14. Merenja na optičkim komunikacionim sistemima

Σχετικά έγγραφα
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

3.1 Granična vrednost funkcije u tački

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

Ispitivanje toka i skiciranje grafika funkcija

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

numeričkih deskriptivnih mera.

Elementi spektralne teorije matrica

SISTEMI NELINEARNIH JEDNAČINA

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Kaskadna kompenzacija SAU

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

III VEŽBA: FURIJEOVI REDOVI

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Obrada signala

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

41. Jednačine koje se svode na kvadratne

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

Zavrxni ispit iz Matematiqke analize 1

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Osnovne teoreme diferencijalnog računa

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

PRIMJER 3. MATLAB filtdemo

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Optička vlakna (fiberi) Kada je potrebno preneti informacije (npr. govor, slike ili podatke) na veliku daljinu, koristi se koncept komunikacije

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Računarska grafika. Rasterizacija linije

Eliminacijski zadatak iz Matematike 1 za kemičare


INTELIGENTNO UPRAVLJANJE

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Teorijske osnove informatike 1

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k.

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

ELEKTROTEHNIČKI ODJEL

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

IZVODI ZADACI (I deo)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

5 Ispitivanje funkcija

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Linearna algebra 2 prvi kolokvij,

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

SEKUNDARNE VEZE međumolekulske veze

nagib krive je: talasna dužina - λ (nm) Slika Hromatska disperzija u funkciji talasne dužine

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

18. listopada listopada / 13

14.6. Metode merenja u optičkim komunikacionim sistemima

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Računarska grafika. Rasterizacija linije

Otpornost R u kolu naizmjenične struje

Operacije s matricama

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

ATMOSFERE. Sastav atmosfere Efekti prostiranja kroz atmosferu. Zračenje atmosfere. Barbaric, MS1.TS 1

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

konst. Električni otpor

7. Metode ispitivanja karakteristika optičkih vlakana i kablova

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Vežba 1: Karakterizacija optičkih vlakana

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

( , 2. kolokvij)

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

TEORIJA BETONSKIH KONSTRUKCIJA 79

Poglavlje 7. Blok dijagrami diskretnih sistema

7. POJAVE PRI PROSTIRANJU ZVUKA U VAZDUHU

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

s i s t e m Sl.1 Model optičkog sistema prenosa

Induktivno spregnuta kola

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

Ponašanje pneumatika pod dejstvom bočne sile

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

5. Karakteristične funkcije

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

Transcript:

14. Merenja na optičkim komunikacionim sistemima 14.1. Osnove prostiranja svetlosti kroz optičko vlakno Glavna karakteristika optičkih sistema prenosa jeste potencijalna mogućnost prenosa velike količine informacija u jedinici vremena uz korišćenje manje energije u poređenju sa drugim prenosnim sistemima. Ovakav sistem podrazumeva prenos informacija po optičkim talasovodima koji predstavljaju medijum za usmereni prenos optičkih signala. Za optičke komunikacije većinom se koriste dielektrični talasovodi, cilindrične strukture, za koje je usvojen naziv optičko vlakno. Konektor Konektor Izvor Predajnik Prijemnik Korisnik Optičko vlakno Slika 14.1. Blok šema optičke komunikacione mreže Blok šema osnovnog optičkog sistema sa svetlovodima prikazana je na slici 14.1. Prenosni medijum čini optičko vlakno na čijim se krajevima nalaze odgovarajući priključci (konektori) koji obezbeđuju spajanje predajnika i prijemnika na optičko vlakno. Predajnik generiše signal koji je prilagođen prenosu po optičkom vlaknu, dok prijemnik detektuje oslabljenu i zašumljenu poruku i konvertuje je u formu potrebnu krajnjem korisniku. Najvažnije osobine optičkog komunikacionog kanala jesu njegov veliki informacioni kapacitet (ogroman propusni opseg svetlovoda), mala podužna slabljenja signala u sistemu, otpornost na različite smetnje elektromagnetne ili radiofrekvencijske prirode usled dielektričnog karaktera svetlovoda, relativno mali gabariti i masa elemenata prenosnog sistema koji su posledica kratkih talasnih dužina iz optičkog spektra, kao i zaštićenost od ometanja i prisluškivanja. U malobrojne mane primene optičkih vlakana mogu se ubrojati još uvek relativno visoka cena kablova, kablovskog pribora i linijske opreme, kao i velika osetljivost na mehanička dejstva. 1966. godine Čarsl Kao (Charles Kao) i Džordž Hokam (Georges Hockham) utvrdili su da veliki gubici u optičkom vlaknu teoretski nastaju zbog malih nečistoća unutar stakla, a ne zbog unutrašnjih ograničenja samoga stakla. To znači da se gubici svetlosti koja putuje vlaknom mogu drastično smanjiti sa 1000 db/km na manje od 0 db/km. Sa ovim poboljšanjem pojačavači svetlosnog signala mogu biti smešteni na međusobnom rastojanju od nekoliko kilometara, a ne metara kao do tada što je bilo uporedivo sa međusobnim rastojanjima pojačavača bakarnih telefonskih kablova. Zahvaljujući ovom otkriću, 1970. godine počeo je vrlo intenzivan razvoj optičkih komunikacija kada je tim stručnjaka iz kompanije ''Corning Glass'' proizveo optičko vlakno dužine stotinu metara. 1976. godine započelo je eksperimentalno korišćenje optičkih vlakana u telefonskim

