ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.
|
|
- Ουρίας Ρέντης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.tsif Σελίδα 1
2 Έλυσαν οι Δημήτρης Ιωάννου, Γιώργος Βισβίκης, Μπάμπης Στεργίου, Χρήστος Κάναβης, Γιώργης Καλαθάκης, Παναγιώτης Γκριμπαβιώτης, Περικλής Γιαννουλάτος Κώστας Ζυγούρης, Χρήστος Ντάβας, Γιώργος Ρίζος Ηλίας Καμπελής, Νίκος Φραγκάκης,Αντώνης Βρέντζος, Γιώργος Γαβριλόπουλος, lafkasd, Περικλής Παντούλας, Κώστας Μαλλιάκας, Γιώργος Λέκκας, Θεοδωρής Καραμεσάλης, Χρήστος Κανάβης Επιμέλεια : Τσιφάκης Χρήστος Αφιερωμένο σε όλους τους μαθητές της Α Λυκείου Τεύχος 4ο Επιμέλεια : xr.tsif Σελίδα
3 ΘΕΜΑ 481 Έστω ισοσκελές τρίγωνο με 1. Φέρουμε ημιευθεία Ax κάθετη στην A στο A, η οποία τέμνει τη B στο. Έστω το μέσο του AB και Kτο μέσο του. Να αποδείξετε ότι: α) Το τρίγωνο AB είναι ισοσκελές. (Μονάδες 8) β) B. (Μονάδες 8) γ) / /AK. (Μονάδες 5) δ) AK. (Μονάδες 4) α) Επειδή η γωνία A 9, έπεται ότι A Επίσης, αφού το τρίγωνο AB είναι ισοσκελές έχουμε ότι 18 1 B 3. Επομένως A1 B 3, που σημαίνει ότι το τρίγωνο AB είναι ισοσκελές. β) Από το (α) έχουμε ότι B. Από το A επειδή 3, έχουμε ότι : A A. Τελικά : B. Επιμέλεια : xr.tsif Σελίδα 3
4 γ) Το τρίγωνο AB είναι ισοσκελές και το είναι μέσον. Επομένως το αφού είναι διάμεσος,θα είναι και ύψος, οπότε Ακόμα στο ορθογώνιο τρίγωνο A είναι 3, οπότε : AB (1). A , άρα το τρίγωνο A είναι ισόπλευρο, οπότε A 6 και τελικά BAK KA AB (). Από (1),() έχουμε ότι : / /AK. δ) Στο τρίγωνο BAKτο είναι μέσον και / /AK άρα το είναι μέσον και AK AK. ΘΕΜΑ 48 Έστω ορθογώνιο τρίγωνο AB με A 9 και B 6. Η διχοτόμος της γωνίας B τέμνει την Aστο Z. Τα σημεία Mκαι K είναι τα μέσα των BZ και B αντίστοιχα. Αν το τμήμα είναι κάθετο στη διχοτόμο B να αποδείξετε: α) Το τρίγωνο BZείναι ισοσκελές. β) Το τετράπλευρο AMKZείναι ρόμβος. γ) Z ZA. δ) B A. α) Στο ορθ. τρίγωνο ABείναι A 9 και B 6 οπότε ˆ 3. Επιμέλεια : xr.tsif Σελίδα 4
5 Αφού η B είναι διχοτόμος της B τότε ZB 3 Έτσι ZB ˆ 3 δηλαδή το τρίγωνο BZ είναι ισοσκελές. β) Στο ορθ. τρίγωνο ABZ είναι ZBA 3 και AM διάμεσος στην υποτείνουσα BZ, έτσι BZ AM AM AZ 1. Το MK ενώνει τα μέσα δυο πλευρών του τριγώνου BZ έτσι MK/ / Z και Z ZBZ BZ MK MK AM AZ. Οπότε MK / / AZ και MK AZ. Έτσι το AMKZ είναι ρόμβος αφού είναι παραλληλόγραμμο με δύο ίσες διαδοχικές πλευρές. γ) Από το ισοσκελές τρίγωνο BZ είναι BZ Z. Από την 1 είναι BZ Z AZ AZ Z AZ. δ) Επειδή στο ορθ. τρίγωνο AB είναι ˆ 3 B τότε AB 3 Ομοίως, από ορθ. τρίγωνο B είναι ZB 3 B οπότε 4. Τα ορθ. τρίγωνα ABκαι B 3, 4 και ˆ ZB 3. Άρα και B A. ΘΕΜΑ 483 είναι ίσα αφού έχουν: AB από τις σχέσεις Έστω τρίγωνο AB με διάμεσο AMτέτοια ώστε AM AB. Φέρνουμε το ύψος AK και το προεκτείνουμε (προς το Κ) κατά τμήμα KAK. Προεκτείνουμε την AM (προς το M) κατά τμήμα ME AM. Να αποδείξετε ότι Επιμέλεια : xr.tsif Σελίδα 5
6 α) E A και E KM. (Μονάδες 7 ) β) Το τετράπλευρο ABE είναι παραλληλόγραμμο. (Μονάδες 6 ) γ) Το τετράπλευρο AB M είναι ρόμβος. (Μονάδες 6 ) δ) Η προέκταση της M τέμνει το A στο μέσον του Z. (Μονάδες 6 ) α) E KM ( K,Mείναι τα μέσα των A, AE αντίστοιχα). Άρα E A (αφού A KM ) και E KM. β) Το τετράπλευρο ABEείναι παραλληλόγραμμο επειδή οι διαγώνιοι του διχοτομούνται. γ) Στο ισοσκελές τρίγωνο ABM το AKείναι ύψος, άρα και διάμεσος. Οπότε οι διαγώνιοι του τετραπλεύρου AB M είναι κάθετες και διχοτομούνται, δηλαδή είναι ρόμβος. δ) Z του A. AB και M είναι μέσο του B, άρα Z είναι μέσο ΘΕΜΑ 484 Έστω κύκλος με κέντρο O και διάμετρο K. Έστω A σημείο του κύκλου ώστε η ακτίνα να είναι κάθετη στην K. Φέρουμε τις χορδές AB A και έστω, E τα σημεία τομής των προεκτάσεων των AB, A αντίστοιχα με την ευθεία K. Να αποδείξετε ότι: α) Η γωνία BA είναι 1. (Μονάδες 7) β) Τα σημεία Bκαι είναι μέσα των A και αντίστοιχα. (Μονάδες 9) Επιμέλεια : xr.tsif Σελίδα 6
