Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata. Dokaz: Iz m = a + b i n = x + y slijedi mn = (ax + by) + (ay bx). Propozicija. Prost broj p oblika 4k + 3 nije suma dva kvadrata. Štoviše, ako p x + y, onda p x i p y. Dokaz: Pretpostavimo da p x + y. Tada je x y (mod p). Dignimo ovu kongruenciju na potenciju p 1, pa dobijemo xp 1 ( 1) (p 1)/ y p 1 (mod p). Sada iz Malog Fermatovog teorema slijedi da je 1 1 (mod p). Kontradikcija. (Uočimo da x i y moraju biti relativno prosti sa p ako je p = x + y.) Propozicija 3. Ako prost broj p dijeli sumu dva kvadrata x +y, (x, y) = 1, onda je p i sam suma dva kvadrata. Dokaz: Dokaz provodimo tzv. metodom spusta. Pretpostavimo da je p k najmanji višekratnik od p koji se može prikazati u obliku pk = x + y, (x, y) = 1. Neka je x a (mod p), y b (mod p), a, b p. Tada je a + b x + y 0 (mod p) i a + b p 4 + p 4 = p p. Zato je 1 k p. Pretpostavimo da je k > 1. Neka je sada x u (mod k), y v (mod k), u, v k. Tada je u + v x + y 0 (mod k), recimo u + v = kl. Vrijedi u + v k, pa je 1 l k < k. Promotrimo jednakost pk l = (x + y )(u + v ) = (xu + yv) + (xv yu). 1
Imamo: xu + yv x + y 0 (mod k), recimo xu + yv = x 0 k; xv yu xy xy 0 (mod k), recimo xv yu = y 0 k. Odavde je pl = x 0 + y 0. Ako je (x 0, y 0 ) = d, recimo x 0 = dx 1, y 0 = dy 1, l onda je p = x d 1 + y 1. No, l l < k, pa smo dobili kontradikciju d s minimalnošću od k. Stoga je k = 1 (ako je k = 1, onda je l = 0) i p = x + y. Propozicija 4. Neka je p prost broj oblika 4k + 1. Tada postoji prirodan broj x takav da p x + 1. Dokaz: Koristimo Wilsonov teorem: Za prost broj p vrijedi (p 1)! 1 (mod p). Ako je p = 4k + 1, onda je (p 1)! = 1 3 p 1 ( ( 1 3 p 1 Dakle, za x možemo uzeti x = ( p 1)!. p p 1 ) (mod p). ) (p 3)(p )(p 1) Propozicija 5. Prost broj p je suma kvadrata ako i samo ako je p = ili p 1 (mod 4). Dokaz: Direktno iz Propozicija, 4 i 3. Propozicija 6. Prikaz prostog broja u obliku sume dva kvadrata je jedinstven (ako postoji). Dokaz: Pretpostavimo da je p = a +b = c +d. Možemo pretpostaviti da su a i c, te b i d, iste parnosti. Imamo: a c a + c = d b d + b, a c, b d. Neka je ( a c, d b a c ) = s, te neka je = st, d b = su. Imamo: t a+c = u d+b a+c. Kako su u i t relativno prosti, to je = uv, d+b = tv. Odavde je a = st + uv, b = tv su, pa je p = a + b = (s + v )(t + u ), kontradikcija.
