ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

Σχετικά έγγραφα
ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

και γνησίως αύξουσα στο 0,

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

x, οπότε για x 0 η g παρουσιάζει

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Πανελλαδικές εξετάσεις 2017

Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Λύσεις του διαγωνίσματος στις παραγώγους

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

x x f x για κάθε f x x ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. α) Σχολικό σελίδα 15

ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

f ( x) f ( x ) για κάθε x A

ΑΠΑΝΣΗΕΙ ΜΑΘΗΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΗ ΣΕΑΡΣΗ 18 ΜΑΪΟΤ 2016

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

Μαθηματικά Ο.Π. Γ ΓΕΛ 05/ 05 / 2019 ΘΕΜΑ Α. Α1. Σελίδες Σχολικού Βιβλίου. Α2. Σελίδα 161 Σχολικού Βιβλίου

5o Επαναληπτικό Διαγώνισμα 2016

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

x είναι f 1 f 0 f κ λ

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ. x x. = 3, x (2,5) 0 είναι η h. Α4. α) Σ β) Σ γ) Σ δ) Λ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

= R * ως πράξη παραγωγίσιμων συναρτήσεων με 0 x 4 2x 8x 8 x x x x x. και γνησίως αύξουσα στο (0, + ). = με τιμή ( )

Επιμέλεια: Παναγιώτης Γιαννές

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03/11/2018

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ

ΘΕΜΑ Α ΘΕΜΑ Β. Β1. Η είναι συνεχής και παραγωγίσιμη στο R ως ρητή με πρώτη παράγωγο. x Μονοτονία της f oλικό ελάχιστο στο 0 το f(0)=0

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

είναι 1-1 αλλά δεν είναι γνησίως μονότονη.

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

f (x) 2e 5(x 1) 0, άρα η f

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

Α2. α. Ψ β. Σχολικό βιβλίο σελ. 134 ΣΧΟΛΙΟ): Πχ. για την

ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135.

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.

Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 16 ΘΕΜΑ Α Α1 Σχολικό Βιβλίο σελ 6 Α Σχολικό Βιβλίο σελ 141 Α Σχολικό Βιβλίο σελ 46 Α4 α) Λ, β) Σ, γ) Λ, δ) Σ, ε) Σ ΘΕΜΑ Β Β1 f ( ), 1 για κάθε, άρα 1 f ( 1) H f είναι παραγωγίσιμη για κάθε ως ρητή με : f '() ( 1) ( 1) f ( ) - + f () - + f γν φθίνουσα ΟΕ γν αύξουσα Άρα : f (,] και f [, ) Η f παρουσιάζει ολικό ελάχιστο στο το f ( ) Σελίδα 1 από 8

Β H f είναι παραγωγίσιμη για κάθε, ως ρητή με ( 1) 4 ( 1) 1 f ''() ( 1) ( 1) 4 f ''() ή - f () - + - f () ΣΚ ΣΚ Η f κοίλη για, και για, και η f κυρτή για, Η f παρουσιάζει σημείο καμπής για 1, 4 και για το σημείο το σημείο 1, 4, f, δηλαδή Β f ( ), 1 Η f είναι συνεχής στο άρα δεν παρουσιάζει κατακόρυφες ασύμπτωτες Για πλάγιες - οριζόντιες έχω : Στο είναι : f ( ) 1 lim lim lim lim και limf ( ) lim f ( ) lim lim 1 1 άρα η ευθεία ( ) : y 1 είναι οριζόντια ασύμπτωτη της C f στο Στο είναι : f ( ) 1 lim lim lim lim και limf ( ) lim f ( ) lim lim 1 1 άρα η ευθεία ( ) : y 1 είναι οριζόντια ασύμπτωτη της C f στο Σελίδα από 8

Β4 Για κάθε και f f ( ) f ( ) f ( ), άρα η f είναι άρτια με άξονα συμμετρίας τον ( ) 1 1 y y Πίνακας μεταβολών : - f () - + + - f () - - + + f () Σελίδα από 8

ΘΕΜΑ Γ Γ1 1, 1 ος Τρόπος : Έστω g() 1, g,συνεπώς έχω να λύσω την εξίσωση g ( ) Παρατηρώ ότι, η προφανής ρίζα της εξίσωσης g ( ) Η g είναι παραγωγίσιμη για κάθε g() ( 1) με g ( ) ( 1) ή 1 - + g () - + g γν φθίνουσα ΟΕ γν αύξουσα Άρα η g παρουσιάζει ολικό ελάχιστο στο, το g ( ), δηλ g ( ) g() g( ) για κάθε, οπότε στην εξίσωση g ( ) η προφανής ρίζα είναι και μοναδική ως θέση ακροτάτου ος Τρόπος : Ισχύει : ln 1 για κάθε και η ισότητα ισχύει μόνο για 1 Για το, για κάθε, έχω : ln 1 για κάθε Άρα ln 1 1 1 για κάθε και η ισότητα ισχύει μόνο για 1 Άρα η μοναδική ρίζα της εξίσωσης 1 είναι η Γ Είναι : f ( ) 1 f ( ) g ( ) f ( ) g( ) f ( ) g( ) Για είναι : f ( ) g() f ( ) f () g( ) Για είναι : f ( ) άρα g ( ) άρα f ( ) και f συνεχής, άρα η f διατηρεί πρόσημο στο (, ) Αν f ( ) τότε f ( ) g( ) (1) Αν f ( ) τότε f ( ) g( ) () Για είναι : f ( ) άρα g ( ) άρα f ( ) και f συνεχής, άρα η f διατηρεί πρόσημο στο (,) Αν f ( ) τότε f ( ) g( ) () Αν f ( ) τότε f ( ) g( ) (4) 1 Σελίδα 4 από 8