7 γ) KB. (Μονάδες 9) α) Τα τρίγωνα και είναι ισόπλευρα, διότι οι πλευρές τους είναι ίσες με. Επομένως καθεμιά από τις γωνίες OAB, OA είναι ίση με 6. Άρα η γωνία BA είναι ίση με 1 o. β) Είναι 3 o και o BO 3. Άρα το τρίγωνο BO είναι ισοσκελές, οπότε B BO BA. Επομένως, το B είναι μέσο του A. Όμοια το είναι μέσο του. γ) Είναι B E. Επιπλέον είναι OOE διότι στο ισοσκελές τρίγωνο AE το είναι ύψος. Έτσι OK O, οπότε είναι K E. Επομένως EK. Άρα τα τρίγωνα B, EK είναι ίσα, αφού επιπλέον είναι E 3 o. Άρα B K. ΘΕΜΑ 486 Θεωρούμε ισοσκελές τρίγωνο AB, και την ευθεία της εξωτερικής διχοτόμου της γωνίας A. Η κάθετη στην πλευρά ABστο Bτέμνει την στο K και την ευθεία A στο Z. Η κάθετη στην πλευρά A στο τέμνει την στο και την ευθεία AB στο E. Επιμέλεια : xr.tsif Σελίδα 7
8 α) Να αποδείξετε ότι: i. AZ AE. ii. AK A. β) Ένας μαθητής κοιτώντας το σχήμα, διατύπωσε την άποψη ότι η A είναι διχοτόμος της γωνίας A του τριγώνου AB, όπου το σημείο τομής των KH και E. Συμφωνείτε με την παραπάνω άποψη του μαθητή ή όχι; Δικαιολογήστε πλήρως την απάντησή σας. α) i. Θεωρώντας ότι AB A, (ΔΕΝ ΑΝΑΦΕΡΕΤΑΙ ΣΤΗΝ ΕΚΦΩΝΗΣΗ) τα ορθογώνια τρίγωνα ABZ και AE είναι ίσα αφού έχουν AB A από την (δικιά μας) υπόθεση και A κοινή γωνία. Άρα AZ AE. ii. Τα ορθογώνια τρίγωνα ABK και A είναι ίσα αφού έχουν: AB A από την υπόθεση και BAK A ως μισά των ίσων εξωτερικών γωνιών της A. Άρα AK A. β) Είναι B 9 B και B 9, ˆ έτσι B B αφού είναι B. ˆ Έτσι το τρίγωνο B είναι ισοσκελές δηλαδή B. Όμως AB A. Τα σημεία A και ισαπέχουν από τα άκρα του B οπότε η A είναι η μεσοκάθετος του B δηλαδή και διχοτόμος της γωνίας A αφού το τρίγωνο AB είναι ισοσκελές. Δηλαδή ο μαθητής έχει δίκιο. Επιμέλεια : xr.tsif Σελίδα 8
9 ΘΕΜΑ 481 Έστω παραλληλόγραμμο AB με O το σημείο τομής των διαγωνίων του και K το μέσο του. Προεκτείνουμε το κατά τμήμα KZ KO. Η τέμνει τη διαγώνιο A στο. Να αποδείξετε ότι: α) Τα τμήματα O και διχοτομούνται. (Μονάδες 8) β) AO Z. (Μονάδες 9) γ) Τα τρίγωνα και Z είναι ίσα. (Μονάδες 8) α) Τα σημεία, είναι τα μέσα των B, αντίστοιχα. Άρα: B OK OZ B, δηλαδή το τετράπλευρο OZB είναι παραλληλόγραμμο, οπότε οι O και διχοτομούνται. Β) Ομοίως είναι OZ A, οπότε το τετράπλευρο OA Z είναι παραλληλόγραμμο, δηλαδή AO Z. Επιμέλεια : xr.tsif Σελίδα 9
10 γ) AO Z, OB Z, AB. Άρα τα τρίγωνα και Z είναι ίσα. Τι νόημα είχε το τελευταίο ερώτημα; Απ' όσες ασκήσεις έχω λύσει μέχρι στιγμής, έχω παρατηρήσει, ότι -πλην ελαχίστων εξαιρέσεων- τα ερωτήματα είναι υπερβολικά απλουστευμένα, σε βαθμό που να αναρωτιέται κανείς, τι νόημα έχει η ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Καταργεί την κριτική σκέψη και απλώς καθοδηγεί τους μαθητές βήμα-βήμα στις απαντήσεις. Κατά τη γνώμη μου, αυτό ΔΕΝ ΕΙΝΑΙ ΓΕΩΜΕΤΡΙΑ. ΘΕΜΑ 481 Έστω ισοσκελές τρίγωνο ABμε AB A. Προεκτείνουμε το B (προς το ) κατά τμήμα B. Φέρουμε τις διαμέσους AE, Z του τριγώνου ABπου τέμνονται στο. Το B προεκτεινόμενο, τέμνει το A στο Kκαι το Aστο. Να αποδείξετε ότι: α) Το ZK E είναι παραλληλόγραμμο. (Μονάδες 9) β) AH. (Μονάδες 9) γ) AH Z. (Μονάδες 7) α) Οι AE, Z είναι διάμεσοι του τριγώνου AB, επομένως το είναι το βαρύκεντρο, οπότε η BK είναι η τρίτη διάμεσος. Τότε : ZK / /E, οπότε το ZK E είναι παραλληλόγραμμο. B ZK E και Επιμέλεια : xr.tsif Σελίδα 1
11 β) Φέρνουμε τη M/ /BH. Επειδή το είναι μέσον της B, το θα είναι μέσον της H, άρα HM M (1). Τότε στο τρίγωνο A είναι : K μέσον και KH/ / M, οπότε το H είναι μέσον της, οπότε AH HM (). Τότε : A A Z AH Από (1),() έχουμε ότι : AH HM M. γ) Στο τρίγωνο είναι AB είναι Z ( αφού το είναι βαρύκεντρο),οπότε από το (β) έχουμε: AH Z. ΘΕΜΑ 4814 Έστω κύκλος με κέντρο O και διάμετρο AB.Φέρνουμε χορδή μέσο της. Από το φέρνουμε το τμήμα E κάθετο στην A. AB με K το Να αποδειχθεί ότι: i)το τετράπλευρο KOE είναι παραλληλόγραμμο. ii) O EK. iii) KE KB. i) Αφού E A και A θα είναι E. Επίσης, αφού το K είναι μέσο χορδής, το τμήμα OK είναι απόστημα άρα Επιμέλεια : xr.tsif Σελίδα 11