Teorem 1. Prirodan broj n može se prikazati u obliku sume dva kvadrata ako i samo ako mu se u rastavu na proste faktore svi prosti brojevi oblika 4k + 3 pojavljuju s parnom potencijom. Dokaz: Nužnost slijedi iz Propozicije. Naime, ako je p = 4k + 3 i p x +y, onda p x i p y. Stoga p n, pa isto razmatranje možemo primijeniti na n, te dobivamo da se u rastavu od n prost broj p javlja s parnom p potencijom. Dovoljnost slijedi iz Propozicija 5 i 1. Zaista, n se može zapisati u obliku n = m n, gdje je n produkt prostih brojeva oblika 4k + 1 (i možda broja ). Iz Propozicija 5 i 1, matematičkom indukcijom slijedi da je n suma dva kvadrata, recimo n = x + y. No, tada je n = (mx) + (my). Teorem. Prirodan broj n može se prikazati kao suma kvadrata tri cijela brojeva ako i samo ako n nije oblika 4 m (8k + 7), k, m 0. Nužnost se lako pokazuje, dok je dovoljnost znatno teža - u dokazu se koriste rezultati iz teorije ternarnih kvadratnih formi, te Dirichletov teorem o prostim brojevima u aritmetičkom nizu. Teorem 3. Svaki prirodan broj može se prikazati u obliku sume kvadrata četiri cijela broja. Dokaz: (skica) Koristi se Eulerov identitet: (x + y + z + w )(a + b + c + d ) = (ax + by + cz + du) + (ay bx + dz cw) + (az cx + bw dy) + (aw dx + cy bz), te slijedeće činjenice: 1) Ako p dijeli sumu 4 kvadrata, onda je on i sam suma 4 kvadrata. ) Za svaki prosti broj p postoje cijeli brojevi x, y takvi da p x + y + 1. Primjer 1. Označimo s r (n) broj prikaza broja n u obliku sume kvadrata dva cijela broja. Dokazati da je r (n) = r (n) za svaki n N. Rješenje: Ako je x + y = n, onda je (x + y) + (x y) = n. Obratno, ( ) ( ) ako je s + t = n, onda su s i t iste parnosti, pa je s+t + s t = n. Prema tome, pridruživanje (x, y) (x+y, x y) je bijekcija medu prikazima od n i n. Primjer. Odrediti sve cijele brojeve koji se mogu prikazati kao razlika kvadrata dva cijela broja. 3
Rješenje: To su svi oni cijeli brojevi koji nisu oblika 4k +. Zaista, ako je n (mod 4) i n = x y = (x y)(x + y), onda je jedan od faktora x y, x + y paran. No, onda je i drugi paran, pa 4 n. Obrnuto, ako n (mod 4), onda je ili n = k + 1 ili n = 4k: k + 1 = (k + 1) k, 4k = (k + 1) (k 1). Primjer 3. Odrediti sve prirodne brojeve koji se mogu prikazati kao zbroj kvadrata dva prirodna broja. Rješenje: To su oni prirodni brojevi kod kojih u rastavu na proste faktore prosti brojevi oblika 4k + 3 imaju parne eksponente, te prost broj ima neparan eksponent ili imaju barem jedan prosti faktor oblika 4k + 1. Nužnost: Pretpostavimo da je n = α m = a + b, gdje su svi faktori od m oblika 4k + 3, te neka je n najmanji prirodan broj s tim svojstvom. Ako je α > 0, onda su a i b parni, pa bi i (α 1) m < n imao isto svojstvo. Dakle, α = 0 i m = a + b. No, m ima prosti faktor p oblika 4k + 3, pa po ( ) ( ) ( ) Propoziciji, p a i p b, te je m p = a p + b, p što je opet u suprotnosti s minimalnošću od n. Dovoljnost: Imamo da je n = m ili n = α m l, gdje je α {0, 1}, a l je produkt prostih faktora oblika 4k+1. Ako je n = m, onda je n = m +m. Broj l je suma kvadrata dva prirodna broja. Zaista, svi njegovi prosti faktori su takvi, a produkt dva neparna broja koji su sume kvadrata dva prirodna broja je i sam takav. Naime, ako je p 1 = a + b, p = c + d, te a i c, odnosno b i d, iste parnosti, onda je p 1 p = (ad + bc) + (ac bd) i oba izraza u zagradama su različita od 0. Sada tvrdnja slijedi indukcijom po broju prostih faktora. Dakle, l = s + t, s, t N, pa je m l = (ms) + (mt), dok je m l = (ms + mt) + (ms mt). Budući da je l neparan, imamo da je s t. Primjer 4. Neka je n = 4 m (8k + 7), km 0. Dokazati da se n ne može prikazati u obliku x + y + z, x, y, z Z. Rješenje: Pretpostavimo da tvrdnja nije točna, te da je n najmanji prirodan broj za kojeg tvrdnja ne vrijedi. Tada je n = 4 m (8k + 7) = x + y + z. 4