sistemima Atlante i Čikaga. 1984. godine pušteno je u rad optičko vlakno kompanije AT&T povezujući Boston i Vašington, a 1988. godine je postavljen prvi transatlanski optički kabel. 1991. godine proizvedeni su optički pojačavači koji su ugrađeni u same optičke kablove i koji su u stanju da obezbede 100 puta veći kapacitet od sistema sa elektronskim pojačavačima. 1996. godine postavljeni su kablovi sastavljeni isključivo od optičkih vlakana i preko Tihog okeana. 14.1.1. Priroda elektromagnetskog zračenja Termin svetlost (optika) koristi se kada želimo da referenciramo frekvencije u infracrvenom, vidljivom i ultraljubičastom delu spektra. Ovo radimo zato jer se mnoge iste analize, tehnike i uređaji mogu primeniti u ovim frekvencijskim opsezima. Vidljiva svetlost se prostire od 0.4 µm (plava boja) do 0.7 µm (crvena boja). Vlakna od kvarcnog stakla nisu dobri prenosioci u vidljivom delu spektra. Zbog njihovog velikog slabljenja mogući su samo kratki prenosni putevi. Gubici optičke snage u ultraljubičastom delu spektra su čak i veći. Međutim, u infracrvenom delu imamo tri opsega učestanosti u kojima je vodljivost svetla relativno efikasna. To su opsezi oko talasne dužine od 0.85 µm, 1.3 µm i 1.55 µm i često ih nazivamo optičkim prenosnim prozorima. Učestanost (Hz) 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 1 10 13 10 14 10 15 10 16 VLF LF MF HF VHF UHF SHF EHF IR VL UV Talasna dužina (m) 10 5 10 4 10 3 10 10 1 10-1 10-10 -3 10-4 10-5 10-6 10-7 Telefonske linije AM radio TV signali Satelitski link Slika 14.. Spektar elektromagnetskog zračenja Vidljiva svetlost Optička vlakna Mada svetlosni talasi imaju mnogo veću učestanost od radio talasa, oni se povinuju istim zakonima i dele mnoge karakteristike. U slobodnom prostoru elektromagnetski talasi putuju brzinom od 3 10 8 m/s. Ovu brzinu obeležavamo sa c i ona odgovara brzini prostiranja elektromagnetskih talasa u vakuumu i atmosferi. U čvrstom materijalu, ova brzina se razlikuje i zavisi od materijala i geometrije vodeće strukture. Talasna dužina svetlosnog snopa je data kao v λ =, (14.1) f gde je v brzina snopa, a f njegova učestanost. Učestanost određuje izvor svetlosti i ona se ne menja kada svetlost prelazi iz jednog materijala u drugi. Umesto toga, razlika u brzini prostiranja u dve sredine izazvaće promenu talasne dužine u skladu sa gornjom jednačinom. Talasna priroda svetlosti se koristi da bi analizirali kako svetlost putuje kroz optičko vlakno. Rezultati ovakve analize daju uslove koji moraju biti ispunjeni da bi vlakno vodilo svetlost kao i brzine odgovarajućih prostirućih talasa. Ponekad, svetlost se ne ponaša kao talas već kao da se sastoji od mnoštva malih čestica koje zovemo fotonima. Energija jednog fotona je data sa 14 -

gde je h = 6.66 10-34 Js i zove se Plankova (Planck) konstanta. W fotona = hf, (14.) Korpuskularna priroda svetlosti objašnjava načine na koji se svetlost generiše od strane izvora kao što su laserske i LED diode. Takođe, proces konverzije optičke radijacije u električnu struju prisutan u detektorima objašnjen je primenom korpuskularnog svojstva svetlosti. Najveći broj optičkih eksperimenata mogu se objasniti na adekvatan način ako pretpostavimo da se svetlosna energija prostire duž uske putanje koju nazivamo zrakom. Kako se ovi zraci koriste da opišu optičke efekte uz pomoć geometrije, ovakvu zračnu teoriju zovemo geometrijska optika. Mada zraci zaista predstavljaju geometrijske putanje, često je pogodno o njima govoriti kao o nosiocima energije svetlosnog snopa. Zato često kažemo da se zrak prostire određenom brzinom ili je reflektovan od prepreke, a podrazumevamo da se energija svetlosnog talasa prostire određenom brzinom ili je reflektovana od prepreke. Pri prolasku kroz različite materijale svetlosni zrak se prostire različitim brzinama. Odnos brzina prostiranja svetlosnog zraka kroz vakuum i kroz neku drugu sredinu se naziva indeks prelamanja (index of refraction) te sredine c n =, (14.3) v gde je c brzina svetlosti u vakuumu. Za vazduh i gasove, brzina svetlosnog snopa je vrlo približno c, stoga imamo da je n 1. Za optičke frekvencije, indeks prelamanja vode je 1.33. Staklo ima mnoge sastave, svaki sa malo različitom brzinom svetlosti. Indeks prelamanja kvarcnog stakla koje koristimo za izradu optičkog vlakna iznosi, približno, 1.5, mada je preciznija vrednost za korišćene staklene sastave između 1.45 i 1.48. Na razdvojnoj površini sredina različitih indeksa prelamanja, Snelov (Snel) zakon definiše odnos upadnog i prelomljenog ugla svetlosnog zraka kao n φ = n φ, (14.4) 1sin 1 sin gde su parametri jednačine objašnjeni na slici 14.3. n φ φ n 1 φ 1 φ c Slika 14.3. Prelamanje i odbijanje svetlosnog zraka na graničnoj površini dve sredine različitih indeksa prelamanja 14-3