12 OK.Τελικά το τετράπλευρο EOK έχει τρεις γωνίες ορθές επομένως είναι ορθογώνιο. Επομένως Όμως KK EO K EO K. EO K άρα το τετράπλευρο έχει δύο απέναντι πλευρές ίσες και παράλληλες, επομένως είναι παραλληλόγραμμο. ii) Το τρίγωνο O είναι ισοσκελές κι αφού η OK είναι ύψος, θα είναι και διχοτόμος της γωνίας O. O Επομένως OK.Ακόμη τα τρίγωνα EK και OK είναι ίσα αφού έχουν OK E (από το ορθογώνιο), K κοινή και είναι O ορθογώνια. Επομένως EK OK. iii) KE O (από το παραλληλόγραμμο) άρα KE OB. Στο τρίγωνο OKB η KB είναι υποτείνουσα άρα KB OB KE KB. ΘΕΜΑ 4816 Έστω ορθογώνιο τρίγωνο AB με A 9 και, E και N τα μέσα των AB, A και E αντίστοιχα. Στο τμήμα B θεωρούμε τα σημεία K και ώστε K KB και E. Να αποδείξετε ότι: α) K B και Eˆ K. ˆ (Μονάδες 1) β) Το τετράπλευρο EK είναι παραλληλόγραμμο με E K. (Μονάδες 8) γ) B AN K 4. (Μονάδες 7 ) Επιμέλεια : xr.tsif Σελίδα 1
13 α) Είναι B Bˆ K, ˆ E. K,Eˆ K (ως εξωτερικές γωνίες στα τρίγωνα KB, E αντίστοιχα). Άρα: K B και Eˆ K. ˆ β) E B (, E, μέσα των AB, A ) A 9 ˆ ˆ K E K (B ) (18 A) ˆ K EK 18 K E. Οπότε το τετράπλευρο E K είναι παραλληλόγραμμο. BK KE. B BK K K E K E E K E E K. γ) Στο ορθογώνιο τρίγωνο AE η είναι η διάμεσος που αντιστοιχεί στην υποτείνουσα. Άρα: E AN K. Αλλά B E. Επομένως: B AN K. 4 ΘΕΜΑ 4818 Έστω τρίγωνο προέκταση της Να αποδειχθεί ότι: i) BE. AB με ii) B AM. AB A.Έστω M τέμνει την προέκταση της A το ύψος του και M το μέσο AB.Η A στο E ώστε E. Επιμέλεια : xr.tsif Σελίδα 13
14 iii)ea. i) Το τρίγωνο E είναι εξ υποθέσεως ισοσκελές επομένως E E M B (1) όπου το δεύτερο σκέλος προκύπτει επειδή οι γωνίες είναι κατακορυφήν. Ακόμη, αφού το τρίγωνο AB είναι ορθογώνιο και το M είναι μέσο της υποτείνουσας άρα M MB δηλαδή το τρίγωνο BM είναι ισοσκελές. Άρα (1) M B B B E. ii) Η γωνία AM είναι εξωτερική στο BM άρα ισούται με B αφού το τρίγωνο είναι ισοσκελές. Η είναι εξωτερική στο E άρα E αφού το τρίγωνο είναι ισοσκελές. Από την ισότητα του πρώτου ερωτήματος προκύπτει ότι B απ' όπου παίρνουμε τη ζητούμενη ισότητα. iii) E.Στο τρίγωνο A η A είναι υποτείνουσα άρα A E. ΘΕΜΑ 481 Έστω τρίγωνο AB, A η διχοτόμος της γωνίας A και Mτο μέσον της AB. Η κάθετη από το M στην Aτέμνει το Aστο E. Η παράλληλη από το B στο Aτέμνει την προέκταση της A στο Kκαι την προέκταση της EM στο. Να αποδείξετε ότι: α) Τα τρίγωνα AEM,MB και ABK είναι ισοσκελή. Επιμέλεια : xr.tsif Σελίδα 14
15 β) Το τετράπλευρο A BE είναι παραλληλόγραμμο. α) Αν H το σημείο τομής των A και EM, τότε το τρίγωνο AEM είναι ισοσκελές αφού το AH είναι ύψος και διχοτόμος. Έτσι Είναι AE AM MB 1 και MEA AME M B MEA 3 ως εντός και εναλλάξ των παραλλήλων K,A που τέμνονται από την E και Από 3, 4 MB MB οπότε το τρίγωνο MB είναι ισοσκελές. Θα είναι και Επίσης είναι AB B MB 5. A KA AK ως εντός και εναλλάξ των παραλλήλων K,A που τέμνονται από την AK. A Άρα KA KAB δηλαδή το τρίγωνο ABK είναι ισοσκελές. β) Είναι B / /AE από κατασκευή και MB AME 4 ως κατακορυφήν. AEM 5 B MB B MA B AE. Άρα B / / AE δηλαδή το A BE είναι παραλληλόγραμμο. Επιμέλεια : xr.tsif Σελίδα 15
