III. (V x, V y cos θ V z sin θ, V z cos θ + V y sin θ) V = U x (θ) V. 0 sin θ cos θ. cos θ sin θ 0 sin θ cos θ (2)
|
|
- Συντύχη Ζαχαρίου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 III I--1 V V x, V y, V z x θ V V x, V y cos θ V z sin θ, V z cos θ + V y sin θ V U x θ V, U x θ 0 cos θ sin θ 1 0 sin θ cos θ y z cos θ 0 sin θ U y θ 0 1 0, U z θ sin θ 0 cos θ α, β cos θ sin θ 0 sin θ cos θ U y βu x αu y βu x α U z αβ x, y, z α, β, γ e ī h αĵx, e ī h βĵy, e ī h γĵz e ī h βĵy e ī h αĵx e ī h βĵy e ī h αĵx e ī h αβĵz 4 αβ [Ĵx, Ĵy] i hĵz I-4-1 1/ S z ± h/ 1 0 ψ +, ψ : S z ψ ± ± h 0 1 ψ ± 5 ψ ψ ψ 1 ψ 6 ψ n n 1 Ω e ī h Ω S e i Ω σ Ω Ω n σ n σ n n 1 e ī h Ω S cos Ω i n σ sin Ω 7 ψ Ω π e ī h Ω S ψ ψ ψ ± y n 0, 1, 0 Ω π/ ψ R e ī π h S y ψ +, ψ L e ī π h S y ψ 8 1
2 ψ R, ψ L S x S x ψ R h ψ R, S x ψ L h ψ L 9 II--1 n fermion ĤÔi Ôi ˆ x i, ˆ p i, ˆ Si E i i 1,,, n E 1, E,, E n ξ E i φ i ξ ξ ˆ x Ŝz ξ x, λ ˆ x x, λ x x, λ, Ŝ z x, λ hλ x, λ : x, λ x, λ δ x xδ λ λ 10 λ d xφ i x, λφ j x, λ δ ij ψξ 1,, ξ n ; t 1 n! φ 1 ξ 1 φ 1 ξ n φ ξ 1 φ ξ n φ n ξ 1 φ n ξ n e ī P n h i1 E it : ξ i { x i, λ i } 11 d x 1 d x n ψ ξ 1,, ξ n ; tψξ 1,, ξ n ; t 1 1 λ 1,,λ n 11 Slater III-1-1 ˆψx, t H ω + H ε n n 0, 1,, M ε n M + hωn + 1/ : n 0, 1,, 1 â n n 0, 1,, Ĥ ε n â nâ n 14 n0 N 0, N 1, N, EN 0, N 1, N, M + hω/ N n + hω n0 nn n 15 N n0 N n 15 hω R R 0 15 n0 EN, R M + hω/n + hωr 16 N E, 0, E, 1, E,, E,, E, 4 1,1,,,4
3 III-1- III-1-1 ˆX n0 â nâ n+1 [Ĥ, ˆX] hω ˆX, [Ĥ, ˆX ] hω ˆX 17 [Ĥ, ˆX ˆX] 0 Ĥ ˆX ˆX N R E, A â 0â 0, B 1 â C 1 â 0â + â 1 0, D â 0â 1 â ˆX ˆX 0 III-1- ˆψ x, ˆψ x [ ˆψ x, ˆψ y] δ x y, [ ˆψ x, ˆψ y] [ ˆψ x, ˆψ y] 0 0 φ x ˆψ [I]-7 e R d x ˆψ xφ x ˆψ ye R d x ˆψ xφ x ˆψ y + φ y. 1 ˆψ x 0 0, ˆψ 0 φ φ φ e R d x ˆψ xφ x 0 ˆψ x φ φ x φ, ˆψ x φ ˆψ x φ φ φ φ x, Ĥ d x ˆψ xh ˆψ x ˆN d x ˆψ x ˆψ x H φ Ĥ φ φ φ d x φ xhφ x, N φ ˆN φ φ φ φ φ φ 0 ˆψ x 0 φ φ 0 e R d y ˆψ yφ y e R d x ˆψ xφ x 0 d x φ xφ x 4 0 e R d x ˆψ xφ x e R d y ˆψ yφ y e R d x ˆψ xφ x 0 [ ] 0 exp d y e R d x ˆψ R xφ x ˆψ ye d x ˆψ xφ x φ y 0 5 φ φ e R d x φ xφ x 6