Prolaskom svetlosnog zraka iz sredine većeg indeksa prelamanja u sredinu manjeg indeksa prelamanja (n 1 > n ) imamo da sa porastom upadnog ugla φ 1 raste i prelomljeni ugao φ svetlosnog zraka. Pošto je ugao φ uvek veći od ugla φ 1, ugao φ će pre dostići 90 od ugla φ 1. Kritičan ugao φ 1 = φ c je onaj koji dovodi do prelamanja tako da se svetlosni zrak ne prelama u drugu sredinu. Ako je upadni ugao φ 1 veći od kritičnog ugla φ c, svetlosni zrak neće preći u drugu sredinu, nego će se odbiti od razdvojne površine i ostaće u materijalu iz kojeg nailazi. Ovaj princip potpune refleksije omogućuje optičkim vlaknima da provode svetlosni snop. 14.1.. Optičko vlakno kao svetlovod Optičko vlakno je cilindrična struktura koja se sastoji od dva koncentrična sloja, unutrašnjeg, koji se naziva jezgro, i spoljašnjeg, koji se naziva omotač (slika 14.4). Slojevi su načinjeni od stakla ili plastike, a nekad od njihovih kombinacija. Neophodno je da slojevi imaju različit indeks prelamanja i to indeks prelamanja u jezgru n 1, treba da je veći od indeksa prelamanja u omotaču n, da bi pri određenom upadnom uglu svetlosnog zraka na ulazu u vlakno došlo do potpunog odbijanja svetlosnog zraka ka centru jezgra. Omotač se radi veće zaštite vlakna presvlači još jednim slojem od polietilena. Taj spoljašnji sloj se naziva primarna zaštita i nema uticaja na optičke karakteristike vlakna. Primarna zaštita Omotač Jezgro Omotač Jezgro Slika 14.4. Izgled optičkog kabla i poprečni presek bez primarne zaštite Optičko vlakno u kojem je indeks prelamanja u jezgru i omotaču konstantan i skokovito se menja duž poprečnog preseka vlakna predstavlja najjednostavniji tip raspodele indeksa prelamanja profil indeksa prelamanja i takva vlakna se nazivaju vlakna sa skokovitim indeksom prelamanja, step-indeks vlakna. Iako su ova vlakna najjednostavnija za analizu i proizvodnju, brzina prenosa informacija kroz njih je ograničena, a samim tim i njihova primena u telekomunikacijama. U praktičnim primenama razlika između indeksa prelamanja jezgra i omotača je veoma mala (n 1 n ), tako da se definiše normalizovana razlika indeksa prelamanja kao n1 n n1 n =. (14.5) n n 1 1 Poznato je da je za potpuno odbijanje svetlosnog snopa u jezgro vlakna neophodno da n 1 bude veće od n, što znači da je vrednost uvek pozitivna. Većina vlakana koja se koriste u telekomunikacijama imaju tipične vrednosti indeksa između 0,8 % i,1 %. n n 1 a 14-4