16 ΘΕΜΑ 48 Έστω ορθογώνιο τρίγωνο AB A 9. Με διάμετρο την πλευρά του A φέρουμε κύκλο που τέμνει την υποτείνουσα B στο. Από το φέρουμε εφαπτόμενο τμήμα το οποίο τέμνει την AB στο M. Να αποδείξετε ότι: α) A B. β) Το τρίγωνο MB είναι ισοσκελές. γ) Το M είναι το μέσο του AB. α) Είναι A 9 ως εγγεγραμμένη σε ημικύκλιο, έτσι A B. Άρα A B ως συμπληρωματικές της από τα ορθογώνια τρίγωνα A και AB (ή ως οξείες με κάθετες πλευρές). β) Είναι A M ˆ 1 γωνία χορδής γιατί η AM είναι A και εφαπτομένης και η ˆ είναι εγγεγραμμένη στη χορδή. Άρα MB B ως συμπληρωματικές των ίσων γωνιών MB και B οπότε το τρίγωνο MB είναι ισοσκελές αφού έχει δύο ίσες γωνίες. Έτσι θα είναι M MB. M γ) MA ˆ 3 διότι η MA είναι γωνία χορδής ˆ είναι εγγεγραμμένη στη χορδή. A και εφαπτομένης AM και η Επιμέλεια : xr.tsif Σελίδα 16
17 Από 1, 3 AM MA δηλαδή το τρίγωνο MA είναι ισοσκελές και θα είναι MA MB 4., 4 AM M δηλαδή το M είναι το μέσο του AB. ΘΕΜΑ 483 Έστω ισοσκελές τρίγωνο AB AB A και A διάμεσος. Στο τμήμα A θεωρούμε τυχαίο σημείο K από το οποίο φέρνουμε τα τμήματα KZ και KE κάθετα στις AB και A αντίστοιχα. α) Να αποδείξετε ότι: i. ABK A K ii. Το τρίγωνο ZKE είναι ισοσκελές. iii. Το τετράπλευρο ZE B είναι ισοσκελές τραπέζιο. β) Ένας μαθητής το (αi.) ερώτημα έδωσε την εξής απάντηση: «Το τμήμα A είναι διάμεσος στη βάση ισοσκελούς άρα ύψος και διχοτόμος του τριγώνου ABκαι μεσοκάθετος του B. Οπότε και το τρίγωνο BK είναι ισοσκελές. Τα τρίγωνα ABK,A K έχουν 1. BK K.. BAK AK επειδή AK διχοτόμος της A. 3. ABK A K ως διαφορές ίσων γωνιών ισοσκελών τριγώνων. Άρα τα τρίγωνα είναι ίσα βάση του κριτηρίου Γωνία Πλευρά Γωνία.» Επιμέλεια : xr.tsif Σελίδα 17
18 Ο καθηγητής είπε ότι η απάντηση του είναι ελλιπής. Να συμπληρώσετε την απάντηση του μαθητή ώστε να ικανοποιεί το κριτήριο Γωνία Πλευρά Γωνία διατηρώντας τις πλευρές BK και K. α) i. Η είναι διάμεσος του ισοσκελούς τριγώνου AB οπότε θα είναι διχοτόμος και ύψος. Τα τρίγωνα ABK,A Kείναι ίσα από αφού έχουν: AB A από υπόθεση, AK κοινή πλευρά και BAK AK αφού η A είναι διχοτόμος της A. ii. Είναι KZ KE αφού το Kείναι σημείο της διχοτόμου της A και θα ισαπέχει από τις πλευρές της. Άρα το τρίγωνο ZKE είναι ισοσκελές. iii. Από την παραπάνω ισότητα είναι BZ E ως AZ AE 1 οπότε και διαφορές ίσων τμημάτων. Τα ισοσκελή τρίγωνα AZE (από την 1 ) και AB έχουν την A κοινή γωνία κορυφής, έτσι και οι γωνίες των βάσεων τους θα είναι ίσες, δηλαδή AZE B ZE / /B 3. Από την 1, 3 συμπεραίνουμε ότι το ZE B είναι ισοσκελές τραπέζιο αφού και οι BZ, E τέμνονται στο A. β) Το επιπλέον στοιχείο που πρέπει να προσθέσουμε για να ικανοποιείται το κριτήριο είναι: AKB AKE ως οι τρίτες γωνίες των τριγώνων ABK,A K αφού οι άλλες δύο είναι ανά δύο ίσες. Επιμέλεια : xr.tsif Σελίδα 18
19 ΘΕΜΑ 5886 Δίνεται τρίγωνο με και το ύψος του. Αν, E και Z είναι τα μέσα των, A και B αντίστοιχα, να αποδείξετε ότι : α) το τετράπλευρο EZH είναι ισοσκελές τραπέζιο. (Μονάδες 8) β) οι γωνίες Hˆ Z και HEZ ˆ είναι ίσες. (Μονάδες 8) γ) οι γωνίες Eˆ Z και EHZ ˆ είναι ίσες. (Μονάδες 9) α) Τα, E είναι μέσα των και A αντίστοιχα. Από θεώρημα, E B. Άρα E HZ. Συνεπώς EZH τραπέζιο. Αρκεί να δείξω ότι ZE H. Πράγματι, H διάμεσος ορθογωνίου τριγώνου AB, άρα H και όμοια με πριν AB ZE. Επομένως EZH ισοσκελές τραπέζιο. β), γ) Λόγω του ισοσκελούς τραπεζίου, οι προσκείμενες στη βάση γωνίες είναι ίσες, HZ HZE. Αφού E HZ, EZ EZH 18 ως εντός και επί τα αυτά (...). Επιμέλεια : xr.tsif Σελίδα 19
20 Επομένως οι απέναντι γωνίες του τραπεζίου είναι παραπληρωματικές, συνεπώς το τραπέζιο είναι εγγράψιμο. Κάθε πλευρά φαίνεται από τις απέναντι κορυφές υπό ίσες γωνίες (θεώρημα). Έτσι, 1 1 και 1. ΘΕΜΑ 5895 Δίνονται τα ορθογώνια τρίγωνα AB( A ˆ 9 o ) και B ( ˆ 9 o ) (όπου A και εκατέρωθεν της B ) και το μέσο M της B. Να αποδείξετε ότι: α) το τρίγωνο AM είναι ισοσκελές. (Μονάδες 9) β) AMˆ A ˆ. (Μονάδες 9) γ) Bˆ A ˆ. (Μονάδες 7) α)το τρίγωνο B είναι ορθογώνιο και M διάμεσος του αφού M μέσο B. Άρα M B (1). Όμοια AM B (). Από (1),(),M AM. Έτσι το τρίγωνο AM είναι ισοσκελές. β) Λόγω (1) και M μέσο της B, AM M. Άρα τρίγωνο AM ισοσκελές. Έτσι ˆ ˆ 1. Τότε AMB ˆ ως εξωτερική του τριγώνου AM. Όμοια BMˆ. Επομένως AMˆ AMB ˆ BMˆ ( ˆ ˆ ˆ 1 1) A. Επιμέλεια : xr.tsif Σελίδα