Kvadrat neparnog broja (a+1) = 8 a(a+1) +1 daje ostatak 1 pri dijeljenju s 8. Ako medu brojevima x, y, z ima 1, ili 3 neparna broja, onda je x +y +z oblika 4l + 1, 4l + ili 8l + 3. No, n nema niti jedan od ovih oblika. Stogu su x, y, z svi parni: x = x 1, y = y 1, z = z 1. Sada je n 4 = x 1 + y 1 + z 1 = 4 m 1 (8k + 7), što je u suprotnosti s minimalnošću od n. Primjer 5. Neka je p neparan prost broj. Dokažati da postoje cijeli brojevi x, y takvi da p x + y + 1. Rješenje: Promotrimo brojeve 0, 1,,..., ( p 1 ). Nikoja dva medu njima nisu kongruentna modulo p. Isto vrijedi za brojeve 1 0, 1 1, 1,..., 1 ( p 1 ). Sve skupa imamo p+1 + p+1 = p + 1 brojeva, pa po Dirichletovom principu dva medu njima daju isti ostatakk pri dijeljenju s p. To znači da postoje x, y {0, 1,..., p 1 } takvi da je x 1 y (mod p), tj. p x + y + 1. Primjer 6. Označimo s r 4 (n) broj prikaza broja n u obliku sume kvadrata četiri cijela broja. Dokažati da je r 4 (8n) = r 4 (n) za svali n N. Rješenje: Ako je 8n = x 1 + x + x 3 + x 4, onda su svi x i parni. Zaista, ako su svi neparni, onda je x 1 + x + x 3 + x 4 4 (mod 8), a ako su dva parna i dva neparna, onda je x 1 + x + x 3 + x 4 (mod 4). Stoga je n = ( x 1 ) + ( x ) + ( x 3 ) + ( x 4 ). Obratno, ako je n = y1 + y + y 3 + +y 4, onda je 8n = (y 1 ) + (y ) + (y 3 ) + (y 4 ). Primjer 7. Dokazati da se broj k+1, k N, ne može prikazati kao suma kvadrata četiri prirodna broja. Rješenje: Jedini prikaz broja kao sume četiri kvadrata je = 1 + 1 + 0 + 0. Kao je r 4 ( k+1 ) = r 4 ( k 1 ) = r 4 ( 1 ), to je jedini prikaz broja k+1 kao sume četiri kvadrata k+1 = ( k ) + ( k ) + 0 + 0. 5
Primjer 8. Dokazati da se svaki prirodan broj n > 169 može prikazati kao suma kvadrata pet prirodnih brojeva. Rješenje: Zapišimo prirodan broj n 169 kao sumu kvadrata četiri cijela broja: n 169 = x 1 + x + x 3 + x 4, x 1 x x 3 x 4 0. Ako su svi x i > 0, onda zapišimo 169 = 13. Ako je x 4 = 0 i x 3 > 0, onda zapišimo 169 = 1 + 5, pa je n = x 1 + x + x 3 + 1 + 5. Ako je x 3 = x 4 = 0 i x > 0, onda zapišimo 169 = 1 + 4 + 3. Konačno, ako je x = x 3 = x 4 = 0, onda zapišimo 169 = 10 + 8 + + 1. Primjer 9. Dokazati da se svaki cijeli broj n može na beskonačno mnogo načina prikazati u obliku n = x + y z. Rješenje: (k 1) = (l k) + (l) (l k + 1), k = (l + l k) + (l + 1) (l + l k + 1). Primjer 10. Dokazati da se svaki prirodan broj n može prikazati u obliku x + y + 3z + 6t, gdje su x, y, z, t Z. Rješenje: Znamo da se n može prikazati u obliku n = a + b + c + d. Možemo pretpostaviti da je pritom a + b + c 3 (mod 3) i a b (mod ). Stavimo: a + b + c+ = 3z, a + b = k, a b = y, pa imamo 3(a + b + c ) = (a + b + c) + (k c) + 6y. Odavde slijedi da 3 k c, tj. k c = 3t, pa dobivamo a + b + c = 3z + 6t + y. Primjer 11. Ako prirodan broj n nije suma kvadrata dva cijela broja, onda n nije niti suma kvadrata dva racionalna broja. Rješenje: Ako n nije suma dva kvadrata, onda n ima prosti faktor oblika 4k + 3 koji ga dijeli s neparnom potencijom. Pretpostavimo da je n = ( a b ) + ( c d ). Tada je n(bd) = (ad) + (bc). No, p se pojavljuje s neparnom potencijom na lijevoj strani jednakosti, pa smo dobili kontradikciju. 6