Na slici 14.5 prikazan je svetlosni snop koji nailazi na početak vlakna sa skokovitom promenom indeksa prelamanja pod uglom θ 0 u odnosu na osu vlakna i koji se zatim prostire kroz vlakno zaklapajući ugao θ sa osom vlakna. θ 0 n 0 n n 1 θ φ φ Slika 14.5. Prostiranje svetlosnog zraka kroz vlakno sa skokovitim indeksom prelamanja Najveći ugao (izražen u radijanima) koji upadni svetlosni snop može da ima, a da bude prihvaćen u jezgru vlakna naziva se numerički otvor (apertura) vlakna (NA) i definiše se kao NA = n0 sin θ 0 max = n1 n = n1. (14.6) Vlakno sa većim NA može da prikupi veću količinu svetlosti. U praksi je numerički otvor uglavnom veoma mali (NA = 0.1 0.3). To je zbog toga što porastom numeričkog otvora, raste broj svetlosnih zraka koji mogu da se prostiru u svetlovodu a taj je broj potrebno ograničiti. Zraci se kroz vlakno prostiru pod razičitim uglovima, time prelaze različite putanje i tako na kraj vlakna stižu u različitim vremenskim trenucima. Usled toga dolazi do širenja (disperzije) impulsa, što nepovoljno utiče na informacioni kapacitet samog svetlovoda. Posmatrajući sliku 14.5 moglo bi se zaključiti da bilo koji snop koji se dovede na početak vlakna pod uglom manjim ili jednakim n1 može da se prenese optičkim vlaknom. Međutim, nešto strožija analiza koja se bazira na primeni Maksvelovih jednačina, i uvažava talasnu prirodu svetlosti, pokazuje da je prenos moguć samo za određen broj diskretnih uglova θ, takozvanih modova. Ukupan broj modova u vlaknu sa skokovitom promenom indeksa prelamanja može se odrediti na osnovu izraza π an N 1 λ, (14.7) gde je a poluprečnik jezgra i λ talasna dužina prenošene svetlosti. Npr. u vlaknu sa skokovitim indeksom prelamanja pri poluprečniku jezgra a = 50 µm, =.1 % i n 1 = 1.48, oko 600 (tačnije 686) modova se može preneti pri talasnoj dužini λ = 1300 nm. Na talasnoj dužini λ = 850 nm broj modova je još veći i iznosi N = 683. Broj prostirućih modova diktira ukupnu disperziju impulsa tj. ukupni opseg ovakvog vlakna, stoga se njihov broj mora kontrolisati. 14.1.3. Polarizacija svetlosnog snopa Električno polje svetlosnog snopa može biti usmereno duž više pravaca. Slika 14.6 pokazuje odnos vektora električnog polja E i pravca prostiranja ravnog talasa (talasa koji ima istu fazu u svim tačkama jedne ravni). Talas putuje duž z pravca, a vektor električnog polja menja intenzitet duž x 14-5

pravca. Električno polje koje je usmereno samo duž jednog pravca naziva se linearno polarizovano polje, jer je uvek usmereno duž samo jedne iste linije. Konkretni smer i pravac polarizacije određen je polarizacijom optičkog izvora i polarizaciono osetljivim komponentama na koje svetlost nailazi. Takođe, moguće je da dva talasa istovremeno putuju duž z pravca, jedan polarizovan u pravcu x, a drugi u pravcu y ose. Ova dva talasa će biti nezavisna jedan od drugoga zbog njihove ortogonalne polarizacije. Termin mod takođe referencira na različite načine na koje talas može putovati duž nekog pravca. Dva nezavisna, upravo opisana, ortogonalna moda su dva moda ravnih talasa na neograničenom medijumu. Može se pokazati da su i drugi modovi mogući, imajući polarizaciju u xy ravni pod nekim uglom u odnosu na x odnosno y osu. Proizvoljni vektor električnog polja može se dekomponovati u svoje x i y komponente tako da je ovo polje jednostavna kombinacija dva upravo opisana moda. Talas je nepolarizovan ako vektor električnog polja slučajno menja pravac pri prostiranju talasa. Talasi u većini optičkih vlakana su nepolarizovani. x E v z Slika 14.6. Talas koji se prostire duž z pravca i ima električno polje polarizovano duž x pravca 14.1.4. Tipovi optičkih vlakana y Prostiranje svetlosnog zraka kroz optičko vlakno zavisi od: veličine, konstrukcije i sastava optičkog vlakna kao i od prirode svetlosnog zraka emitovanog u vlakno. Optička vlakna se najčešće dele prema broju modova koji se prostiru kroz jezgro. Na osnovu ove osobine razlikujemo: multimodna vlakna (multimode fiber MM), kroz čije se jezgro prostire više modova (stotine čak i hiljade) i monomodna vlakna (single-mode fiber SM), kroz čije se jezgro prostire samo jedan mod. Multimodna optička vlakna se proizvode u različitim dimenzijama opisanim kao 50/15, 6.5/15 i 100/140. Pri tome prvi broj opisuje prečnik jezgra, a drugi prečnik omotača (slika 14.7). Kada je dizajn multimodnih vlakana u pitanju, rešenje je nađeno u pogodnom projektovanju profila indeksa prelamanja i to optička vlakna sa skokovitim profilom indeksa prelamanja (step index multimode fiber), kod kojih je promene indeksa prelamanja na prelasku iz jezgra u omotač nagla (slika 14.5), 14-6

optička vlakna sa gradijentnim profilom indeksa prelamanja (graded index multimode fiber), kod kojih je promene indeksa prelamanja postepena, polazeći od centra jezgra, odakle se njegova vrednost smanjuje radijalno, da bi na mestu prelaza u omotač bila jednaka indeksu prelamanja omotača (slika 14.8). 8 50 6,5 100 15 15 15 140 Omotač Jezgro Slika 14.7. Karakteristične dimenzije jezgra i omotača optičkih vlakana (dimenzije su u μm) Step-indeks vlakna se koriste u sistemima sa malim rastojanjima i ne previše zahtevnim propusnim opsegom. Kao što se vidi na slici 14.5, prečnik jezgra u ovom vlaknu je dosta velik u poređenju sa prečnikom omotača. Vrednost indeksa prelamanja ima skokovit prelaz iz jednog materijala u drugi, a kao posledica toga svetlost se duž jezgra prostire po više putanja tj. modova. Odavde i potiče naziv multimodna vlakna. Mod najnižeg reda je onaj koji se prostire duž ose jezgra, time prelazi najkraći put i stiže prvi na kraj vlakna. Mod najvišeg reda prelazi najdužu izlomljenu putanju od početka do kraja vlakna i stiže sa najvećim vremenskim zaostatkom na kraj vlakna. Vreme propagacije ostalih modova je između ova dva ekstremna slučaja. Kada se modovi na izlazu vlakna superponiraju, efektivna širina impulsa postaje mnogo veća od one na ulazu, dok je amplituda optičkog impulsa na izlazu oslabljena. Multimodni prenos kroz vlakno sa skokovitim indeksom prelamanja predstavlja najjeftiniji vid prenosa optičkih signala, tako da se on najviše i koristi, pogotovo na trasama do 5 km. Da bi se izbeglo nepoželjno širenje impulsa na izlazu vlakna sa skokovitim indeksom prelamanja, projektovano je vlakno koje je našlo mnogo veću primenu u telekomunikacijama. To je vlakno sa gradijentnim indeksom prelamanja. Omotač Jezgro a n 1 (1) () n Poprečni presek i profil indeksa prelamanja Prostiranje modova duž vlakna Slika 14.8. Optičko vlakno sa gradijentnim indeksom prelamanja 14-7

Multimodna vlakna sa gradijentnim indeksom prelamanja su tako projektovana da modovi koji prelaze kraći put imaju manju brzinu dok oni čija je putanja duža veću brzinu. Ovo je postignuto izmenom profila indeksa prelamanja jezgra, koji kod ovih vlakana ima oblik kao na slici 14.8. Indeks prelamanja na osi vlakna je isti kao kod vlakna sa skokovitim indeksom prelamanja n 1, a zatim postepeno opada do razdvojne površine između jezgra i omotača. Usled ovakvog načina prostiranja modova, dolazi do povećanja brzine onih modova koji prelaze duži put i smanjenja brzine onih koji prelaze kraći put. Zahvaljujući tome, svi modovi stižu u približno isto vreme na kraj vlakna i time skoro desetostruko smanjuju proširenje impulsa na izlazu u odnosu na vlakno sa skokovitim indeksom prelamanja. Još veće smanjenje širine impulsa može se postići smanjenjem broja prenošenih modova, sve do samo jednog. Vlakno kojim se prenosi samo jedan mod naziva se monomodno, singlmodno ili jednomodno vlakno (single mode fiber). Kroz jezgro monomodnog vlakna prostire se samo jedan mod. Posmatrajući ponovo jednačinu za broj modova u step-index vlaknu πn 1a N, (14.8) može se zaključiti da opadanjem normalizovane razlike indeksa prelamanja i poluprečnika a jezgra, za fiksnu radnu talasnu dužinu, opada broj prenošenih modova kroz vlakno. Monomodni svetlovod se dobija kada je ispunjen uslov λ a < λ 0,3. (14.9) n 1 Vlakno koje zadovoljava gornju nejednakost u stanju je da prenese samo jedan mod i zbog toga se naziva monomodno. Talasna dužina iznad koje vlakno postaje monomodno naziva se granična talasna dužina λ cutoff (fiber s cutoff wavelength). Kada se svetlost kroz monomodno vlakno prostire ispod granične frekvencije, monomodno vlakno se ponaša kao multimodno vlakno sa skokovitim indeksom prelamanja koji prenosi dva do tri moda. Uslov monomodnosti ostvaruje se za prečnik jezgra koji je manji od 10 μm. Tek u novije vreme, za sisteme sa ekstremno velikim digitalnim protokom, otlriveno je da mala razlika u brzini dva međusobno ortogonalno polarisana talasa dovodi do proširenja optičkog impulsa koje je srazmerno trajanju bitskog intervala. Kod monomodnih vlakana se pored profila indeksa prelamanja specificira i prečnik moda (slika 14.9). Ovo se čini zbog toga što je kod monomodnih vlakana zbog višeslojne strukture teško precizno definisati jezgro vlakna, dok sa druge strane imamo neuniformnu raspodelu intenziteta svetlosti po poprečnom preseku više slojeva vlakna. Najveći intenzitet svetlosti je u okolini ose vlakna i opada kako se približavamo omotaču. Kod većine monomodnih vlakana promena intenziteta svetlosti u funkciji poluprečnika može se aproksimirati Gausovom zvonastom krivom. Poluprečnik pri kome intenzitet svetlosti opadne na 1/e = 0.135 - tinu maksimalne vrednosti, naziva se poluprečnik moda i označava se sa ω 0. Analogno ovome ω 0 predstavlja prečnik moda. 14-8