21 γ) Αφού οι απέναντι γωνίες ˆ ˆ o o o A (παραπληρωματικές), το τετράπλευρο AB είναι εγγράψιμο. Άρα πλευρά φαίνεται από τις απέναντι κορυφές υπό ίσες γωνίες, ˆ ˆ δηλαδή το ζητούμενο. ΘΕΜΑ 5898 Δίνεται τρίγωνο AB με AB Aκαι η διχοτόμος του A. Στην πλευρά A θεωρούμε σημείο E τέτοιο ώστε AE AB. Να αποδείξετε ότι : α) τα τρίγωνα AB και AE είναι ίσα. β) η ευθεία A είναι μεσοκάθετος του τμήματος BE. γ) αν το ύψος από την κορυφή B του τριγώνου AB τέμνει την A στο H τότε η ευθεία EH είναι κάθετη στην AB. α) Τα τρίγωνα AB και AE είναι ίσα από επειδή έχουν: A κοινή πλευρά, AE AB από υπόθεση και A BA AE. Οπότε είναι και B E 1 β) Αφού ισχύουν AE AB και B E η A είναι μεσοκάθετος του BE επειδή τα σημεία A, ισαπέχουν από τα άκρα του. γ) Το τρίγωνο ABE είναι ισοσκελές με AE AB και η διχοτόμος του A είναι και ύψος, Το σημείο H είναι ορθόκεντρο του τριγώνου ABE αφού διέρχονται τα δύο Επιμέλεια : xr.tsif Σελίδα 1
22 ύψη του A και BZ, έτσι και το EH είναι ύψος δηλαδή η EH είναι κάθετη στην AB. ΘΕΜΑ 59 Έστω ισοσκελές τρίγωνο AB AB A και Mτο μέσο της B. Φέρουμε B με AB ( A, εκατέρωθεν της B). Να αποδείξετε ότι: α) AM/ /. β) η A είναι διχοτόμος της γωνίας MA. γ) B A 45. δ) A AB. α) Αφού το τρίγωνο AB είναι ισοσκελές η διάμεσος AM είναι και μεσοκάθετος της B, οπότε AM/ / ως κάθετες στην B. β) Είναι MA A 1 ως εντός και εναλλάξ των AM/ / που τέμνονται από την A. A A ως γωνίες της βάσης του ισοσκελούς τριγώνου A A AB 1, MA A δηλαδή η A είναι διχοτόμος της γωνίας MA. γ) Από το ισοσκελές τρίγωνο A έχουμε: A A A 18 ˆ B A 9 ˆ 18 (επειδή Επιμέλεια : xr.tsif Σελίδα
23 A A και A 9 ˆ ). B A 45. δ) Από την τριγωνική ανισότητα στο τρίγωνο A είναι: AA AB A A A A AB. ΘΕΜΑ 59 Δίνεται οξυγώνιο τρίγωνο με. Από το φέρουμε κάθετη στην διχοτόμο της γωνίας, η οποία τέμνει την στο και την στο. Στην προέκταση της θεωρούμε σημείο τέτοιο ώστε και έστω το μέσο της πλευράς. Να αποδείξετε ότι: α) το τετράπλευρο είναι ρόμβος. (Μονάδες 9) β) το τετράπλευρο είναι τραπέζιο. (Μονάδες 9) γ) η διάμεσος του τραπεζίου είναι ίση με. (Μονάδες 7) 4 α) Στο τρίγωνο το είναι διχοτόμος και ύψος (υπόθεση). Επομένως το τρίγωνο ισοσκελές, με. Επειδή ύψος προς τη βάση του, είναι και διάμεσος. Έτσι μέσο, δηλ.. Από υπόθεση. Άρα, διχοτομούνται και είναι και κάθετα. Συνεπώς ρόμβος. Επιμέλεια : xr.tsif Σελίδα 3
24 Έτσι και // (1). β) Στο τρίγωνο, τα, είναι μέσα των, αντίστοιχα. Άρα από θεώρημα, // (). Λόγω των (1) και (), //. Αν η τέμνει την τότε το είναι τραπέζιο. γ) Aπό θεώρημα η διάμεσος του,. 4 4 Παρατήρηση Αν η BH Z τότε HBZ είναι παραλληλόγραμμο και δεν έχει νόημα το γ) ερώτημα. Δες Σχήμα που ακολουθεί ΘΕΜΑ 594 Επιμέλεια : xr.tsif Σελίδα 4
25 Στο παρακάτω σχήμα φαίνονται οι θέσεις στο χάρτη πέντε χωριών A,B,, και E και οι δρόμοι που τα συνδέουν. Το χωριό E ισαπέχει από τα χωριά B, και επίσης από τα χωριά A και. α) Να αποδείξετε ότι: i. η απόσταση των χωριών Aκαι Bείναι ίση με την απόσταση των χωριών και ii. αν οι δρόμοι AB και έχουν δυνατότητα να προεκταθούν, να αποδείξετε ότι αποκλείεται να συναντηθούν. iii. τα χωριά B και ισαπέχουν από τον δρόμο A. β) Να προσδιορίσετε γεωμετρικά το σημείο του δρόμου A που ισαπέχει από τα χωριά Aκαι. α) i. Το τετράπλευρο AB είναι παραλληλόγραμμο αφού οι διαγώνιοί του διχοτομούντα στο E, έτσι AB. ii. Από το παραλληλόγραμμο AB είναι και AB/ /, δηλαδή οι δρόμοι AB και αποκλείεται να συναντηθούν. iii. Τα ορθογώνια τρίγωνα ABH και είναι ίσα αφού έχουν: AB από αi ερώτημα και BA A ως εντός εναλλάξ των AB/ / που τέμνονται από τη A. Έτσι και BH δηλαδή τα χωριά Bκαι ισαπέχουν από τον δρόμο A. Επιμέλεια : xr.tsif Σελίδα 5
