ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

Σχετικά έγγραφα
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

Συστήματα Επικοινωνιών Ι

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ψηφιακή Επεξεργασία Σημάτων

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Θεώρημα δειγματοληψίας

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Εφαρμογή στις ψηφιακές επικοινωνίες

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

A 1 y 1 (t) + A 2 y 2 (t)

Συστήματα Επικοινωνιών Ι

ΕΑΠ/ΠΛΗ-22/ΑΘΗ.3 1 η τηλεδιάσκεψη 03/11/2013. επικαιροποιημένη έκδοση Ν.Δημητρίου

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

Τηλεπικοινωνίες. Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

HMY 220: Σήματα και Συστήματα Ι

Επικοινωνίες στη Ναυτιλία

HMY 220: Σήματα και Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Διαμόρφωση Παλμών. Pulse Modulation

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Analog Communications Systems, 4th ed., Oxford Univ. Press, Univ. of California, Berkeley:

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22

HMY 220: Σήματα και Συστήματα Ι

Ανάλυση ΓΧΑ Συστημάτων

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ

Ψηφιακές Επικοινωνίες

HMY 220: Σήματα και Συστήματα Ι

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Σήματα και Συστήματα. Νόκας Γιώργος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

T 2 Tsinc2( ft e j2πf3t

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

HMY 220: Σήματα και Συστήματα Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Σεισμολογικά Όργανα Κεφάλαιο 8. Chang Heng 132 π.χ.

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

Συστήματα Επικοινωνιών ΙI

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

Συστήματα Επικοινωνιών Ι

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

Διαμόρφωση Παλμών. Pulse Modulation

Τηλεπικοινωνιακά Συστήματα Ι

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

P x = X k 2 (2) = = p = 78% (5)

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8)

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις

Ψηφιακή Επεξεργασία Σημάτων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

MAJ. MONTELOPOIHSH II

Κλασική Θεωρία Ελέγχου

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourier μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης.

y(t) = x(t) + e x(2 t)

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

HMY 220: Σήματα και Συστήματα Ι

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

Transcript:

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του FT 2.4: Αντίστροφη Σχέση Χρόνου/Συχνότητας 2.5: Συνάρτηση Dirac - Δέλτα 2.6: Μετασχηματισμός Περιοδικών Σημάτων Σειρές Fourier 2.7: Μετάδοση μέσω Γραμμικών Συστημάτων 2.8: Φίλτρα καθ. Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr www.netmode.ntua.gr Τρίτη 27/2/2018, Παρασκευή 2/3/2018

G f = g t exp j2πft dt ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα 2.2 Μετασχηματισμός Fourier (FT) (1/3) g t = G f exp j2πft df Οι ικανές (όχι αναγκαίες) συνθήκες Dirichlet για ύπαρξη FT: όπου f : συχνότητα σε Hertz (Hz, sec -1 ), ω = 2πf σε ακτίνια/sec (rad/sec) Μονότιμη g t με πεπερασμένο αριθμό μεγίστων/ελαχίστων & ασυνεχειών σε κάθε πεπερασμένο διάστημα Σήμα πεπερασμένης ενέργειας E = g t 2 dt = G f 2 df < Ο Μετασχηματισμός Fourier ή το φάσμα G f = G f exp[jθ f ] είναι μιγαδικός αριθμός με πλάτος G f και φάση θ(f): G f = Re G f + jim[g(f)], G f = (Re G f ) 2 +(Im G f ) 2 1 Im[G(f)], θ f = tan Re G f Αν η g t παίρνει πραγματικές τιμές G f = G f συζυγείς μιγαδικές συναρτήσεις και το πλάτος G f είναι άρτια συνάρτηση ενώ η φάση θ f περιττή συνάρτηση G f = G f, θ f = θ(f) Αν η g t παίρνει πραγματικές τιμές και g t = g t, πραγματική άρτια συνάρτηση G f πραγματική άρτια συνάρτηση, G f = G f = Re G f = 2 g t cos 2πft dt 0 Αν η g t παίρνει πραγματικές τιμές και g t = g t, πραγματική περιττή συνάρτηση G f φανταστική περιττή συνάρτηση, G f = G f = Im G f g(0) = G f df, G(0) = g(t)dt G f Τύπος του Euler θ(f) g(t) G(f) G(f) = F[g t ] g(t) = F 1 [G f ]

2.2 Μετασχηματισμός Fourier (FT) (2/3) sinc λ sin (πλ) πλ g t = A rect t T sin (πft) G f = 2 A cos 2πft dt = AT πft 0 T 2 = ATsinc(fT) Μικρή διάρκεια (-Τ/2, Τ/2) Μεγάλο εύρος συχνότητας (-1/Τ, 1/Τ)

2.2 Μετασχηματισμός Fourier (FT) (3/3) Μοναδιαία Βηματική Συνάρτηση (Unit Step Function, Heaviside Function) u t = 0, t < 0 1 2, t = 0 1, t > 0 Εκθετικός Παλμός Αποσβεννυόμενος: g t = exp at u t G f = exp t a + j2πf dt = 1 0 0 a+j2πf = a j2πf a 2 + 2πf 2 Ανερχόμενος: g t = exp at u t G f = exp [t a j2πf ]dt = 1 a j2πf

2.3 Ιδιότητες Μετασχηματισμού Fourier (FT) (1/5) (Time Shifting) (Modulation)

2.3 Ιδιότητες Μετασχηματισμού Fourier (FT) (2/5) Συνδυασμοί Εκθετικών Παλμών Συμμετρικός g t = exp a t = Γραμμικότητα G f = Αντισυμμετρικός 1 a + j2πf + 1 a j2πf = g t = exp a t )sgn(t = Γραμμικότητα G f = 1 a + j2πf 1 a j2πf = exp at, t < 0 1, t = 0 exp at, t > 0 2a a 2 + 2πf 2 exp at, t < 0 0, t = 0 exp at, t > 0 j4πf a 2 + 2πf 2 Συνάρτηση Προσήμου, Signum Function sgn t = 1, t < 0 0, t = 0 1, t > 0

Παλμός sinc ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα 2.3 Ιδιότητες Μετασχηματισμού Fourier (FT) (3/5) t g t = A rect G f = AT sinc(ft) T g t = A sinc(2wt) G f = A 2W rect f 2W (ιδιότητες δυαδικότητας, duality & αλλαγής κλίμακας χρόνου, time shifting, T = 1 2W ) Εύρος Ζώνης Συχνοτήτων, Bandwidth: W (Hertz)

2.3 Ιδιότητες Μετασχηματισμού Fourier (FT) (4/5) Παλμός Ραδιοσυχνότητας (Radio Frequency RF) g t = A rect t cos 2πf T ct G f = AT {sinc[t f f 2 c + sinc[t f + f c ]} ( cos 2πf c t = 1 [exp j2πf 2 ct + exp j2πf c t ] και ιδιότητα χρονικής ολίσθησης, modulation)

2.3 Ιδιότητες Μετασχηματισμού Fourier (FT) (5/5) Παλμός Gauss g t G f με αναλλοίωτη μορφή FT: g x = G x = exp πx 2 G f = g t exp j2πft dt, g t = G f exp j2πft df d G f = j2πt g t exp j2πft dt F 1 d G f = exp j2πft df df j2πt g t d G f ή 2πtg t j d G f (1) df df Έχουμε από την ιδιότητα παραγώγισης στο χρόνο, time differentiation d dt g t j2πfg(f) (2) j2πt g t exp j2πft dt df = j2πt g t d Προσθέτω (1) + (2): g t + 2πtg t j d G f + 2πfG f (3) dt df Αν υπάρχει συνάρτηση g t που να ικανοποιεί τη διαφορική εξίσωση d g t + 2πtg t = 0 πρέπει να dt ισχύει και η d G f + 2πfG f = 0, επειδή o Μετασχηματισμός Fourier της μηδενικής συνάρτησης df (0, t) είναι η μηδενική συνάρτηση (0, f) Άρα ισχύσει η ίδια εξίσωση για g t και G f Η λύση και των δύο εξισώσεων με αρχικές συνθήκες g 0 = G 0 = 1 δίνεται από g t = exp ( πt 2 ), G f = exp ( πf 2 ) που ορίζει τον ίδιο παλμό Gauss στο πεδίο του χρόνου και συχνότητας. Ο παλμός Gauss αποτελεί τη μοναδική μορφή σήματος με αναλλοίωτη μορφή Μετασχηματισμού Fourier

2.4 Η Αντίστροφη Σχέση Χρόνου & Συχνότητας (1/2) Ένα σήμα πεπερασμένης ενέργειας g t 2 dt = G f 2 df ταυτόχρονα time-limited & band-limited δεν μπορεί να είναι Ορισμός Bandwidth BW (Εύρος Ζώνης Διέλευσης): Ορίζεται σαν το σημαντικό τμήμα (ζώνη) θετικών συχνοτήτων (φασματική περιοχή) από πλευράς κατανομής ενέργειας αγνοώντας συχνότητες που δεν μεταφέρουν «σημαντική» ενέργεια Η χρονική διάρκεια σήματος (time duration) είναι αντιστρόφως ανάλογη με το εύρος της ζώνης διέλευσης (bandwidth). Το γινόμενό τους ορίζει την σταθερά Time-Bandwidth Product ή Bandwidth-Duration Product) Περίπτωση Baseband (Low-Pass) Ζώνη Διελεύσεως Bandwidth BW 1/T Περίπτωση Pass-Band (modulated σε φέρουσα συχνότητα f c 1/T ) Ζώνη Διελεύσεως - Bandwidth BW 2/T