Intenzitet I 0,0 1,0 -ω 0 poluprečnik r 0 ω 0 I = I r / ω0 0e Prečnik polja moda = ω 0 1/e Slika 14.9. Raspodela intenziteta svetlosti u jezgru monomodnog vlakna Ponašanje svakog od prethodno pomenutih vlakana zavisi od optičkog prozora koji se koristi za prenos optičkog signala. Poznato je da funkcija zavisnosti podužnog slabljenja prenošenog optičkog signala od njegove talasne dužine ima lokalne minimume na određenim talasnim dužinama, koji su istorijski posmatrano jedan po jedan bili otkrivani. Reč je o talasnim dužinama od 850 nm, 1310 nm, 1550 nm (C Conventional Band) i 1600 nm (L Long Band). Prvi optički prozor koristi se gotovo isključivo u kratko-dometnom optičkom prenosu upotrebom multimodnih vlakana. Standardna singlmodna vlakna sa nenultom disperzijom i multimodna stepindex vlakna dizajnirana su za prenos u drugom optičkom prozoru (1310 nm). Danas je standard prenos u trećem optičkom prozoru (1550 nm), čija je prednost značajno manje slabljenje u odnosu na drugi optički prozor. Obzirom na prednosti trećeg optičkog prozora, proizvođači su dizajnirali DSF vlakno (G.653 Dispersion shifted fiber) kod kojeg je tačka nulte disperzije pomerena na region oko 1550 nm. Iako je to značilo da DSF vlakno sada ima i minimalno slabljenje i nultu disperziju na talasnoj dužini prenosa od 1550 nm, pokazalo se da u aplikacijama kakva je multipleks po talasnim dužinama (DWDM), pri prenosu ovim vlaknom nastaju destruktivne nelinearne pojave (Four Wave Mixing 4WM ) za koje ne postoji efikasna kompenzacija. Treći tip vlakna, NZ DSF (G.655 non zero shifted dispersion fiber), dizajniran je za potrebe DWDM aplikacija. Cilj ovog dizajna bio je da se proizvede vlakno koje ima malu, ali ne nultu, disperziju u 1550 nm prozoru. Ovom strategijom se kontrolisana količina disperzije pokazuje korisnom u suzbijanju 4WM nelinearnih efekata jer smanjuje fluks u jezgru optičkog vlakna. 14-9

14.. Slabljenje i disperzija Snaga ulaznog impulsa svetlosti P i u optičko vlakno zavisi od jačine svetlosnog izvora, a njegova širina T od brzine signaliziranja na ulazu. Ako se teoretski pretpostavi da širina propusnog opsega vlakna nije ograničena, trajanje impulsa ostaje nepromenjeno prilikom prenosa, dok amplituda izlaznog signala P o postaje manja od amplitude signala na ulazu P i, kao posledica apsorpcije i rasejanja svetlosti duž vlakna. Ovaj proces definiše gubitke u optičkom vlaknu. Gubici predstavljaju količnik energije signala na izlazu i ulazu u optičko vlakno, a izražavaju se u decibelima [db]. Kako je energija impulsa jednaka površini impulsa, a trajanje impulsa nepromenjeno, slabljenje se može izraziti preko odnosa snaga, odnosno amplituda signala na izlazu i ulazu vlakna Wo PT o Po α = 10log = 10log = 10log [ db]. (14.10) W PT P i i i S obzirom da je P o < P i, količnik pod logaritmom je negativan broj. Da bi α bilo pozitivno, stavlja se znak ispred celog izraza. Logaritmi se koriste iz praktičnih razloga, jer se na taj način ukupno slabljenje duž trase koja se sastoji od više deonica dobija kao suma slabljenja pojedine deonice. Gubici smanjuju ukupnu energiju signala na ulazu u prijemnik, pa je razumljivo da je gubitke poželjno smanjiti u štovećoj meri. Najmanje slabljenje unutar optičkog vlakna nalazi se u opsegu talasnih dužina od 700 nm (0.7 μm) do 1600 nm (1.6 μm) (slika 14.10). 6 gubici (db/km) 5 4 3 1 Prvi prozor OH - OH - Drugi prozor OH - Treći prozor 0 0,7 0,8 0,9 1,0 1,1 1, 1,3 1,4 1,5 talasna dužina - λ (μm) 1,6 Slika 14.10. Slabljenje u optičkom vlaknu u funkciji talasne dužine Slabljenje se najčešće izražava u db/km. Pri tome se smatra da su gubici uniformno raspodeljeni duž vlakna. Unutar opsega od 700 nm do 1600 nm postoje tri konvencionalna optička prozora za prenos na tri različite talasne dužine svetlosti. Na oko 850 nm centriran je prvi optički prozor, na 1310 nm drugi i na 1550 nm treći. Multimodna optička vlakna skokovitog indeksa prelamanja koriste se za rad u prvom i drugom optičkom prozoru, multimodna optička vlakna gradijentnog indeksa najčešće se koriste za rad u drugom optičkom prozoru, dok se monomodna vlakna koriste za rad u drugom i trećem optičkom prozoru. Matematički izraz kojim se približno može opisati kriva slabljenja sa slike 14.10 je 14-10

A α( db / km) = + B + C( λ). (14.11) 4 λ Prvi član opisuje gubitake u vlaknu uzrokovane rasejanjem, konstanan član B predstavlja ofset krive koji je posledica instalacije kablova i gubitaka usled savijanja, dok treći sabirak opisuje lokalne maksimume krive, odnosno infracrvenu i ultraljubičastu apsorpciju zračenja na OH jonima. Nepravilnosti u strukturi optičkog vlakna izazivaju gubitke usled rasejanja optičke snage. One se manifestuju u vidu varijacija prečnika jezgra optičkog vlakna kao i raznih mikrooštećenja na graničnoj površini jezgro-omotač koja su manja od talasne dužine prostiruće svetlosti. Rasejani svetlosni zraci se odbijaju drugačije od razdvojne površine jezgro-omotač nego što predviđa princip totalne unutrašnje refleksije. Usled toga, neki zraci prelaze u omotač, a neki promene pravac i prostiru se unazad, ka izvoru. Dominantni tip rasejanja kod optičkih vlakana je Rejlijevo (Rayleigh) rasejanje, koje je u izrazu za slabljenje zastupljeno članom A / λ 4, gde je A koeficijent Rejlijevog rasejanja. Ovaj vid rasejanja svojstven svakom optičkom vlaknu i javlja se zbog mikroskopskih nehomogenosti u sastavu stakla, odnosno nečistoća, koje su reda veličine desetine talasne dužine primenjene svetlosti i manje. Usled ovih nehomogenosti, svetlost se na tim mestima rasejava u različitim pravcima (slika 14.11). Ovo je proces identičan procesu rasejanja sunčeve svetlosti na molekulima atmosfere usled koga imamo doživljaj plavog neba. Rasejanje je manje pri većim talasnim dužinama, tako da mnogi telekomunikacioni sistemi rade u drugom i trećem prozoru, gde su gubici usled ovog vida rasejanja najmanji. Slika 14.11. Rejlijevo rasejanje koje nastaje usled mikroskopskih nehomogenosti u sastavu stakla Da bi prenos optičkim vlaknima imao široku primenu, neophodno je da se vlakna prilagode raznim spoljašnjim uticajima. Promena geometrije vlakna usled savijanja dovodi do promene ugla prelamanja, a kao rezultat toga neki svetlosni zraci se ne reflektuju nazad u jezgro nego prelaze u omotač (slika 14.1), dok se drugi nepravilno odbiju i pređu iz jednog moda u drugi, (slika 14.13). Energija signala na izlazu vlakna kao i pri rasejanju, postaje manja nego na ulazu u vlakno. φ 1 φ R Slika 14.1. Prelazak svetlosnog zraka iz jezgra u omotač usled savijanja optičkog vlakna 14-11

α α β β β > α mod višeg reda mod nižeg reda Slika 14.13. Prelazak svetlosnog zraka iz jednog moda u drugi zbog savijanja optičkog vlakna Posle rasejanja, apsorpcija predstavlja drugi osnovni mehanizam gubitka energije svetlosti u optičkim vlaknima. Usled apsorpcije svetlost se pretvara u toplotu, a time se povećava temperatura vlakna. Zagrevanje vlakna je sporo i teško za merenje. Najčešći uzroci apsorpcije optičke energije su nečistoće koje predstavljaju ostatke prečišćavanja u proizvodnji stakla, kao i dopanti koji se koriste u proizvodnji optičkih vlakana. Apsorpciju izazivaju joni metala, a najveća apsorpcija je prisutna usled OH jona koji se nalaze uz molekule vode u staklu. Nivo apsorpcije zavisi od koncentracije jona i talasne dužine svetlosti. Zavisnost slabljenja od apsorpcije opisuje se trećim članom C(λ) u izrazu za slabljenje. Razlikujemo ultraljubičastu i infracrvenu apsorpciju. Optička vlakna pored malih gubitaka treba da imaju i mogućnost prenosa signala što većim brzinama, drugim rečima, da imaju veliku širinu propusnog opsega. Ova osobina odgovara maloj disperziji (širenju svetlosnog impulsa) pri prostiranju svetlosti duž svetlovoda. Postoji više mehanizama koji uzrokuju disperziju, ali posledica svih je ista - širenje impulsa u prenosu digitalnih signala, što može da dovede do intersimbolske interferencije i degradacije kvaliteta prenosa. Širina propusnog opsega je termin koji se koristi u frekvencijskom domenu, dok disperzija predstavlja analogan termin u vremenskom domenu. Sa smanjenjem širine propusnog opsega, disperzija impulsa raste. P 0 P 0 t 1 P 1 P 1 t Ulaz t Izlaz t Slika 14.14. Izgled signala na ulazu i na izlazu optičkog vlakna u vremenskom domenu Kako je disperzija impulsa funkcija dužine vlakna, uobičajeno je da se širina propusnog opsega izražava u MHz km u frekvencijskom domenu, odnosno da se disperzija signala izražava u ns/km u vremenskom domenu. Većina današnjih optičkih vlakana ponaša se kao nisko-propusni filtar, menjajući oblik ulaznog signala kao na slici 14.15. Širina propusnog opsega zavisi od talasne dužine svetlosti izvora, spektralne širine izvora i načina osvetljavanja jezgra svetlovoda. 14-1

P 0 P 1 P 1 Ulaz f f B Izlaz f Slika 14.15. Promena vrednosti amplitude signala na ulazu i na izlazu optičkog vlakna u frekvencijskom domenu Širenje impulsa kod svetlovoda može nastupiti i usled različitih putanja/brzina prostiranja pojedinih modova, što se naziva modalna disperzija, zbog zavisnosti indeksa prelamanja vlakna od talasne dužine, (hromatska disperzija), ili usled neizotropnosti sredine (polarizaciona disperzija). Uobičajeno je da se hromatska disperzija deli na materijalnu i svetlovodnu disperziju. Kombinacija tipa upotrebljenog vlakna i optičkog izvora dovodi do određenog dominantnog mehanizma disperzije. Tako je npr. kod multimodnih step-indeks vlakana dominantan tip disperzije modalna, kod multimodnih vlakana sa gradijentnim indeksom prelamanja i singlmodnih vlakana sa nenultom disperzijom dominantan tip je hromatska disperzija, dok kod singlmodnih vlakana sa nultom disperzijom, pri brzinama signalizacije većim od 10 Gbps dominira polarizaciona disperzija, jer su svi ostali tipovi disperzije efikasno potisnuti. Kod multimodnih step-indeks vlakana lako se može odrediti maksimalno širenje impulsa. Za zrak koji se prostire duž ose, vreme potrebno da pređe svetlovod dužine l iznosi t l n1l =, (14.1) v c min = dok za zrak koji se prostire pod uglom θ u odnosu na osu, potrebno vreme da pređe svetlovod iste dužine je n1 l t =, (14.13) max c cosθ jer je dužina puta tog zraka l/cosθ. Kako je dobija se n 1 cosθ = o sin( 90 θ) = sinφ = n =, (14.14) 1 + 1 n1l t max = ( 1 + ). (14.15) c Širenje impulsa na izlazu iz svetlovoda dužine l je prema tome 14-13

n1l τ = t max t min =. (14.16) c Ako se usvoji da je = 0,01, a n 1 = 1,5 dobija se da je širenje impulsa po kilometru dužine, τ / l = 50 ns/km, odnosno da je maksimalna bitska brzina za kilometar dužine multimodnog vlakna sa skokovitim indeksom prelamanja oko 0 Mbit/s. Međutim, brojna merenja su pokazala da je širenje impulsa nešto manje nego što to nameće gornji izraz, kao i da širina impulsa raste srazmerno korenu dužine svetlovoda ( l ). Ova pojava se može objasniti pojmom mešanja modova. Usled raznih nesavršenosti u strukturi svetlovoda: mikropukotina, nehomogenosti u indeksu prelamanja, varijacija u poluprečniku jezgra ili usled mikrosavijanja svetlovoda, dolazi do razmene energije između pojedinih modova. Pri prelasku energije iz bržih u sporije modove i obratno, dolazi do usrednjavanja brzine prostiranja energije, tj. dolazi do smanjenja širenja impulsa. Samim tim srednje kašnjenje raste proporcionalno dužini svetlovoda, dok širina impulsa raste sa kvadratnim korenom dužine svetlovoda. Na slici 14.16 prikazana je zavisnost realativnog grupnog kašnjenja svetlosnog signala u funkciji talasne dužine u multimodnom vlaknu dužine 1 km. relativno grupno kašnjenje - τ (nsec/km) 5 0 10 nsec 15 10 4 S 0 λ0 t = A + λ 1 + 8 λ λ = 1335 nm S = 0,095 psec ( nm) km 5 0 800 900 1000 1100 100 1300 1400 1500 0 0 talasna dužina - λ (nm) Slika 14.16. Relativno grupno kašnjenje u funkciji talasne dužine za deonicu multimodnog vlakna dužine 1km Sa slike 14.16 se vidi da svetlosni impuls talasne dužine λ = 800 nm stiže 10 ns kasnije od onog na λ =900 nm. Prema tome, LED dioda koja zrači u širem opsegu talasnih dužina nego laserska dioda, daje svetlosne impulse koji stižu na izlaz svetlovoda u širem vremenskom intervalu. Najbolji režim rada je onaj koji koristi najravniju oblast krive grupnog kašnjenja sa slike 14.16. To su talasne dužine iz opsega gde je grupno kašnjenje najmanje, tj. oko nulte talasne dužine λ 0 (na slici λ 0 = 1335 nm). Vrlo često se umesto relativnog grupnog kašnjenja posmatra parametar koji je jednak izvodu te krive (relativna promena kašnjenja sa promenom talasne dužine), tzv. hromatska disperzija D u funkciji talasne dužine (slika 14.17). 14-14