26 β) Αφού το ζητούμενο σημείο ισαπέχει από τα A και θα ανήκει στη μεσοκάθετο του A. Άρα είναι το σημείο τομής Zτης μεσοκαθέτου του A με την A. ΘΕΜΑ 598 Δίνεται παραλληλόγραμμο AB με AB και οι διχοτόμοι των γωνιών του ( όπου P,E στην και,tστην AB) τέμνονται στα σημεία K,,M, N, όπως φαίνεται στο παρακάτω σχήμα. Να αποδείξετε ότι: α) το τετράπλευρο EBT είναι παραλληλόγραμμο. (Μονάδες 7) β) το τετράπλευρο K MΝ είναι ορθογώνιο. (Μονάδες 8) γ) N/ /AB. (Μονάδες 5) δ) N AB A. (Μονάδες 5) α) Από το κριτήριο Π-Γ-Π τα τρίγωνα AT,BE είναι ίσα,επομένως : E AT, οπότε: AB AT E TB E. Επιπλέον είναι και TB/ / E, οπότε το τετράπλευρο EBT είναι παραλληλόγραμμο. β) Στο τρίγωνο AΝ είναι ˆ ˆ A 18 A1 1 9 οπότε είναι και N 9. Ομοίως για άλλες δυο γωνίες, π,χ. M,K, οπότε το τετράπλευρο K MΝ είναι ορθογώνιο. γ) Στο τρίγωνο AT, το AN είναι ύψος και διχοτόμος. Επομένως είναι ισοσκελές και το N είναι μέσον της T το είναι μέσον της EB.. Ομοίως Επιμέλεια : xr.tsif Σελίδα 6
27 Από το (α) έχουμε ότι T / /EB και TB N είναι παρ/μο, οπότε N / /BT N / /AB T EB T EB NT B. Άρα το. δ) N TB AB AT AB A, λόγω του ισοσκελούς AT. ΘΕΜΑ 591 Δίνεται τρίγωνο με AB, εγγεγραμμένο σε κύκλο με κέντρο O.Θεωρούμε το μέσο του κυρτογώνιου τόξου B και το ύψος Aτου τριγώνου AB. Να αποδείξετε ότι: α) Η AM είναι διχοτόμος της γωνίας AO. (Μονάδες 8 ) β) OA AB. (Μονάδες 9 ) γ) AO B ˆ. (Μονάδες 8 ) α) Το απόστημα OZ της χορδής B διέρχεται από το μέσον της χορδής και από το μέσον M του τόξου. Επομένως OM/ /A ως κάθετες στην ίδια ευθεία. Τότε όμως A1 M1 και A1 M, αφού το AOM είναι ισοσκελές. Τελικά A1 A, οπότε η AM είναι διχοτόμος. β) Είναι AH 9 αφού βαίνει σε ημικύκλιο, οπότε OA 9 H. Επίσης από το τρίγωνο AB είναι Επιμέλεια : xr.tsif Σελίδα 7
28 AB 9 B (). Επειδή B H, αφού βαίνουν στο ίδιο τόξο, έχουμε από (1),() ότι : OA AB. γ) Η γωνία E1 είναι εξωτερική στα τρίγωνα AE,E H, οπότε έχουμε ότι: και E1 H ˆ 1 B (9 ) (4) E1 9 AO (3) o. Από (3),(4) 9 AO B (9 ˆ) AO Bˆ ΘΕΜΑ 5911 o. Έστω ορθογώνιο AB με AB B τέτοιο ώστε οι διαγώνιοι του να σχηματίζουν γωνία 6. Από το φέρουμε M κάθετη στην A. α) Να αποδείξετε ότι: i) Το σημείο M είναι μέσο του, όπου O το κέντρο του ορθογωνίου. (Μονάδες 8) ii) 1 AM A (Μονάδες 7 ) 4 β) Αν από το φέρουμε κάθετη στη B, να αποδείξετε ότι το MN είναι ισοσκελές τραπέζιο. (Μονάδες 1) α.i.οι διαγώνιοι του παραλληλογράμμου διχοτομούνται και είναι ίσες. Άρα OA O. Το ισοσκελές τρίγωνο AO έχει μία γωνία 6, οπότε είναι ισόπλευρο. Το ύψος λοιπόν, M, θα είναι και διάμεσος, δηλαδή το M είναι μέσο του Επιμέλεια : xr.tsif Σελίδα 8
29 1 1 1 α.ii. AM AO A 1 AM A. 4 β) Ομοίως το N είναι το μέσο του, άρα MN AB και MN, οπότε το MN δεν μπορεί να είναι παραλληλόγραμμο, άρα είναι τραπέζιο. Στα ορθογώνια τρίγωνα MO, NO είναι O O και MO ON 6 Τα τρίγωνα είναι λοιπόν ίσα, M N, οπότε το MN είναι ισοσκελές τραπέζιο. ΘΕΜΑ 6875 Σε ορθογώνιο τρίγωνο A ( A 9 ) φέρουμε τη διχοτόμο του A. Έστω K και P οι προβολές του στις AB και A αντίστοιχα. Η κάθετη της B στο σημείο τέμνει την πλευρά A στο E και την προέκταση της πλευράς AB (προς το B ) στο σημείο Z. α) Να αποδείξετε ότι: i. B E. (Μονάδες 8) ii. E B. (Μονάδες 8) β) Να υπολογίσετε τη γωνία. (Μονάδες 9) Επιμέλεια : xr.tsif Σελίδα 9