2.4 Η Αντίστροφη Σχέση Χρόνου & Συχνότητας (2/2) Ορισμός 3-db Bandwidth 3db BW(Εύρος Ζώνης Διέλευσης): Ορίζεται σαν το τμήμα (ζώνη) θετικών συχνοτήτων (φασματική περιοχή) σήματος h t μέχρι τη συχνότητα όπου το πλάτος του φάσματος H f μειώνεται στο 1 της μεγίστης τιμή του 2 Decibels - db Τυπικό μέτρο σύγκρισης ισχύος P με ισχύ αναφοράς P 0 : P P db = 10log P 10 0 P 0 π.χ. P P 0 = 2, P P 0 db 3 db Baseband signal P P 0 = 10, P P 0 db = 10 db Αν P 0 = 1 miliwatt (mw) τότε η P δίνεται σε dbm Αν P 0 = 1 Watt (W) τότε η P δίνεται σε dbw Τυπικό μέτρο σύγκρισης πλάτους σήματος H f με σήμα αναφοράς H 0 f : Pass-Band (modulated) signal H f H 0 f db = 20log 10 H f H 0 f π.χ. H f H 0 f = 1 2, H f H 0 f db 3 db

2.5 Συνάρτηση Dirac (Δέλτα) (1/3) δ t = 0, t 0, δ t dt = 1 g t δ t t 0 dτ = g t 0 g τ δ t τ dτ = g t δ(t) = g t F δ t = δ t exp j2πft dt = 1 δ(t) 1 Η συνάρτηση δ t σαν όριο παλμού Gauss με μοναδιαία επιφάνεια g t = 1 τ exp πt2 τ 2, G f = exp ( πτ 2 f 2 ) δ t = lim τ 0 { 1 τ exp πt2 τ 2 }

2.5 Συνάρτηση Dirac (Δέλτα) (2/3) Εφαρμογές της συνάρτησης Dirac 1. δ t 1 και λόγω διαδικότητας, duality: 1 δ f = exp ( j2πft)dt (συνεχές σήμα, DC signal) 2. Λόγω ιδιότητας ολίσθησης συχνότητας, frequency-shifting: exp (j2πf c t) δ(f fc) 3. cos 2πf c t = 1 2 exp j2πf ct + exp j2πf c t cos 2πf c t 1 2 δ f f c + δ f + f c 4. sin 2πf c t = 1 2j exp j2πf ct exp j2πf c t sin 2πf c t 1 2j δ f f c δ f + f c

2.5 Συνάρτηση Dirac (Δέλτα) (3/3) 5. Συνάρτηση Προσήμου sgn(t) sgn t = 1, t < 0 0, t = 0 1, t > 0 sgn(t) = lim α 0 g(t), g t = exp (at), t < 0 0, t = 0 exp ( at), t > 0 G f = j4πf a 2 + 2πf 2 1/(jπf) sgn(t) 1 jπf 6. Step Function u t u t = 1 2 sgn t + 1 = 0, t < 0 1/2, t = 0 1, t > 0 u(t) 1 j2πf + δ(f)/2

2.6 Περιοδικά Σήματα (1/3) Σειρές Fourier Περιοδικού Σήματος g T t με περίοδο T = 1/f 0, f 0 : βασική συχνότητα Το περιοδικό σήμα μπορεί να θεωρηθεί πως αποτελείται από επαναλήψεις συνάρτησης τύπου παλμού (γεννήτριας συνάρτησης, generating function) g t = g T t, για T 2 t T 2 και 0 εκτός του διαστήματος ( T 2, T 2 ) c n = 1 T g T t = c n exp(j2πnf 0 t) = g(t mt) T/2 T/2 n= g T t exp ( j2πnf 0 t)dt m= = f 0 G nf 0 όπου g(t) G(f) g T t = g(t mt) m= = f 0 G nf 0 exp(j2πnf 0 t) n= (Poisson Sum Formula) Ο «Μετασχηματισμός Fourier» της περιοδική συνάρτησης g T t μπορεί να αποδοθεί σαν: m= g(t mt) f 0 G nf 0 δ(f nf 0 ) n=

2.6 Περιοδικά Σήματα (2/3) Ιδανική Συνάρτηση Δειγματοληψίας (Dirac comb) δ T t = δ(t mt) m= Μετασχηματισμός Fourier της δ T t : Ιδανική Συνάρτηση Δειγματοληψίας (Dirac comb) g t = δ t G f = 1 και δ(t mt) f 0 δ(f nf) m= n= Από τη Poisson sum formula και την ιδιότητα duality προκύπτει: δ t mt = f 0 exp j2πnf 0 t, exp j2πmft = f 0 δ(f f 0 ) m= n= m= m=

2.6 Περιοδικά Σήματα (3/3) Δειγματοληψία Παράσταση Διακριτού Χρόνου Σήμα συνεχούς χρόνου x(t) X(f) Σήμα x t με δείγματα του x(t) σε χρονικές στιγμές nt s και 0 στον υπόλοιπο χρόνο x t X f, T s : η περίοδος δειγματοληψίας (sampling period) x t = x(t) δ t mt S = 1 x t exp j2πnt m= X f = T n= S T S 1 T S k= X(f k/t S ) Σήμα διακριτού χρόνου x n με τιμές x nt s = x nt s Θεώρημα Δειγματοληψίας (Nyquist Sampling Theorem): Για την πιστή αναπαραγωγή από τα δείγματα x n του αρχικού αναλογικού σήματος x(t) με X(f) περιορισμένo σε { f 0, f 0 } Hz (bandwidth f 0 ) απαιτείται συχνότητα δειγματοληψίας F S = 1/T S τουλάχιστον ίση με 2f 0 Στον X f εμφανίζονται είδωλα (aliases) του X(f) ανά F S = 1/T S F S > 2f 0 για αποφυγή σφαλμάτων επικάλυψης (aliasing errors) Από «Ψηφιακές Επικοινωνίες», Ν. Μήτρου (www.kallipos.gr) DTFT: Discrete Time Fourier Transform

2.7 Μετάδοση Σημάτων μέσω Γραμμικών Συστημάτων (1/2) Γραμμική υπέρθεση (linear superposition) Εισόδων Εξόδων σε Γραμμικό Φίλτρο (Filter) ή Κανάλι (Channel) Κρουστική Απόκριση - Impulse Response Γραμμικού & Χρονικά Αμετάβλητου συστήματος h(t): x t = δ t y t = h(t) Απόκριση Χρόνου Γραμμικών Συστημάτων: Συνέλιξη, Convolution (Διέγερση, Excitation) x t = x τ δ t τ dτ y t = x τ h t τ dτ (Απόκριση, Response) y t = h t x t = x τ h t τ dτ = x t τ h τ dτ Απόκριση Συχνότητας Γραμμικών Συστημάτων x t X f, h t H f, y t Y f = H f X(F) H f : Συνάρτηση Μεταφοράς (Transfer Function) H f = H f exp[jβ f ] H f : amplitude response, β f : phase Αν h(t) πραγματική (real), τότε H f άρτια (even) & β f περιττή (odd) Αιτιατότητα (Causality) Σε ένα αιτιατό (υλοποιήσιμο) σύστημα η απόκριση y t εξαρτάται μόνο από παρελθούσες τιμές της διέγερσης x τ, τ t άρα ένα σύστημα είναι αιτιατό αν h t τ = 0, τ > t ή h(t) = 0, t < 0 t οπότε y t = x τ h t τ dτ 0 = x t τ h τ dτ

2.7 Μετάδοση Σημάτων μέσω Γραμμικών Συστημάτων (2/2) ln H(f) = α f + jβ(f), α f = ln H f, Κέρδος Gain (σε nepers), β f (σε radians) α f = 20log 10 H f (σε decibel), α f = 8.69a(f) Ορισμοί bandwidth συστήματος (φίλτρου, διαύλου) Low-pass System, B Band-pass System, 2B

Ορισμοί: Ζώνη Διέλευσης (passband) Ζώνη Αποκλεισμού (stopband) Βαθυπερατό (low-pass) Υψιπερατό (high-pass) Ζωνοπερατό (band-pass) Ζωνοφρακτικό (band-stop) B ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα 2.8 Φίλτρα h t = exp j2πf t t 0 df = 2 cos 2πf t t 0 df = B 0 B Ιδανικό Low-pass Filter Απόκριση Συχνότητας To φίλτρο δεν είναι αιτιατό (causal), αλλά με μεγάλο t 0 = 1/B έχουμε sinc 2B t t 0 1, t < 0 οπότε είναι προσεγγιστικά κατασκευάσιμο Απόκριση Ιδανικού Low-pass filter σε Μοναδιαίο Παλμό x t Διαρκείας T Κρουστική Απόκριση 2 sin 2πB t t 0 2π t t 0 = 2Bsinc[2B t t 0 ] Φαινόμενο Gibbs Θεωρούμε t 0 = 0: h t = 2Bsinc 2Bt, y t = x τ h t τ dτ = 2B T 2 T 2 sin [2πB t τ ] 2πB(t τ) dτ