4 t φt t 0 φ0 φ φt Ĥ 0 0 φt e ī h Ĥt e R d xˆψ xφ x 0 e ī h Ĥt e R d x ˆψ xφ x e ī h Ĥt 0 [ ] exp d x e ī h Ĥt ˆψ xe ī h Ĥt φ x φt e R d x ˆψ xφ x,t 0 : φ x, t e ī h Ht φ x 8 φ x, t φ x, 0 φ x i h φ x, t Hφ x, t φ x H 0 t Hφ x 0 φt φ 9 Ĥ φ 0 E 0 III--1 H ε 1 ε, ε ε, ε ε, â 1, â, â, 4 III--1 ˆψ x, ˆψ x 0 ˆψ x 1 ˆψ x N ˆψ x N ˆψ x 1 0 {σ i } S σ δ x 1 x σ 1 δ x N x σ N 0 {σ i } {1,, N} S σ ˆψ Bose S σ +1 Fermi {σ i } S σ +1 S σ 1 III-- N Ψ N Ψ N d x 1 d x ˆψ N x N ˆψ x 1 0 ψ x 1,, x N 1 ψ x 1,, x N Bose Fermi ψ x 1,, x N 1 N! 0 ˆψ x 1 ˆψ x N Ψ N Ψ N Ψ N 1 d x 1 d x N ψ x 1,, x N ψ x 1,, x N 1 N! 4
5 III-4-1 ˆρ x, t ˆψ x, t ˆψ x, t Ĥ d x ˆψ 1 x, th 0 ˆψ x, t + d xd y ˆρ x, tv int x yˆρ y, t 4 normal order Ĥ d x ˆψ x, th ˆψ x, t + 1 d xd y ˆψ x, t ˆψ y, tv int x y ˆψ y, t ˆψ x, t 5 H H V int 0 III-4- III-4-1 Bose Fermi ˆN d x ˆψ x, t ˆψ x, t 6 [Ĥ, ˆN] 0 IV--1 i h c α t ψ x, t i h + mc β ψ x, t 7 α i α i, β β i h t ψ x, t c+i h ψ x, t α + mc ψ x, tβ 8 ρ x, t j x, t ρ x, t ψ x, tψ x, t, j x, t cψ x, t αψ x, t 9 ρ x, t t + div j x, t 0 40 IV-- α i i 1,,, β N N I N N N α i α j + α j α i δ ij I N, α i β + βα i 0, β I N 41 i j α i I N i j α i α j α i α j β α i βα i tr α i 0, tr β 0 4 α i i 1,,, β 0 α i, β U Uα i U, UβU β 5
6 β I N β ±1 tr β N/ N I N/ 0 β 0 I N/ 4 41 α i N/ N/ A i α i 0 A i A i 0 44 α i I N A i A i A i A i A i I N/ i j A i A j A j A i, A i A j A j A i 46 N A i 1 46 A 1 A, A 1 A, A A A 1 A, A 1 A A A α i i 1,,, β N 4 A i σ σ 1, σ, σ A i A i σ i : σ 1 0 1, σ ,46 0 i i 0, σ IV-4-1 ψ Sψ 47 aɛ µ ν δ µ ν + ɛ µ ν δ µ ν i Σαβ µ ν ɛ αβ 48 Σ αβ µ ν igµα δ β ν g µβ δ α ν 49 Σ αβ Σ βα Λ αβ Λ βα ɛ αβ 1 N Λ αβ N ɛ αβ N Λ αβ aλ µ ν aɛn µ ν 1 i Λ N µ Σαβ αβ N ν µ e i Σαβ Λ αβ N ν 50 S SΛ Sɛ N 1 i Λ N 4 σαβ αβ i N N e 4 σαβ Λ αβ 51 6
7 V-4-1 E c m c + p E c m c + p e A c + ea 0 x, t H p, x 5 x ẋ i H p i cp i e c Ai m c + p ec A 5 π i p i e c Ai 5 π i ẋ i π i p i e c Ai mẋ i 1 x /c 54 π p i ṗ i H x i e A0 cpl e c Al e Al c x i x i m c + p e A c e A0 x i ẋ l e c Al x i 55 5 π π A i x t A x, t π i ṗ i e c A i t e A i c x l ẋl π v x E 1 c d m v dt 1 v /c e E + e c v B 57 t A A 0, B A V-5-1 σ 1 0 1, σ i i 0, σ {σ i, σ j } δ ij I, [σ i, σ j ] i ɛ ijk σ k 59 I ɛ ijk ɛ 1 ɛ 1 ɛ 1 1, ɛ 1 ɛ 1 ɛ 1 1, 0 k1 σ i σ j 1 {σi, σ j } + 1 [σi, σ j ] δ ij I + i ɛ ijk σ k 60 k1 7