30 α) Το τετράπλευρο BAE είναι εγγράψιμο σε κύκλο αφού οπότε B E, ως εξωτερική γωνία. β) Πάλι από το εγγράψιμο τετράπλευρο BAE έχουμε BE BA 45 και, αφού μια πλευρά φαίνεται από τις απέναντι κορυφές κάτω από ίσες γωνίες. Επομένως BE BE 45 BE συνέπεια : EB EA 45, οπότε το τρίγωνο είναι ισοσκελές και κατά E B A ˆ 18 γ) Το τετράπλευρο AZ είναι εγγράψιμο σε κύκλο αφού ZA Z 9, οπότε η πλευρά Z φαίνεται από τις απέναντι κορυφές κάτω από ίσες γωνίες. Επομένως Z AB 45 εσωτερική στο AZ. ως εξωτερική γωνία που ισούται με την απέναντι Σχόλιο : Το σημείο P δεν υπήρχε λόγος να είναι εκεί. Ο ρόλος του είναι να μπερδεύει το σχήμα. Αν δεν είναι τυπογραφικό και λειτουργεί σαν υπόδειξη, είναι μια κακή υπόδειξη. ΘΕΜΑ 6878 Σε ορθογώνιο τρίγωνο AB A 9 o έχουμε ότι B 3 o. Φέρουμε το ύψος AH και τη διάμεσο AM του τριγώνου AB. Από την κορυφή Bφέρνουμε κάθετη στη Επιμέλεια : xr.tsif Σελίδα 3
31 διάμεσο AM, η οποία την τέμνει στο σημείο E όπως φαίνεται στο παρακάτω σχήμα. Να αποδείξετε ότι: α) AB BE, (Μονάδες 7) β) AH BE, (Μονάδες 7) γ) το τετράπλευρο AHEB είναι εγγράψιμο, (Μονάδες 6) δ) EH/ /AB. (Μονάδες 5) α) Στο ορθογώνιο τρίγωνο AB γνωρίζουμε για τη διάμεσο AMότι το τρίγωνο BMA είναι ισοσκελές με MAB B 3 o. B AM, άρα Στο ορθογώνιο τρίγωνο BEA η κάθετη πλευρά του EB βρίσκεται απέναντι από την AB γωνία MAB άρα: EB. β) Θα συγκρίνουμε τα τρίγωνα BEA,AHB. Είναι ορθογώνια, έχουν κοινή υποτείνουσα AB και μια γωνία ίση EAB MAB B 3 o,συνεπώς είναι ίσα άρα AH BE γ) Στο τετράπλευρο AHEB η πλευρά AB φαίνεται υπό ίσες γωνίες BEA BHA 9 o συνεπώς είναι εγγράψιμο. δ) Θα συγκρίνουμε τα τρίγωνα BEH,AHE. Έχουν τρεις πλευρές ίσες, AH BE, BH AE ( τα τρίγωνα BEA,AHB είναι ίσα μεταξύ τους) και EH κοινή. Συνεπώς οι Επιμέλεια : xr.tsif Σελίδα 31
32 γωνίες HEM,EHM είναι ίσες μεταξύ τους συνάγεται ότι το τρίγωνο EMH είναι ισοσκελές. Έχουμε δείξει στο ερώτημα α) ότι το τρίγωνο BMA είναι ισοσκελές, άρα για τα δύο ισοσκελή τρίγωνα οι γωνίες των βάσεων τους είναι ίσες καθώς οι γωνίες που βρίσκονται απέναντι από τις βάσεις τους EMH,BMA είναι ίσες ως κατακορυφήν. Άρα οι εντός εναλλάξ γωνίες HEA,EAB είναι ίσες συνεπώς EH/ /AB. ΘΕΜΑ 6879 Δίνεται οξυγώνιο τρίγωνο A εγγεγραμμένο σε κύκλο (,R). Έστω σημείο του τόξου τέτοιο, ώστε. α) Να αποδείξετε ότι. (Μονάδες 8) β) Έστω το ορθόκεντρο του τριγώνου. Να αποδείξετε ότι το τετράπλευρο είναι παραλληλόγραμμο. (Μονάδες 9) γ) Αν είναι το μέσον της, να αποδείξετε ότι. (Μονάδες 8) α) Επειδή η εγγεγραμμένη γωνία είναι ορθή, η είναι διάμετρος του κύκλου. Επομένως και η γωνία Επομένως. είναι ορθή, αφού βαίνει σε ημικύκλιο. β) Επειδή το είναι ορθόκεντρο του τριγώνου, είναι. Είναι όμως και, οπότε //. Επιμέλεια : xr.tsif Σελίδα 3
33 Όμοια, είναι και //, οπότε //. Επομένως το τετράπλευρο είναι παραλληλόγραμμο. γ) Επειδή το τετράπλευρο είναι παραλληλόγραμμο, είναι. Στο τρίγωνο λοιπόν το τμήμα ενώνει τα μέσα δύο πλευρών, οπότε :. ΘΕΜΑ 7433 Δίνεται τρίγωνο AB και η διάμεσός του A. Έστω E,Z και H είναι τα μέσα των B,A και A αντίστοιχα. α) Να αποδείξετε ότι το τετράπλευρο EZH είναι παραλληλόγραμμο. β) Να βρείτε τη σχέση των πλευρών AB και B του τριγώνου AB, ώστε το παραλληλόγραμμο EZH να είναι ρόμβος. γ) Στην περίπτωση που το τρίγωνο AB είναι ορθογώνιο (η γωνία B ορθή), να βρείτε το είδος του παραλληλογράμμου EZH. Επιμέλεια : xr.tsif Σελίδα 33
34 AB α) Είναι EZ/ / 1 διότι το E ενώνει τα μέσα των πλευρών A,BE AB του τριγώνου AB. H/ / διότι το H ενώνει τα μέσα των πλευρών B,A του τριγώνου AB Από 1, EZ/ / H οπότε το τετράπλευρο EZH είναι παραλληλόγραμμο. B αφού 4 του τριγώνου A. β) Είναι ZH ZH 3 A,A B, γιατί ενώνει τα μέσα των πλευρών Για να είναι το παραλληλόγραμμο EZH ρόμβος πρέπει να έχει δύο διαδοχικές πλευρές ίσες, δηλαδή: 3, 1 B ZH ZE AB B AB. 4 γ) Αν η γωνία B είναι ορθή τότε ZE B 9 ως εντός εκτός και επί τα αυτά, οπότε το EZH είναι ορθογώνιο επειδή είναι παραλληλόγραμμο με μια ορθή γωνία. Επιμέλεια : xr.tsif Σελίδα 34
http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.