Τελικά : 1 ον από (1), () f ( ) 1, αφού για, f ( ) ον από (1), (4) ον από (), () 1, f ( ) 1, 1, f ( ) 1, αφού για, f ( ) αφού για, f ( ) 4 ον από (), (4) f ( ) 1, αφού για, f ( ) Γ f () 1 παραγωγίσιμη στο με f ( ) ( 1) H f παραγωγίσιμη στο με f ( ) ( 1) 4 (*) για κάθε και το = ισχύει μόνο για, όπου f είναι συνεχής, άρα η f κυρτή στο (*) για κάθε είναι 1 ( 1) και 4 για κάθε Γ4 Έστω h( ) f ( ) f ( ), [, ), h παραγωγίσιμη στο [, ) με : h ( ) f ( ) f ( ) f Για έχουμε f ( ) f ( ) h( ) f : ή και h συνεχής στο [, ) ως πράξεις συνεχών άρα h γνησίως αύξουσα στο [, ) άρα «1-1» στο [, ) Έτσι : f 11 f f ( ) f ( ) h h( ) Καθώς : για κάθε και το «=» ισχύει μόνο για Σελίδα 5 από 8

ΘΕΜΑ Δ Δ1 ( d f ( ) d f ( ) d f ) f ( ) f ( )( ) d f ( ) d f ( )( ) f d f f ( )( ) ( ) ( ) d f ( )( ) f ()( 1) f ( ) d f ( ) f () f ( ) d f ( ) f () Θεωρώ την f ( ) R( ), για κάθε κοντά στο μηδέν, με limr( ) 1 Άρα : f ( ) R( ) Η f συνεχής στο, έτσι : lim f ( ) f () Άρα : lim f () f ( ) lim R( ) f : ή έτσι : f ( ) f () f ( ) Η f είναι παραγωγίσιμη στο, έτσι : f ( ) f () f () lim R( ) lim lim ( ) 11 1 R Άρα : f ( ) 1 Δ α) 1 ος Τρόπος : lim f ( ) Έστω ότι η f παρουσιάζει ακρότατο σε κάποιο Τότε καθώς είναι παραγωγίσιμη για κάθε από ΘFrmat f ( ) f f ( ) f ( ) Τα μέλη στη σχέση (1) είναι παραγωγίσιμα (,, f ( ) ( ) παραγωγίσιμες, άρα f, f ( f ( )) παραγωγίσιμες, ως σύνθεση παραγωγίσιμων) οπότε με παραγώγιση της (1) έχουμε : f ( ) f ( ) 1 f f ( ) f ( ) () Η σχέση () για γίνεται : f ( ) f ( ) f ( ) 1 f ( ) f ( ) 1 f, άρα f ( ) f () που είναι άτοπο καθώς f ( ) 1, επομένως η f δεν παρουσιάζει ακρότατα Σελίδα 6 από 8

ος Τρόπος : Τα μέλη στη σχέση ( ) άρα f, f ( f ( )) είναι παραγωγίσιμα (,, f ( ) f() f(f()) παραγωγίσιμες, παραγωγίσιμες, ως σύνθεση παραγωγίσιμων) οπότε μετά από f() f() παραγώγιση έχουμε : f '() 1 f '(f())f '() f '()[ f '(f())] 1 Για = ισχύει η ισότητα Για έχουμε ότι 1, άρα και f() f() f '()[ f '(f())] f '() f '(f()) Επιπλέον έχουμε f ()=1, άρα f ( ) για κάθε β) Από Δ α) έχουμε ότι f ( ) για κάθε και η f συνεχής (η f δυο φορές παραγωγίσιμη), άρα από συνέπειες Θ Bolzano η f διατηρεί σταθερό πρόσημο Επιπλέον : f ( ) 1, άρα τελικά f ( ) για κάθε, δηλαδή f Δ f ( ) Άρα : f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ή Άρα : lim f ( ) lim f ( ) lim f ( ) άρα από κριτήριο παρεμβολής : lim f ( ) lim f ( ) Δ4 1 ος Τρόπος : f f (ln ) Καθώς 1 ln f (ln ) f () f (ln ) και η ισότητα ισχύει (ln ) μόνο για 1 Άρα : f d 1 f f (ln Επίσης : f f f ) f (ln ) ln (ln ) ( ) (ln ) και η ισότητα ισχύει μόνο για Άρα : f (ln) f (ln ) f (ln ) d 1 d d ln 1 d 1 1 1 f (ln ) ln ln1 d 1 f (ln ) d 1 (ln ) Άρα τελικά : f d 1 Σελίδα 7 από 8

ος Τρόπος : Θέτω u ln, άρα du 1 d d du Για 1 είναι u Για είναι u f (ln ) f ( u) Έτσι έχω : d du 1 Οπότε αρκεί να δείξω ότι : f f ( u) du f ( u) du Είναι : u f () f ( u) f ( ) f ( u) και η ισότητα ισχύει μόνο για u και u, άρα : f ( u) du du f ( u) du ( ) f ( u) du Πιο αναλυτικά : η f συνεχής στο [, ] με f ( u) και η ισότητα ισχύει μόνο για u άρα : f ( u) du Επιπλέον f ( u) f ( u) και η ισότητα ισχύει μόνο για u άρα : f ( u) du du f ( u) du f ( u) du f ( u) Οπότε τελικά προκύπτει το ζητούμενο : du f ( u) du Επιμέλεια Καθηγητών Φροντιστηρίων Βακάλη Σελίδα 8 από 8