8 ˆ a, ˆ b σ ˆ a σ ˆ b ˆ a ˆ b + i σ ˆ a ˆ b 61 V-5- B Ĥ A x B A x 0 A x Ĥ 1 e ˆ p Aˆ x m c e ˆ S mc B : ˆ S 4 h 6 Ôt ī [Ĥ, Ôt] h ˆx i 1 m ˆpi e c Ai ˆ x 1 m ˆπi : ˆπ i ˆp i e c Ai ˆ x, 6 ˆp i e mc ˆp j e c Aj ˆ x i A j ˆ x j1 e mc ˆπ j i A j ˆ x 64 j1 ˆπ i ˆ π Ĥ ˆπ i Ŝ i e mc e mc ˆπ j i A j ˆ x j A i ˆ x e mc ɛijkˆπ j B k e mc ˆ π B i, 65 j1 Ŝ j i A j ˆ x j A i ˆ x e mc ɛijk Ŝ j B k e mc ˆ S B i j1 66 i1 ˆπi Ŝ i µ e e h/mc 0.1% V-5- H 0 1 m p e 4πr 67 n 1,,, l 0, 1,, n 1 m l,, l n, l, m n E 0 n e 8πa 0 1 n, a 0 4π h me Bohr 68 8
9 H 0 H H 0 + H, 69 H 1 8m c p + h e 8m c δ x + e 1 S 8πm c r L 70 J L + S H [ J, H] 0 j l + 1/ j l 1/ l 0 j 1/ H L-S { S L 1 J L S h l : j l + 1 h l + 1 : j l 1 71 l 0 E nl En, j l + 1/ En, j l 1/ e h l + 1 n, l, m n, l, m 8πm c 1ˆr e E 0 n l + 1/ n, l, m a 0 n, l, m 7 4π hc ˆr 70 En, j e 1 e πa 0 n 4π hc n j n 7 l α e /4π hc 1/17 VI-1-1 A µ x i hγ µ µ + i e c h A µx mc ψx 0 74 ψx γ 0 γ 0T C C 1 γ µ C γ µt µ 0, 1,, 75 ψ c x Cγ 0T ψ x 76 ψ c x i hγ µ µ i e c h A µx mc ψ c x 0 77 γ µ 75 C iγ γ
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
Lectures on Quantum sine-gordon Models
Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1,2 1 Departamento de Física Fundamental (Universidad de Salamanca) 2 IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso
Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline
G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -
Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20
Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο
Περιεχόμενα. A(x 1, x 2 )
Περιεχόμενα A(x 1, x 2 7 Ολοκληρώματα της Μαγνητοϋδροδυναμικής και Μαγνητοϋδροδυναμικά Κύματα Σχήμα 7.1: Οι τριδιάστατες ελικοειδείς μαγνητικές γραμμές στις οποίες εφάπτεται το διάνυσμα του μαγνητικού
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
χ (1) χ (3) χ (1) χ (3) L x, L y, L z ( ) ħ2 2 2m x + 2 2 y + 2 ψ (x, y, z) = E 2 z 2 x,y,z ψ (x, y, z) E x,y,z E x E y E z ħ2 2m 2 x 2ψ (x) = E xψ (x) ħ2 2m 2 y 2ψ (y) = E yψ (y) ħ2 2m 2 z 2ψ (z)
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a
M M - - - - q -- x - K - W q - - x x - M q j x j x K W D M K q 6 W x x A j ˆ K ė j x ˆ D M [ 6 C ˆ j ˆ ˆ ˆ ˆ j M ˆ x ˆ A - D ˆ ˆ D M ˆ ˆ K x [ 6 ˆ C + M D ˆ ˆ + + D ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + x 9 M S C : 4 R 9
ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ
ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ
Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013
ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που
Ó³ Ÿ , º 3(180).. 313Ä320
Ó³ Ÿ. 213.. 1, º 3(18).. 313Ä32 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆŸ ƒ ƒ Ÿ ˆ Š ˆ Šˆ Š ŒŒ ˆ ˆ ˆ ˆ ˆ Œ ˆŠ.. μ a, Œ.. Œ Í ± μ,. ƒ. ²Ò ± a ˆ É ÉÊÉ Ö ÒÌ ² μ μ ±μ ± ³ ʱ, Œμ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τµήµα Α Λαχανά) Φεβρουαρίου ΘΕΜΑ : Θεωρήστε τις δύο περιπτώσεις όπου η κυµατική συνάρτηση ψx) που περιγράφει µονοδιάστατη κίνηση σωµατιδίου σε απειρόβαθο πηγάδι δυναµικού µε τα τοιχώµατα
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ˆ ˆ. Ô² ±É µ µ É µ, µ²ó ÊÖ µ ÊÕ µí Ê Ê ± ɵ Ö. ³Ò ² Ê ±
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 003.. 34.. 1 Š 539.165 ˆŒŒ ˆ Ÿ ˆŸ Š ˆ ˆ. Œ µ µ± µ ³µ µ ÉÓ µ É µ² ÊÕ Ëµ ³ ²Ó ÊÕ ³³ É Í Õ ± ɵ µ É µ Ô² ±É µ µ É µ, µ²ó ÊÖ µ ÊÕ µí Ê Ê ± ɵ Ö. ³Ò ² Ê ± ³ Ö É Ö, µ² É µ ̵ ³µ É µ µ ÉÓ µ µ
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr
- - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ
(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ
ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική
z k z + n N f(z n ) + K z n = z n 1 2N
Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4
ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2004.. 35.. 5 Š 539.12.01 ˆ ˆ Š œ Ÿ Š Ÿ ˆŸ Ÿ ƒ.. Ë ³µ Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 1116 Š ˆ ˆ ŒŸ Œ ˆŠ 1119 Š Ÿ ˆŸ Ÿ ˆ Œ Š œ ˆ 1121 Š Ÿ ˆŸ Ÿ Š œ Œ ˆŒ ˆ Œ 1130 Š ˆ Œ ˆ Š Ÿ Š Ÿ ˆŸ Ÿ 1134 ˆ ˆ œ
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 017.. 48.. 6.. 934Ä940 ˆ Š Ÿ Š ˆ ˆ ˆ ˆ ƒ Ÿ.. ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ± μ μ Ò ÕÉ Ö μ ³μ μ ÉÓ ±ÉÊ ²Ó μ ÉÓ É μ É ²Ó É É μ μ É ±- Éμ Ö μ³ ²μ Ê ±μ.
ΑΘΗΝΑ Phone : , Fax: Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±
Ó³ Ÿ. 2010.. 7, º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆ Šˆ ˆ ˆ ƒ Š.. ± Î,. ˆ. ³ ƒ ˆ, Œμ ± μí Ê μ ± É μ μ Êα Î ÉμÉ É É μ ÒÌ ±μ² Î É Í ³ Ö- É Ö - μ É Ì μé±²μ Ö μ ³ Ê²Ó Ê ( ² Î Ì μ³ É Î μ É ) ³ Ö ±Ê²μ- μ
Ó³ Ÿ , º 7(170) Ä1091 ˆŒ ˆ. Œ. ˆ. Ò μí± 1. ˆ É ÉÊÉ É μ É Î ±μ Ô± ³ É ²Ó μ Ë ±, Œμ ±
Ó³ Ÿ. 011.. 8, º 7(170.. 1038Ä1091 Š ˆˆ ˆˆ Š ˆŒ ˆ Œ. ˆ. Ò μí± 1 ˆ É ÉÊÉ É μ É Î ±μ Ô± ³ É ²Ó μ Ë ±, Œμ ± Î ÉÒ Ì ² ±Í ÖÌ ² É Ö É μ Ö Ô² ±É μ ² ÒÌ ³μ É. Theory of electroweak interactions is given in 4 lectures.
Š ˆ Š ˆ ˆ ˆ ƒ ˆ Œ.. μ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 017.. 48.... 145Ä193 Š ˆ Š ˆ ˆ ˆ ƒ ˆ Œ.. μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μë ± Ê É É, μë Ö ˆ 145 ˆ Ÿ Œ œ Œ ˆ - ˆ ˆ 148 Œ ˆŸ 154 Œ Œ Ÿ ( Š ˆ œ -) Š Œ 160 ˆ Œˆ Šˆ Œ ˆ ˆ ƒ ˆ 184 Š ˆ 189 ˆ Š ˆ 190
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
ˆˆ ŸŒ ƒ ˆŸ CP- ˆŒŒ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2007.. 38.. 5 ˆˆ ŸŒ ƒ ˆŸ CP- ˆŒŒ ˆˆ œ Š.. Š ± ²,.. Œ μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 1163 ˆ ˆ ˆ Œ œ Š 1166 Š ˆŒ œ Re (ɛ /ɛ) Š Š - ˆŒ NA48 ˆ KTeV 1172 Š ˆŒ NA48 1178 ˆ Œ ˆ Re(ɛ /ɛ) Š ˆŒ KTeV
Ó³ Ÿ , º 4(181).. 501Ä510
Ó³ Ÿ. 213.. 1, º 4(181.. 51Ä51 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ƒ ˆ ˆŸ Ÿ ƒ Ÿ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Š.. Œμ Éμ 1,.. Ê 2 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ƒ ÒÎ ² É μ Ô - ³ Ê²Ó ²Ö ³ É ± Š. Ò Ï É Í μ Ò Ô Ö ³μ³
10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.
Άσκηση 4 Θεωρείστε και πάλι το σύστημα της άσκησης Τη χρονική στιγμή το σύστημα βρίσκεται στην κατάσταση a (η οποία δεν είναι ιδιοκατάσταση της amilonian) Ποιά είναι η πιθανότητα, μετά από χρόνο, να βρεθεί
Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±
Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά
( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2002.. 33.. 2 Š 530.145.61 Š Š ˆŸ, ˆ œ œ, ( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ Ñ e Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 348 Š ˆ ˆ ˆŸ ƒˆˆ 350 Š ˆ Œ ˆ 355 Œ Ì ³ µ µ µ Î µ É 356 ³ Ò ÊÌ, É Ì, Î ÉÒ Ì δ- Ó µ Ö³ ² µ Ò³
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
ŒˆŠ Š ˆ Š ˆ ˆ ˆ œ ƒ ƒˆƒ Š ƒ.. ˆÏÌ μ,.. ²
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2007.. 38.. 2 ŒˆŠ Š ˆ Š ˆ ˆ ˆ œ ƒ ƒˆƒ Š ƒ.. ˆÏÌ μ,.. ² ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ, Œƒ, Œμ ± μ ³Ê² Ê É Ö μ É Ö μ²ê³ ± μ ±μ Î ± Ö ³μ ²Ó, μ μ²öõð Ö ÊÎ ÉÓ ² Ö Ëμ - ³ Í μ ÒÌ,
Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ Οι ασκήσεις που ακολουθούν είναι προς επίλυση από
Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς
Κεφάλαιο 1 Περιλήψεις Κβαντικής Μηχανικής ΙΙ 1.1 Συµβολισµός Dirac Ακολουθώντας τον συµβολισµό του Dirac ϑα περιγράφουµε τις ϕυσικές καταστάσεις ενός Κβαντοµηχανικού συστήµατος από ένα ανυσµα Ψ(t) που
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)
Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη
ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ
Ó³ Ÿ. 2018.. 15, º 6218).. 467Ä475 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μ± μ, ÎÉμ ³μ Ë ± Í Ö ³³ É Î ±μ, μ ² μ μ ƒ ²Ó ÉÊ μ² μ ²μÉ μ É É μ Ô -
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Η κατανομή ορμής Από την στατιστική μηχανική, ο αριθμός των μικροσκοπικών καταστάσεων dn στο στοιχείο όγκου του χώρου των φάσεων d 3 p d 3 r είναι
ΤομοντέλοτουαερίουFermi ΤομοντέλοαυτόδιατυπώθηκεαπότονHansBethe.ΥποθέτουμεότιZπρωτόνια και N νετρόνια(φερμιόνια) καταλαμβάνουν ανεξάρτητα τον πυρηνικό όγκο Ω. Οιαλληλεπιδράσειςμεταξύτωνσωματίων(πυρηνικήκαιCoulomb)αγνοούνται.
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Mantel & Haenzel (1959) Mantel-Haenszel
Mantel-Haenszel 2008 6 12 1 / 39 1 (, (, (,,, pp719 730 2 2 2 3 1 4 pp730 746 2 2, i j 3 / 39 Mantel & Haenzel (1959 Mantel N, Haenszel W Statistical aspects of the analysis of data from retrospective
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
ΦΩΤΙΟΣ ΚΑΣΟΛΗΣ. PhD Εφαρμοσμένων Μαθηματικών MSc Μαθηματικής Φυσικής. ΔΙΑΛΕΞΕΙΣ Κβαντομηχανικής
ΦΩΤΙΟΣ ΚΑΣΟΛΗΣ PhD Εφαρμοσμένων Μαθηματικών MSc Μαθηματικής Φυσικής ΔΙΑΛΕΞΕΙΣ Κβαντομηχανικής ΘΕΣΣΑΛΟΝΙΚΗ 216 Ε Ν Ο Τ Η Τ Α 1 Στοιχεία συναρτησιακής ανάλυσης Βασικοί ορισμοί Το σύνολο C των μιγαδικών αριθμών
Œ ƒ ˆ ˆˆ. Î ± É ÉÊÉ ³..., Œµ ± ˆ ˆˆ Œ ƒ ˆ ˆˆ 1051 Ð ³ Î Ö 1051 Î ± Ö É Í Ö 1059
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2002.. 33.. 5 Š 530.145 Œ ˆ Œ ˆ Œ ƒ ˆ ˆˆ.. Œ µ µ Î ± É ÉÊÉ ³..., Œµ ± ˆ ˆˆ Œ ƒ ˆ ˆˆ 1051 Ð ³ Î Ö 1051 Î ± Ö É Í Ö 1059 µ ³µÉ Í Ö µéò 1070 ˆ Š Œ ˆ Œ ˆ 1077 ³ ɵ µ µ³ É Î Ö ³µ ²Ó 1078 ³
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ
Ó³ Ÿ. 2015.. 12, º 2(193).. 281Ä298 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± Í Œ Ì ²ÖÉ É ±μ É μ É Í ( ƒ) μ μ²ö É μ μ ÉÓ É ²Ó- ÊÕ ² ±Í
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης
Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 39 Περιεχόµενα 1ης
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ ˆ Œ Š. .. μ,.. μ,.. Š Ë É μ É Î ±μ Ë ± Éμ ±μ μ μ Ê É μ μ Ê É É ³.. ƒ. ÒÏ ±μ μ, Éμ, μ Ö. . ˆ. ͱ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2013.. 44.. 4 Œ Œ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ Š Œ Œ Š Œ ˆ Œ Š.. μ,.. μ,.. Š Ë É μ É Î ±μ Ë ± Éμ ±μ μ μ Ê É μ μ Ê É É ³.. ƒ. ÒÏ ±μ μ, Éμ, μ Ö. ˆ. ͱ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 1435 ˆ ˆ Ÿ ˆŸ Š Œ Œ ˆ ˆ
! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4
! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8
4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2
Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala
x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
2742/ 207/ /07.10.1999 «&»
2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Bogoliubov-de Gennes
Bogoliubov-de Gennes 7 Bogoliubov-de Gennes Bogoliubov H = H 0 + H = Ψ rh 0 rψ r +, Ψ rψ r g r r Ψ r Ψ r Ψ r r g r r r r h 0 h 0 h 0 = h i e m hc A + V r µ 3 Bogoliubov BCS BCS Ψ rψ r, Ψ rψ r 4 Cooper
Η Ομάδα SL(2,C) και οι αναπαραστάσεις της
SL(2, C) SO(3, 1) D : Λ D(Λ) SO(3, 1) 2 1 D : ±A D(π(±A)) SL(2, C) SL(2, C) SO(3, 1) SL(2, C) SO(3, 1) ξ i (, ) K i x µ p µ J µν T µν A µ ψ α J i = J i, () K i = K i, ( ) K i M 0i = (iξ i K i ) A i = 1
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +)
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +) Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)
ΑΣΚΗΣΗ 1 ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση 30-06-08 ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) Α) Τρία σηµειακά ϕορτία τοποθετούνται στις κορυφές ενός τετραγώνου πλευράς α, όπως ϕαίνεται στο σχήµα 1. Υπολογίστε
Ó³ Ÿ , º 7(170) Ä Ê³μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2011.. 8, º 7(170).. 1192Ä1231 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ ˆ ˆŠ ˆ.. ʳμ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Éμ ±μ ±É ² ±Í, μî É ÒÌ Éμ μ³ ± ²Ó ±μ ² É Ï±μ² μ Ë ± Ô² - ³ É ÒÌ Î É Í É μë ± 2010. ±Í Î Ò ÊÕ μî Ó ÉÊ É ³,
Εφαρµογές της εξίσωσης Schrödinger - Μονοδιάστατα προβλήµατα
Εφαρµογές της εξίσωσης Schrödinger - Μονοδιάστατα προβλήµατα.1 Συνεχές Ενεργειακό Φάσµα.1.1 Ελεύθερο Σωµάτιο Εχουµε σε αυτή την περίπτωση F = 0, δηλαδή V (x, t) = σταθερό και τη σταθερή αυτή τιµή τη ϐάζουµε
u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0
u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ
η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Šμ ÉÓ, ƒ.. μë ²μ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 6 ˆ ˆ Ÿ ˆ ˆ Šˆ Š ˆŸ Ÿ ˆ.. Šμ ÉÓ, ƒ.. μë ²μ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ˆ 1721 É Ò Î É ÍÒ 1721 Š ±- ²Õμ Ö ² ³ ± ³ É ²Ó μ ÊÎ ÒÌμ É ÒÌ Î É Í 1723 Ö μ-ö ÒÌ Éμ²± μ ÖÌ
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Analysis of a discrete element method and coupling with a compressible fluid flow method
Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a
P621 - HW 4. Scott Dietrick November 17, b = i 4 (σµ σ ν σ ν σ µ ) a b. L ) b. 1 2 ǫijk σ k and (S k0. = i 4 (σ ki + Iσ k ) = i 2 σ k
P6 - HW 4 Scott Dietrick November 7, 9-35. - Show tht S ν implies S i L S i L b i 4 σi σ σ σ i b b L ǫik σ k nd S k b i 4 σ σ ν σ ν σ b L b iσ k. SL k b i 4 σk σ σ σ k b i 4 σi ċ σċb σ ċ σiċb i 4 σ iσ
Ó³ Ÿ , º 2(186).. 177Ä Œ. Š Ö,.. Ì Ö,.. ± Ö,, 1,.. ƒê, 2. μ ±μ- ³Ö ± ( ² Ö ± ) Ê É É, ± μ Ê É Ò Ê É É, Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 14.. 11, º (186).. 177Ä185 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š Ÿ Œ œ Œ Š ƒ Œ ƒ ˆŸ. Œ. Š Ö,.. Ì Ö,.. ± Ö,, 1,.. ƒê, μ ±μ- ³Ö ± ( ² Ö ± ) Ê É É, ± μ Ê É Ò Ê É É, Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³± Ì É Í μ μ É μ μ ³ÊÐ ³μÉ
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).
Μάθηµα ο 0 Οκτωβρίου 008 (9:00-:00) ΑΣΚΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Άσκηση 9 Έστω ένα κβαντικό σύστηµα το οποίο περιγράφεται από τρεις ενεργειακές καταστάσεις (ιδιοτιµές ενέργειας