http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.tsif Σελίδα 1 http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 Έλυσαν
ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια: xr.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια: xr.tsif Σελίδα 1 Έλυσαν οι Δημήτρης Ιωάννου, Γιώργος Βισβίκης, Μπάμπης Στεργίου, Χρήστος Κάναβης, Γιώργης Καλαθάκης, Παναγιώτης Γκριμπαβιώτης,
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M
Απαντήσεις 51 5. Εφαρµογές των παραλληλογράµµων α Εφαρµογές στα τρίγωνα α.1 Στο τρίγωνο AB Γ είναι Ε // (1) Επίσης Ζ, ΕΗ, άρα Ζ // ΕΗ () Από τις (1), () έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. α. Στο
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου ο Θέμα Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση 1 η (14/11/014) Θέματα ης Ομάδας GI_V_GEO 18975 Δίνεται τρίγωνο ABΓμε AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε
ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια: xr.
http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια: xr.tsif Σελίδα 1 http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 Έλυσαν
ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.tsif Σελίδα 1 Έλυσαν οι Δημήτρης Ιωάννου, Γιώργος Βισβίκης, Μπάμπης Στεργίου, Χρήστος Κάναβης, Γιώργης Καλαθάκης, Παναγιώτης Γκριμπαβιώτης,
AΓ BΓ BΓ. = 40 MN = 2 AB + AΓ AN =
1 ΠΡΩΤΑΡΧΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Οι πρωταρχικές έννοιες της Γεωμετρίας είναι το σημείο, η ευθεία και το επίπεδο. Δεχόμαστε ότι: Από δύο διαφορετικά σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία
ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.
5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και
2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες µη κυρτή ευθεία ( ) πλήρης (4 ) κυρτή, οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) συµπληρωµατικές παραπληρωµατικές φ ω ω
4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Τάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ. Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο,
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο, τότε η απέναντι πλευρά του είναι το μισό της υποτείνουσας και αντίστροφα.
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB
2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι
ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ 1 Σε δύο ίσα τρίγωνα ΑΒΓ ΔΕΖ να δείξετε ότι: α) Οι διχοτόμοι ΑΚ ΔΛ είναι ίσες β) Οι διάμεσοι ΒΜ ΕΘ είναι ίσες 2 Δίνεται ισοσκελές τρίγωνο ΑΒΓ AB A τα ύψη του ΒΔ ΓΕ Να αποδείξετε
Ορισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.
6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται
1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή
ΚΦΛΙΟ 5ο ΠΡΛΛΗΛOΡΜΜ - ΤΡΠΙ ισαγωγή. Τι καλείται τετράπλευρο ; Πόσες διαγώνιες έχει ένα κυρτό τετράπλευρο ; Τι καλείται παραλληλόγραμμο και τι τραπέζιο ; Το ευθύγραμμο σχήμα που έχει τέσσερις πλευρές λέγεται
Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1
υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο
Ονοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»
ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :
5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5
6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών
6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη
Ασκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα
Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης
6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ. Β τάξης Γενικού Λυκείου Θέμα 4ο. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (16/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου Θέμα 4ο Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση η (6//04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς των Επιμελητών των φακέλων του
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα
8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179
8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΙΑ ΤΑ ΚΕΦΑΛΑΙΑ 2 και 3
ΡΩΤΗΣΙΣ ΘΩΡΙΣ Ι Τ ΚΦΛΙ και 3 1. Τι λέμε κυρτή γωνία, μη κυρτή γωνία, διχοτόμο γωνίας, κάθετες ευθείες. προβολή ή ίχνος σημείου σε ευθεία;. Πότε δύο σημεία λέγονται συμμετρικά ως προς ευθεία; 3. Τι λέμε
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ (Τελευταία ενηµέρωση: Νοέµβριος 2016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Αναλογίες 2 1.1 Το ϑεώρηµα του Θαλή.......................... 2 1.2 Τα ϑεωρήµατα των διχοτόµων......................
ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο
ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.
ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά
Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
1 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014
ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Η παρούσα σύνοψη παρουσιάζει τις προτάσεις του σχολικού βιβλίου που διδάχτηκαν την φετινή χρονιά,συνοπτικά δίχως αποδείξεις και με διαφορετική σειρά
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)
Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,
ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο
Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.
Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:
7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει
Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων
ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)
ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.
Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο
1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
15 ΑΣΚΗΣΕΙΣ ΣΤΑ ΑΞΙΟΣΗΜΕΙΩΤΑ ΣΗΜΕΙΑ ΤΡΙΓΩΝΟΥ
εωμετρία α λυκείου ξιοσημείωτα σημεία τριγώνου 5 ΣΚΗΣΙΣ ΣΤ ΞΙΟΣΗΙΩΤ ΣΗΙ ΤΡΙΩΝΟΥ )ίνεται τρίγωνο µε = 45 και B = 75. ν µέσο της φέρουµε από το κάθετη στη διχοτόµο της γωνίας που τέµνει την στο. Στην παίρνουµε
Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ
5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας, τη λέξη Σωστό ή Λάθος,
Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.
ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III
ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
Μαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο
7.7 Ασκήσεις σχολικού βιβλίου σελίδας 156
1 7.7 σκήσεις σχολικού βιβλίου σελίδας 156 ρωτήσεις ατανόησης 1. Στα παρακάτω σχήματα να βρείτε τα x, ψ (α) ε 1 ε x 1 2 ε 2 ψ 6 ε 2 3 3 ε 4 ε 1 ε 2 ε 3 ε 4 ε 3 ε 2 ε 1 ε 2 4 x 1,5 ψ 3 4 ε 3 (β) (γ) ε 1
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)
Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.
Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.
Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019
Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα
5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //
1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε