0) και Β (0, 3) β) Να βρεθεί η εικόνα του για τον οποίο το είναι ελάχιστο ------
55 Από τους μιγαδικούς για τους οποίους ισχύει i 3 4, ποιος έχει το ελάχιστο και ποιος το μέγιστο δυνατό μέτρο; ------ 56 Εάν-+i=, να βρεθεί το µέγιστο και το ελάχιστο της παράστασης -+i ---- 57 Δίνονται οι μιγαδικοί x ψi 0 και w α) Να αποδειχθεί : wr R ή Re( ) β) Να βρείτε τον γεωμ τόπο των εικόνων M(χ,ψ) του όταν wr 58 Δίνονται οι μιγαδικοί αριθμοί με 4i 4i 0 i Να βρείτε το γεωμετρικό τόπο των εικόνων του ii Ποια είναι η ελάχιστη τιμή του ; iii Ποιος από τους παραπάνω μιγαδικούς αριθμούς έχει το μέγιστο μέτρο; 59 Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών για τους οποίους ισχύει ότι: Re Im 60 Έστω μιγαδικός στο μιγαδικό επίπεδο i w=, () και A,B,M οι εικόνες των, i, αντίστοιχα + i Να βρείτε το μιγαδικό για τον οποίο ισχύει w= +i και να βρείτε το ii Nα δείξετε ότι w iii Αν = x yi, x, y μιγαδικός αριθμός που ικανοποιεί την () να βρείτε το γτ των εικόνων του, όταν w
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 6 Αν για τους μιγαδικούς αριθμούς,, 3 ισχύουν οι ισότητες: 3 0 και 3 τότε το τρίγωνο των εικόνων τους είναι ισόπλευρο τρίγωνο 6 Να αποδείξετε ότι οι ρίζες των εξισώσεων: κορυφές ισοσκελούς τραπεζίου +=0 και 3+=0 ορίζουν τις 63 Α Να αποδειχθεί ότι τρία σημεία A, και και μόνο όταν: 3 Γ είναι συνευθειακά όταν Β Να δειχθεί ότι για κάθε λ είναι συνευθειακά τα σημεία A, 3 Γ όπου: λ +3i, λ +i, 3 λ 3+i 3 και 64 Έστω οι μιγαδικοί,w με w 0 και Α,Β οι εικόνες των και w αντιστοίχως i) Να δείξετε ότι η ΑΒ διέρχεται από την αρχή των αξόνων αν μόνο αν ο w είναι πραγματικός αριθμός ii) Αν ο ( w) u είναι πραγματικός, να αποδειχθεί ότι (ΟΑ) = (ΟΒ) ή τα σημεία w Ο,Α,Β είναι συνευθειακά, όπου Ο η αρχή των αξόνων ------ 65 Έστω, μιγαδικοί με και = Αν Α,Β είναι οι εικόνες των μιγαδικών w=( + ) αποδειχθεί ότι η ευθεία ΑΒ διέρχεται από την αρχή των αξόνων και u=( - ) αντιστοίχως, να ------ 66 Αν οι ρίζες της εξίσωσης ότι οι α,β είναι πραγματικοί αριθμοί α+β=0 είναι συζυγείς μιγαδικοί αριθμοί να δειχθεί 67 Αν για τους μιγαδικούς αριθμούς,u,w ισχύουν : u w 0, u w 0, uw 0 Να δειχθεί ότι ισχύει η ισότητα 3 3 3 u w 3
68 Να αποδειχθούν στο οι συνεπαγωγές: i +u+w=0 και u+uw+w=0 u w ii u u w w 0 u u w w iii u w u+uw+w u u w w --- i 69 Να αποδειχθεί ότι η εξίσωση : i i με αr, έχει μόνο πραγματικές i ρίζες ---- 70 Να αποδείξετε ότι η εξίσωση i 03i, νν *, C, δεν έχει πραγμα- 03 i τική λύση ---- 7 Δίνεται η εξίσωση +β+γ=0, C, με ρίζες τους συζυγείς μιγαδικούς και (, όχι πραγματικοί) Να αποδείξετε ότι : α) οι αριθμοί β και γ είναι πραγματικοί, β) η εξίσωση +β-γ=0 έχει ρίζες πραγματικές ---- 4