ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2018 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν σε αλφαβητική σειρά:

Σχετικά έγγραφα
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. Ημερομηνία: 20/5/2018 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν σε αλφαβητική σειρά:

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, να αποδείξετε ότι:

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

3o Επαναληπτικό Διαγώνισμα 2016

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Παράρτημα Χίου ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ασκήσεις Επανάληψης Γ Λυκείου

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

γ) Ισχύει lim = 0. ΑΠΑΝΤΗΣΕΙΣ συνx x δ) Αν η f είναι αντιστρέψιμη συνάρτηση, τότε οι γραφικές παραστάσεις C και C των συναρτήσεων f και

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

f ( x) f ( x ) για κάθε x A

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

5o Επαναληπτικό Διαγώνισμα 2016

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

f '(x 0) lim lim x x x x

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

Ασκήσεις Επανάληψης Γ Λυκείου

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

2o Επαναληπτικό Διαγώνισμα 2016

x R, να δείξετε ότι: i)

20 επαναληπτικά θέματα

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

1ο Επαναληπτικό διαγώνισμα στα Μαθηματικά Προσανατολισμού Γ Λυκείου

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΘΕΣΣΑΛΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Σελίδα 1 από 8. f στο, τότε

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

f(x ) 0 O) = 0, τότε το x

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

Ερωτήσεις-Απαντήσεις Θεωρίας

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ ΣΥΝΤΟΝΙΣΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ, 2 Ο ΠΕ.ΚΕ.Σ. ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους

γ) Αν f συνεχής στο[α, β], τότε για κάθε γ Є IR ισχύει f (x)dx f (x)dx f (x)dx

Transcript:

Τα sites blogs που συμμετέχουν σε αλφαβητική σειρά: blogs.sch.gr/pavtryfon/ Επιμελητής: Παύλος Τρύφων eisatopon.blogspot.gr/ Επιμελητής: Σωκράτης Ρωμανίδης evripidis.freebsdgr.org/ Επιμελητής: Θεμελής Ευριπίδης lisari.blogspot.gr/ Επιμελητής: Μάκης Χατζόπουλος perikentro.blogspot.gr/ Επιμελητής: Κώστας Κουτσοβασίλης ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ www.askisiologio.gr / Επιμελητής: Βασίλης Μποζατζίδης www.askisopolis.gr / Επιμελητής: Στέλιος Μιχαήλογλου www.mathink.gr/ Επιμελητής: Πάνος Γκριμπαβιώτης ΕΚΦΩΝΗΣΕΙΣ Διάρκεια: 3 ώρες Ημερομηνία: 2/5/28 Έκδοση: η

αφιερωμένο στους υπεύθυνους εκπαιδευτικούς που προσπαθούν, ενημερώνονται και αναζητούν καθημερινά υλικό σε διαδικτυακούς τόπους (sites blogs forum facebook) για να γίνουν καλύτεροι!

Εισαγωγή Όταν ενώνονται 8 μαθηματικά sites blogs και μόνο αυτό είναι γεγονός! Ένα δείγμα πολιτισμού, παιδείας και ένδειξης ότι τα μαθηματικά είναι πιο πάνω από ονόματα και link! H Σumma Union είναι μια μάζωξη, μια ένωση μαθηματικών sites που αυθόρμητα αποφάσισαν να ενώσουν τις δυνάμεις τους και να αναρτήσουν από κοινού ένα διαγώνισμα προσομοίωσης για τους μαθητές της Γ Λυκείου. Στη Union θα βρείτε μόνο μαθηματικούς που υπηρετούν το μεράκι τους και αναζητούν νέους τρόπους προσέγγισης των μαθητών. Το διαγώνισμα προσομοίωσης δημιουργήθηκε με την άρτια συνεργασία 8 τουλάχιστον μαθηματικών. Τελικά, προέκυψε ένα πιο απαιτητικό διαγώνισμα από αυτό που επιθυμούσαμε. Δεν έχουμε λόγο να φοβίσουμε τους μαθητές λίγες μέρες πριν τις Πανελλαδικές Εξετάσεις, δεν είναι συνειδητή η επιλογή του επιπέδου δυσκολίας αλλά όταν προκύπτει ένα όμορφο ερώτημα, όλοι εκπαιδευτικοί το γνωρίζουν, δεν μπορείς να το κόψεις όσο απαιτητικό ερώτημα και να είναι! Αν ο διδάσκοντας κρίνει ότι το διαγώνισμα είναι αρκετά απαιτητικό για τους μαθητές τους τότε προτείνουμε να γίνουν τα θέματα μεμονωμένα ως ασκήσεις. Ο διδάσκοντας γνωρίζει καλύτερα το επίπεδο των μαθητών του και είναι υπεύθυνος για την καλύτερη μόρφωσή τους. Προφανώς τα θέματα που προτείνουμε είναι πιο απαιτητικά από τα θέματα των Πανελλαδικών Εξετάσεων με σκοπό να γίνει μια τελευταία και δυνατή προπόνηση πριν τον επίσημο αγώνα! Οποιαδήποτε ερώτηση, ένσταση ή σημείωση θέλετε να καταθέσετε μπορείτε να το κάνετε στο email lisari.blogspot@gmail.com. «Η ισχύς εν τη ενώσει» Αίσωπος, 62-56 π.χ.

Σumma Union 28 Θέμα Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο f x. σημείο αυτό, να αποδείξετε ότι x και είναι παραγωγίσιμη στο Α2. Να διατυπώσετε το Κριτήριο παρεμβολής. Μονάδες 8 Μονάδες 3 Α3. Θεωρήστε τον παρακάτω ισχυρισμό: «Έστω συνάρτηση f ορισμένη στο σύνολο Α,,. Αν η f είναι συνεχής στο Α και εσωτερικό σημείο x του Α, τότε η f είναι σταθερή σε όλο το Α». f x για κάθε α) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας στο τετράδιό σας το γράμμα Α, αν είναι αληθής, ή το γράμμα Ψ, αν είναι ψευδής. Μονάδες 2 β) Να αιτιολογήσετε την απάντησή σας στο ερώτημα (α) δίνοντας την απόδειξη αν είναι αληθής ή δίνοντας ένα παράδειγμα αν είναι ψευδής. Μονάδες 4 Α4. Να επιλέξετε τη σωστή απάντηση στην παρακάτω πρόταση: «Η γραφική παράσταση της f και η αντίστροφής της ευθεία»: f είναι συμμετρικές ως προς την i) y ii) x iii) y x iv) y x Μονάδες 2 Α5. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α) Αν η συνάρτηση f: R R έχει πλάγια ασύμπτωτη στο οριζόντια ασύμπτωτη. δεν έχει β) Κάθε συνεχής συνάρτηση σε κλειστό διάστημα παρουσιάζει μέγιστη και ελάχιστη τιμή. γ) Για κάθε συνάρτηση f:α R και g : B R ορίζεται η συνάρτηση f g x f x g x για κάθε x A B f g με Μονάδες 6

Σumma Union 28 Θέμα Β Δίνεται η πολυωνυμική συνάρτηση f τρίτου βαθμού για την οποία ισχύουν: f (x) lim, ν x ν n x f περιττή f (2x)dx 4 3 Β. Να αποδείξετε ότι f x x 3x, x R. Β2. Να μελετήσετε και να χαράξετε τη γραφική παράσταση της συνάρτησης f. Β3. Να αποδείξετε ότι οι εφαπτόμενες της παράλληλες. Β4. Να αποδείξετε ότι τα χωρία Ω και Ω 2 που περικλείεται από την εφαπτομένη της την σε αντίθετες τετμημένες είναι είναι ισεμβαδικά, όπου Μονάδες 8 Ω είναι το χωρίο στο σημείο, τον αρνητικό ημιάξονα x x και την ευθεία x ενώ αντίστοιχα το χωρίο που περικλείεται από την εφαπτομένη της Θέμα Γ Β x,f x, την f Α x,f x, x Ω 2 είναι C, τον θετικό ημιάξονα x x και την ευθεία x. Δίνεται η συνάρτηση f :, π R τέτοια ώστε: παραγωγίσιμη για κάθε x, π στο σημείο Μονάδες 7 π f 2 f x ημx f x ημx f x h f x h 2f x lim lim xx x x h h x, π, για κάθε. ημx Γ. Να αποδείξετε ότι f x, x, π Γ2. Να βρείτε το σύνολο τιμών της f. Μονάδες 7

Σumma Union 28 Γ3. Έστω Τ το εμβαδόν του τριγώνου ΟΑΒ που ορίζουν τα σημεία Ο(, ), Α x,f x και Β x, με x, π. Αν το x μεταβάλλεται με ρυθμό 4cm / sec να βρείτε το ρυθμό μεταβολής του εμβαδού Τ τη χρονική στιγμή που το x ισούται με 3π 4 cm. π/2 Γ4. Να υπολογίσετε το f x dx π/3 Μονάδες 7 Μονάδες 6 Θέμα Δ Δίνεται η παραγωγίσιμη συνάρτηση f : ln 2, για κάθε x ln 2 f x f x e Δ. Να αποδείξετε ότι υπάρχει μια σταθερά c R f x x e ce R για την οποία ισχύει τέτοια ώστε: για κάθε x ln 2,. Μονάδες 2 Αν η γραφική παράσταση της συνάρτηση f διέρχεται από την αρχή των αξόνων, τότε: x Δ2. Να αποδείξετε ότι f x ln 2e. Δ3. Να μελετήσετε την f ως προς τα διαστήματα στα οποία είναι κυρτή ή κοίλη (μονάδες 3). Στη συνέχεια να αποδείξετε ότι f x (μονάδες 3). Μονάδες 4 2x για κάθε x ln 2, Μονάδες 6 Δ4. Αν F είναι μία παράγουσα της f στο ln 2, με F να βρείτε έναν ακέραιο ρ τέτοιον, ώστε η εξίσωση F x 2F x 3xf x dx 2x x 2 x 28 να παρουσιάζει μία τουλάχιστον λύση στο διάστημα (ρ, ρ + ). Δ5. Να βρείτε τον μοναδικό θετικό αριθμό α για τον οποίο ισχύει: 2 f x ln 5 4 α dx x 2 e Μονάδες 8