ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ( )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ (10111-10793)"

Transcript

1 ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ( ) Συγγραφή λύσεων: Άρης Ασλανίδης Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση μέσα στο έγγραφο. Copyright για τις απαντήσεις των θεμάτων Σ. Πατάκης ΑΕΕΔΕ (Εκδόσεις Πατάκη), Αθήνα, 2014

2 ΘΔΜΑ Β B 1. Γύν κηθξά ζώκαηα Α θαη Β δηαθνξεηηθώλ καδώλ, βξίζθνληαη πάλω ζε ιείν νξηδόληην δάπεδν. Tν Α είλαη αθίλεην ελώ ην Β θηλείηαη κε ζηαζεξή ηαρύηεηα κέηξνπ υ o. Κάπνηα ζηηγκή αζθνύκε ηελ ίδηα νξηδόληηα δύλακε F θαη ζηα δπν ζώκαηα γηα ην ίδην ρξνληθό δηάζηεκα, κε απνηέιεζκα απηά λα απνθηήζνπλ ηαρύηεηεο ίδηνπ κέηξνπ. Η δύλακε F πνπ αζθείηαη ζην ζώκα Β έρεη ηελ ίδηα θαηεύζπλζε κε ηελ ηαρύηεηα υ o. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Αλ m A θαη m B νη κάδεο ηωλ ζωκάηωλ Α θαη Β αληίζηνηρα, ηζρύεη: α) m A < m B β) m A > m B γ) m A = m B Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 8 u(m/sec) B 2. Μαζεηήο ηεο Α Λπθείνπ παξαηεξεί ζην ζρήκα 20 ηε γξαθηθή παξάζηαζε ηαρύηεηαο - ρξόλνπ ελόο 10 απηνθηλήηνπ, πνπ θηλείηαη ζε επζύγξακκν δξόκν t(sec) Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Ο καζεηήο θάλεη ηνλ παξαθάηω ζπιινγηζκό, εξκελεύνληαο ηε κνξθή ηνπ δηαγξάκκαηνο: «Η επηηαρπλόκελε θίλεζε δηαξθεί 5 s (από 0 s έωο 5 s), ελώ ε επηβξαδπλόκελε δηαξθεί 10 s (από 10 s έωο 20 s). Αθνύ ινηπόλ ην ρξνληθό δηάζηεκα πνπ απαηηείηαη ώζηε ε ηαρύηεηα ηνπ λα κεδεληζηεί είλαη κεγαιύηεξν από ην ρξνληθό δηάζηεκα πνπ απαηηείηαη γηα λα απμεζεί ε ηαρύηεηά ηνπ ζε 20 m/s, ζπκπεξαίλω όηη ε επηηάρπλζε έρεη κεγαιύηεξν κέηξν από ηελ επηβξάδπλζε». α) Ο παξαπάλω ζπιινγηζκόο είλαη ζωζηόο. β) Ο παξαπάλω ζπιινγηζκόο είλαη ιάζνο. γ) Γελ έρω ηα δεδνκέλα γηα λα ζπκπεξάλω. Μονάδες 4 B) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 9

3 ΘΔΜΑ Γ Έλαο θύβνο κάδαο 10 kg νιηζζαίλεη πάλω ζε ιείν δάπεδν κε ζηαζεξή ηαρύηεηα υ ν = 3 m/s, θαηά κήθνο κηαο επζείαο πνπ ηαπηίδεηαη κε ηνλ νξηδόληην άμνλα x x. Τε ρξνληθή ζηηγκή t = 0 s ν θύβνο βξίζθεηαη ζηε ζέζε x = 0 m ηνπ άμνλα θαη αξρίδεη λα αζθείηαη ζε απηόλ νξηδόληηα δύλακε F ίδηαο θαηεύζπλζεο κε ηελ ηαρύηεηα. Τν κέηξν ηεο δύλακεο κεηαβάιιεηαη κε ηελ ζέζε x ηνπ θύβνπ, ζύκθωλα κε ηελ ζρέζε F = 10x [F ζε Ν θαη x ζε m]. Τε ρξνληθή ζηηγκή πνπ ν θύβνο δηέξρεηαη από ηε ζέζε x = 4 m ε δύλακε παύεη λα αζθείηαη. Ακέζωο κεηά ν θύβνο ζπλερίδεη ηελ θίλεζε ζε δεύηεξν ηξαρύ νξηδόληην δάπεδν πνπ αθνινπζεί ην πξώην, κέρξη πνπ ζηακαηά. Η θίλεζε κε ηξηβέο ζην ηξαρύ δάπεδν δηαξθεί ρξόλν ίζν κε 2,5 s. Γίλεηαη ε επηηάρπλζε ηεο βαξύηεηαο, g = 10 m/s 2. Γ1) Να ππνινγίζεηε ην κέηξν ηεο επηηάρπλζεο ηνπ θύβνπ ζηε ζέζε x = 2 m. Μονάδες 5 Γ2) Να θαηαζθεπάζεηε ην δηάγξακκα ηνπ κέηξνπ ηεο δύλακεο F ζε ζπλάξηεζε κε ηε ζέζε x γηα ηε κεηαηόπηζε από 0 m 4 m. Σηε ζπλέρεηα λα ππνινγίζεηε ηελ ελέξγεηα πνπ κεηαθέξζεθε ζηνλ θύβν, κέζω ηνπ έξγνπ ηεο δύλακεο F, θαηά ηε δηάξθεηα ηεο κεηαηόπηζεο ηνπ θύβνπ από ηελ ζέζε x = 0 m έωο ηελ ζέζε x = 4 m. Μονάδες 7 Γ3) Να ππνινγίζεηε ην κέηξν ηεο ηαρύηεηαο ηνπ θύβνπ ζηε ζέζε x = 4 m. Μονάδες 6 Γ3) Να ππνινγίζεηε ην ζπληειεζηήο ηξηβήο νιίζζεζεο κεηαμύ ηνπ θύβνπ θαη ηνπ δεύηεξνπ δαπέδνπ. Μονάδες 7

4

5

6

7 ΘΕΜΑ Β Β 1. Έλα απηνθίλεην θαη έλα πνδήιαην βξίζθνληαη ζηακαηεκέλα κπξνζηά από έλα θωηεηλό ζεκαηνδόηε. Τε ρξνληθή ζηηγκή t = 0 s ν θωηεηλόο ζεκαηνδόηεο γίλεηαη πξάζηλνο νπόηε ην απηνθίλεην θαη ην πνδήιαην μεθηλνύλ ηαπηόρξνλα θηλνύκελα επζύγξακκα κε ζηαζεξή επηηάρπλζε. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Τε ρξνληθή ζηηγκή t 1 ην απηνθίλεην απέρεη από ην ζεκαηνδόηε ηεηξαπιάζηα απόζηαζε από απηή πνπ απέρεη ην πνδήιαην. Σπκπεξαίλνπκε όηη ε επηηάρπλζε ηνπ απηνθηλήηνπ ζπγθξηηηθά κε εθείλε ηνπ πνδειάηνπ έρεη κέηξν: α) δηπιάζην β) ηεηξαπιάζην γ) νθηαπιάζην. Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8 Β 2. Κηβώηην αξρίδεη ηελ t = 0 s λα θηλείηαη επζύγξακκα ζε νξηδόληην δάπεδν θαη ε ηηκή ηεο ηαρύηεηαο ηνπ δίδεηαη από ηε ζρέζε υ = 5t (SI). Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Η ηηκή ηεο ζπληζηακέλεο ηωλ δπλάκεωλ πνπ αζθνύληαη ζην θηβώηην: α) ειαηηώλεηαη κε ην ρξόλν. β) απμάλεηαη κε ην ρξόλν. γ) παξακέλεη ζηαζεξή. Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 9

8 ΘΕΜΑ O ζάιακνο αλειθπζηήξα κάδαο m = 500 kg είλαη αξρηθά αθίλεηνο θαη μεθηλώληαο ηε ρξνληθή ζηηγκή t = 0 s θαηεβαίλεη ζε ρξνληθό δηάζηεκα 12 s από ηνλ ηειεπηαίν όξνθν ζην ηζόγεην ελόο πνιπώξνθνπ θηηξίνπ. Σην ζάιακν εθηόο από ην βάξνο ηνπ αζθείηαη, κέζω ελόο ζπξκαηόζρνηλνπ, κία θαηαθόξπθε πξνο F(N) ηα πάλω δύλακε F. Η ηηκή ηεο F ζε ζπλάξηεζε κε ην ρξόλν θαζόδνπ παξηζηάλεηαη ζην δηπιαλό δηάγξακκα t(s) m Δίλεηαη ε επηηάρπλζε ηεο βαξύηεηαο ίζε κε g=10 θαη όηη ε αληίζηαζε ηνπ αέξα είλαη ακειεηέα. s 2. 1) Να ραξαθηεξίζεηε ηηο θηλήζεηο πνπ εθηειεί ν ζάιακνο θαη λα ππνινγίζεηε ηελ ηηκή ηεο επηηάρπλζήο ηνπ ζε θάζε κία από απηέο. Μονάδες 6 2) Να ππνινγίζεηε ην κέηξν ηεο ηαρύηεηαο ηνπ ζαιάκνπ ηηο ρξνληθέο ζηηγκέο 4 s, 8 s θαη 12 s. Μονάδες 6 3) Να ζρεδηάζεηε ην δηάγξακκα ηεο ηαρύηεηαο ηνπ ζαιάκνπ ζπλαξηήζεη ηνπ ρξόλνπ θαη λα ππνινγίζεηε ην νιηθό κήθνο ηεο δηαδξνκήο πνπ έθαλε ν αλειθπζηήξαο θαηά ηελ θάζνδό ηνπ. Μονάδες 8 4) Να ππνινγίζηε ην έξγν ηεο δύλακεο F θαη ηε κεηαβνιή ηεο δπλακηθήο ελέξγεηαο ηνπ ζαιάκνπ ζην ρξνληθό δηάζηεκα από ηε ρξνληθή ζηηγκή 4 s, ωο ηε ρξνληθή ζηηγκή 8 s. Μονάδες 5

9

10

11

12

13 ΘΕΜΑ Β Β 1. Μικρή σφαίρα εκτοξεύεται από το έδαφος κατακόρυφα προς τα πάνω. Η επιτάχυνση της βαρύτητας (g) είναι σταθερή και ως επίπεδο αναφοράς για τη βαρυτική δυναμική ενέργεια θεωρείται το έδαφος. Η αντίσταση του αέρα είναι αμελητέα. Α) Να επιλέξετε την σωστή πρόταση. Η γραφική παράσταση της μηχανικής ενέργειας (Ε) της σφαίρας σε συνάρτηση με το ύψος (y) από το σημείο εκτόξευσης έχει τη μορφή του διαγράμματος: E E E 0 y 0 y 0 y (α) (β) (γ) Β) Να δικαιολογήσετε την επιλογή σας. Μονάδες 4 Μονάδες 8 B 2. Ένα κινητό εκτελεί ευθύγραμμη ομαλά επιταχυνόμενη κίνηση με επιτάχυνση μέτρου a και αρχική ταχύτητα μέτρου υ ο. Τη χρονική στιγμή t 1 το κινητό έχει αποκτήσει ταχύτητα τριπλάσια της αρχικής. Α) Από τις παρακάτω τρεις επιλογές να επιλέξετε αυτήν που θεωρείτε σωστή. Το μέτρο της επιτάχυνσης του κινητού θα είναι ίσο με: 2υο α) t 1 β) 3υ 0 t 1 Β) Να δικαιολογήσετε την επιλογή σας. υο γ) 2t 1 Μονάδες 4 Μονάδες 9

14 ΘΕΜΑ Δ Ένα σώμα μάζας 4 Kg, αφήνεται από ύψος h, πάνω από το έδαφος και φθάνει στο έδαφος με ταχύτητα μέτρου υ = 30 m/s. Η επιτάχυνση της βαρύτητας στη διάρκεια της κίνησης είναι m σταθερή, με τιμή g = 10 s 2 καθώς και την αντίσταση του αέρα αμελητέα Δ1) Να υπολογίσετε το ύψος h. Θεωρήστε ως επίπεδο αναφοράς για τη δυναμική ενέργεια το έδαφος, Μονάδες 7 Δ2) Να υπολογίσετε την απόσταση του σώματος από το έδαφος τη στιγμή που κινείται με ταχύτητα μέτρου 20 m/s. Μονάδες 6 Δ3) Να παραστήσετε γραφικά σε σύστημα βαθμολογημένων αξόνων τo διάστημα που διανύει το σώμα σε συνάρτηση με το χρόνο. Μονάδες 6 Δ4) Να υπολογίσετε το έργο του βάρους του σώματος, στο τελευταίο δευτερόλεπτο της κίνησης του σώματος. Μονάδες 6

15

16

17 Θ ΜΑ Β B1. Απηνθίλεην θηλείηαη ζε επζύγξακκν δξόκν. Σε δπν ρξνληθέο ζηηγκέο t 1 θαη t 2 ην απηνθίλεην έρεη ηαρύηεηα κε κέηξν υ 1 θαη υ 2 θαη θηλεηηθή ελέξγεηα Κ 1 θαη Κ 2 αληίζηνηρα. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Αλ γηα ηα κέηξα ησλ ηαρπηήησλ ηζρύεη, υ 2 = 2υ 1 ηόηε: α) Κ 2 = 2Κ 1 β) Κ 1 = 4Κ 2 γ) Κ 2 = 4Κ 1 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 8 Β 2. Έλα θηβώηην βξίζθεηαη αξρηθά αθίλεην ζε ιείν νξηδόληην δάπεδν ζηε ζέζε x = 0 m. Τε ρξνληθή ζηηγκή t = 0 s έλαο εξγάηεο ζπξώρλεη θαη θηλεί ην θηβώηην αζθώληαο ζε απηό ζηαζεξή νξηδόληηα δύλακε. A) Να επηιέμεηε ηελ ζσζηή απάληεζε. Αλ κε x ζπκβνιίζνπκε ηε ζέζε θαη κε Κ ηελ θηλεηηθή ελέξγεηα ηνπ θηβσηίνπ ζ απηή ηε ζέζε, λα ζπκπιεξώζεηε ηα θελά ζηνλ παξαθάησ πίλαθα: x 0 2x 4x K 3K Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 9

18 Θ ΜΑ Έλα ζώκα κάδαο 4 kg, αθήλεηαη από ύςνο h, πάλσ από ην έδαθνο θαη θζάλεη ζην έδαθνο κε ηαρύηεηα κέηξνπ υ = 30 m/s. Η επηηάρπλζε ηεο βαξύηεηαο ζηε δηάξθεηα ηεο θίλεζεο είλαη ζηαζεξή, κε ηηκή g=10 m/s 2. Θεσξήζηε σο επίπεδν αλαθνξάο γηα ηε δπλακηθή ελέξγεηα ην έδαθνο, θαζώο θαη ηελ αληίζηαζε ηνπ αέξα ακειεηέα. 1) Να ππνινγίζεηε ην ύςνο h. Μονάδες 7 2) Να ππνινγίζεηε ηελ απόζηαζε ηνπ ζώκαηνο από ην έδαθνο ηε ζηηγκή πνπ θηλείηαη κε ηαρύηεηα κέηξνπ 10 m/s. Μονάδες 6 3) Να παξαζηήζεηε γξαθηθά ζε ζύζηεκα βαζκνινγεκέλσλ αμόλσλ ηε δπλακηθή ελέξγεηα ηνπ ζώκαηνο ζε ζπλάξηεζε κε ην ύςνο από ηελ επηθάλεηα ηνπ εδάθνπο. Μονάδες 6 4) Να ππνινγίζεηε ην έξγν ηνπ βάξνπο ηνπ ζώκαηνο, ζην ηειεπηαίν δεπηεξόιεπην ηεο θίλεζεο ηνπ ζώκαηνο. Μονάδες 6

19

20

21

22 Θ ΜΑ Β 1. Έλα ζώκα θηλείηαη πάλω ζε ιείν νξηδόληην επίπεδν κε ζηαζεξή ηαρύηεηα. Κάπνηα ζηηγκή ζην ζώκα αζθείηαη νξηδόληηα δύλακε F θαη ην ζώκα αξρίδεη λα επηβξαδύλεηαη νκαιά. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Η γξαθηθή παξάζηαζε ηεο ηηκήο ηεο δύλακεο F πνπ αζθείηαη ζην ζώκα ζε ζπλάξηεζε κε ην ρξόλν (t) παξηζηάλεηαη ζωζηά από ην δηάγξακκα: F F F 1 F F 1 0 t (Ι) 0 0 t (ΙΙ) t (ΙΙΙ) α) Ι β) ΙΙ γ) ΙΙΙ Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 8 Β 2. Μία κεηαιιηθή ζθαίξα εθηειεί ειεύζεξε πηώζε κε ηελ επίδξαζε κόλν ηνπ βάξνπο ηεο. Σε ζεκείν Α ηεο ηξνρηάο ηεο έρεη ηαρύηεηα κέηξνπ υ θαη θηλεηηθή ελέξγεηα ίζε κε Κ. Σε έλα άιιν ζεκείν Β πνπ βξίζθεηαη ρακειόηεξα από ην Α, έρεη ηαρύηεηα δηπιάζηνπ κέηξνπ, δειαδή ίζνπ κε 2υ. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Τν έξγν ηνπ βάξνπο ηεο ζθαίξαο θαηά ηε κεηαηόπηζε ηεο από ηε ζέζε Α ζηελ ζέζε Β είλαη ίζν κε : α) 3Κ β) 2Κ γ) 4Κ Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο Μονάδες 9

23 Θ ΜΑ Γύν κεηαιιηθνί θύβνη Σ 1 θαη Σ 2 κε κάδεο 1 F 1 F 2 2 m 1 = 5 kg θαη m 2 = 10 kg θηλνύληαη πάλω ζε νξηδόληην δάπεδν θαηά κήθνο κηαο επζείαο ν έλαο πξνο ηνλ άιιν. Α S S S Β Τε ρξνληθή ζηηγκή t = 0 s βξίζθνληαη ζηα ζεκεία Α, Β ηνπ νξηδόληηνπ δαπέδνπ, έρνπλ ηαρύηεηεο m ίδηαο δηεύζπλζεο θαη αληίζεηεο θνξάο κέηξνπ υ 1 = 5 s m θαη υ 2 = 5 s αληίζηνηρα θαη απέρνπλ κεηαμύ ηνπο απόζηαζε S = 200 m. Γπν εξγάηεο ζπξώρλνπλ ηνπο θύβνπο Σ 1 θαη Σ 2 αζθώληαο ζε απηνύο νξηδόληηεο δπλάκεηο F1 θαη F 2, όπωο παξηζηάλεηαη ζην ζρήκα, κε κέηξα F 1 = 20 Ν θαη F 2 = 60 N αληίζηνηρα, νη νπνίεο έρνπλ ηε δηεύζπλζε ηεο επζείαο πνπ νξίδνπλ ηα ζεκεία Α, Β. Ο ζπληειεζηήο ηξηβήο κεηαμύ δαπέδνπ θαη θάζε θύβνπ είλαη μ = 0,4 θαη ε επηηάρπλζε ηεο βαξύηε- m ηαο είλαη g = 10. s 2 1) Να ππνινγίζεηε θαη λα ζρεδηάζεηε ηε δύλακε ηξηβήο πνπ δέρεηαη θάζε θύβνο. Μονάδες 6 2) Να ραξαθηεξίζεηε πιήξωο ην είδνο ηεο θίλεζεο πνπ εθηειεί θάζε θύβνο. Μονάδες 6 3) Να ππνινγίζεηε ηελ απόζηαζε από ην ζεκείν Α ζην νπνίν ζα ζπλαληεζνύλ νη δπν θύβνη. Μονάδες 7 4) Να ππνινγίζεηε ηε ζπλνιηθή ελέξγεηα πνπ κεηαθέξζεθε ζηνλ θύβν Σ 1 από ηνλ εξγάηε πνπ ηνλ ζπξώρλεη από ηελ ζηηγκή t = 0 s έωο ηε ζηηγκή πνπ νη δπν θύβνη ζπλαληώληαη. Μονάδες 6

24

25

26

27

28 Θ ΜΑ Β Β 1. Πνδήιαην θηλείηαη ζε επζύγξακκν δξόκν. Σε δπν ρξνληθέο ζηηγκέο t 1 θαη t 2 ην πνδήιαην έρεη ηαρύηεηα κε κέηξν υ 1 θαη υ 2 θαη θηλεηηθή ελέξγεηα Κ 1 θαη Κ 2 αληίζηνηρα. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Αλ γηα ηα κέηξα ηωλ ηαρπηήηωλ ηζρύεη, υ 2 = 2υ 1 ηόηε: α) Κ 2 = 2Κ 1 β) Κ 2 = 4Κ 1 γ) Κ 1 = 4Κ 2 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 8 Β 2. Κηβώηην βξίζθεηαη αθίλεην ζε ιείν νξηδόληην επίπεδν. Τε ρξνληθή ζηηγκή t = 0 s ζην θηβώηην αζθείηαη νξηδόληηα (ζπληζηακέλε) δύλακε ε ηηκή ηεο νπνίαο ζε ζπλάξηεζε κε ην ρξόλν δίλεηαη από ην δηάγξακκα ζηε δηπιαλή εηθόλα. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Τν θηβώηην θηλείηαη κε: α) ηε κέγηζηε θαηά κέηξν επηηάρπλζε θαη ηε κέγηζηε θαηά κέηξν ηαρύηεηα ηε ρξνληθή ζηηγκή t 1. β) ηε κέγηζηε θαηά κέηξν επηηάρπλζε θαη ηε κέγηζηε θαηά κέηξν ηαρύηεηα ηε ρξνληθή ζηηγκή t 2. γ) ηε κέγηζηε θαηά κέηξν επηηάρπλζε ηε ρξνληθή ζηηγκή t 1 θαη ηε κέγηζηε θαηά κέηξν ηαρύηεηα ηε ρξνληθή ζηηγκή t 2. Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 9

29 Θ ΜΑ Κύβνο κάδαο m είλαη αξρηθά αθίλεηνο ζε νξηδόληην δάπεδν. Σηνλ θύβν αζθείηαη ζηαζεξή νξηδόληηα δύλακε F νπόηε απηόο αξρίδεη λα θηλείηαη ζην νξηδόληην δάπεδν. Καηά ηε θίλεζε ηνπ θύβνπ αζθείηαη ζε απηόλ ηξηβή Τ = 6 Ν θαη ε αληίζηαζε ηνπ αέξα ζεωξείηαη ακειεηέα. Μεηά από κεηαηόπηζε θαηά x = 4 m ζην νξηδόληην δάπεδν ν θύβνο θηλείηαη κε ηαρύηεηα κέηξνπ W F = 32 J. Να ππνινγίζεηε: m υ = 4 s. Τν έξγν ηεο F ζηελ παξαπάλω κεηαηόπηζε είλαη 1) ην έξγν ηεο ηξηβήο ζηε παξαπάλω κεηαηόπηζε, Μονάδες 6 2) ην κέηξν ηεο δύλακε F, Μονάδες 6 3) ηε κάδα ηνπ θύβνπ, Μονάδες 7 4) ην κέηξν ηεο νξηδόληηαο δύλακεο πνπ πξέπεη λα αζθεζεί ζηνλ θύβν ώζηε λα απνθηήζεη θηλεηηθή ελέξγεηα Κ= 18 J ζε ρξνληθό δηάζηεκα 2 s αλ γλωξίδεηε όηη απηόο βξίζθεηαη αξρηθά αθίλεηνο ζε ιείν νξηδόληην δάπεδν. Μονάδες 6

30

31

32

33 Θ ΜΑ Β Β1. Τα δηαγξάκκαηα ηαρύηεηαο ρξόλνπ γηα δπν θηλεηά (1) θαη (2) θαίλνληαη ζην ζρήκα. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Αλ s 1 θαη s 2 ηα δηαζηήκαηα πνπ δηήλπζαλ ηα θηλεηά (1) θαη (2) αληίζηνηρα ην ρξνληθό δηάζηεκα (0, t 0 ), ηόηε: α) s 1 = s 2 β) s 1 > s 2 γ) s 1 < s 2 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. 0 (1) (2) t 0 0 t Μονάδες 4 Μονάδες 8 Β2. Σθαίξα κηθξώλ δηαζηάζεσλ βξίζθεηαη αθίλεηε ζε κηθξό ύςνο h πάλσ από ην έδαθνο. Σην ύςνο απηό κε επίπεδν αλαθνξάο γηα ηε δπλακηθή ελέξγεηα ην έδαθνο, ε ζθαίξα έρεη δπλακηθή ελέξγεηα ίζε κε 120 J. Η ζθαίξα αθήλεηαη ειεύζεξε, νπόηε εθηειεί ειεύζεξε πηώζε κε ηελ επίδξαζε ηνπ αέξα λα ζεσξείηαη ακειεηέα. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Όηαλ ε ζθαίξα βξεζεί ζε απόζηαζε ίζε κε h/3, από ην ζεκείν εθθίλεζεο, ηόηε ε δπλακηθή ηεο ελέξγεηα U θαη ε θηλεηηθή ηεο ελέξγεηα K ζα είλαη αληίζηνηρα: α) U = 40 J, K = 80 J β) U = 80 J, K = 40 J γ) U = 90 J, K = 30 J Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 9

34 Θ ΜΑ Μεηαιιηθόο θύβνο κάδαο m θηλείηαη επζύγξακκα πάλσ ζε ιείν νξηδόληην δάπεδν έρνληαο ηε ρξνληθή ζηηγκή t = 0 s ηαρύηεηα κέηξνπ m 4 s. Σηνλ θύβν αζθείηαη ηε ρξνληθή F (N) 8 ζηηγκή t = 0 s δύλακε, ίδηαο δηεύζπλζεο κε ηε ηαρύηεηα ηνπ. Η ηηκή ηεο δύλακεο ζε ζπλάξηεζε κε ην ρξόλν, γηα ην ρξνληθό δηάζηεκα 0s 15s θαίλεηαη ζην δηπιαλό δηάγξακκα. Τελ ρξνληθή ζηηγκή t 1 = 5 s ν θύβνο έρεη t (s) απνθηήζεη ηαρύηεηα κέηξνπ m υ = 14 s. Η αληίζηαζε ηνπ αέξα ζεσξείηαη ακειεηέα. 1) Να ραξαθηεξίζεηε ηε θίλεζε πνπ εθηειεί ην ζώκα ζην ρξνληθό δηάζηεκα 0 s 5s θαη λα ππνινγίζεηε ην κέηξν ηεο επηηάρπλζεο ηνπ. Μονάδες 6 2) Να ππνινγίζεηε ηε κάδα ηνπ θύβνπ. Μονάδες 6 3) Να παξαζηήζεηε γξαθηθά ην κέηξν ηεο ηαρύηεηαο ηνπ θύβνπ, ζε ζπλάξηεζε κε ην ρξόλν ζε ζύζηεκα βαζκνινγεκέλσλ αμόλσλ γηα ην ρξνληθό δηάζηεκα s 15s 0. Μονάδες 7 4) λα ππνινγίζεηε ην έξγν ηεο ζην ρξνληθό δηάζηεκα 0s 15s. Μονάδες 6

35

36

37

38 ΘΕΜΑ Β B 1. Αυτοκίνητο είναι αρχικά ακίνητο σε οριζόντιο δρομο. Ο οδηγός του αυτοκινήτου τη χρονική στιγμή t=0, πατώντας το γκάζι αρχίζει να επιταχύνει το αυτοκίνητο με σταθερή επιτάχυνση. Τη χρονική στιγμή t 1 αφήνει το γκάζι και συνεχίζει την κίνησή του ομαλά επιβραδυνόμενο μέχρι να σταματήσει τη στιγμή t 2 Α) Να επιλέξετε την σωστή απάντηση α) Στο χρονικό διάστημα 0 t 1 ασκείται σταθερή συνισταμένη δύναμη αντίρροπη της ταχύτητάς του β) Στο χρονικό διάστημα t 1 t 2 ασκείται σταθερή συνισταμένη δύναμη ομόρροπη της ταχύτητάς του γ) Στο χρονικό διάστημα 0 t 1 στο αυτοκίνητο ασκείται σταθερή συνιστάμενη δύναμη ομόρροπη της ταχύτητας του Μονάδες 4 Β) Να δικαιολογήσετε την απάντησή σας Μονάδες 8 B 2. Ένα σώμα είναι ακίνητο πάνω σε οριζόντιο επίπεδο. Στο σώμα τη χρονική στιγμή t 0 = 0 s αρχίζει να ασκείται οριζόντια F(N) 80 δύναμη F, της οποίας το μέτρο σε συνάρτηση με το χρόνο φαίνεται στο διάγραμμα. Το σώμα στη χρονική διάρκεια από 40 0 s 10 s παραμένει ακίνητο ενώ τη χρονική στιγμή t = 10 s αρχίζει να κινείται Α) Να επιλέξετε τη σωστή απάντηση. Η δύναμη της τριβής που ασκείται στο σώμα τη χρονική στιγμή t = 10 s έχει μέτρο 80 Ν. Ο ακριβής χαρακτηρισμός για την τριβή αυτή είναι: α) Στατική τριβή β) Τριβή ολίσθησης γ) Οριακή τριβή Μονάδες 4 Β) Να δικαιολογήσετε την επιλογή σας. Μονάδες 9 t(s)

39 ΘΕΜΑ Δ Μεταλλικός κύβος μάζας 5 Kg έλκεται με τη βοήθεια ενός ηλεκτροκινητήρα, πάνω σε ένα οριζόντιο διάδρομο. Στον κύβο ασκείται σταθερή οριζόντια δύναμη F και κινείται ευθύγραμμα με σταθερή επιτάχυνση. Με τη βοήθεια συστήματος φωτοπυλών παίρνουμε την πληροφορία ότι το μέτρο της ταχύτητας του κύβου τη χρονική στιγμή t o = 0 s είναι ίσο με 2 m/s και τη χρονική στιγμή t 1 = 2 s είναι ίσο με 12 m/s. Επίσης, έχει μετρηθεί πειραματικά ο συντελεστής τριβής ολίσθησης μεταξύ του κύβου και του διαδρόμου και βρέθηκε μ = 0,2. Δίνεται η επιτάχυνση της βαρύτητας g = 10 m/s 2 και ότι η επίδραση του αέρα θεωρείται αμελητέα. Να υπολογίσετε: Δ1) το μέτρο της επιτάχυνσης με την οποία κινείται ο κύβος. Δ2) τo διάστημα που διάνυσε ο κύβος στο χρονικό διάστημα t o = 0 s t 1 = 2 s. Δ3) το μέτρο της δύναμης F. Μονάδες 6 Μονάδες 6 Μονάδες 7 Δ4) την ενέργεια που μεταφέρθηκε στον κύβο μέσω του έργου της δύναμης F στο χρονικό διάστημα των 2 s καθώς και τη ενέργεια που αφαιρέθηκε μέσω του έργου της τριβής στο ίδιο χρονικό διάστημα. Μονάδες 6

40

41

42 ΘΕΜΑ Β Β 1. Κιβώτιο αρχίζει την t = 0 να κινείται ευθύγραμμα σε οριζόντιο δάπεδο και η τιμή της ταχύτητας του δίδεται από τη σχέση υ = 5t (SI) για t 0 Α) Να επιλέξετε την σωστή απάντηση Η τιμή της συνισταμένης των δυνάμεων που ασκούνται στο κιβώτιο: α) ελαττώνεται με το χρόνο β) αυξάνεται με το χρόνο γ) παραμένει σταθερή Μονάδες 4 Β) Να δικαιολογήσετε την επιλογή σας Μονάδες 8 Β 2. Δύο όμοιες μεταλλικές σφαίρες Σ 1 και Σ 2, ίδιας μάζας, αφήνονται ταυτόχρονα να εκτελέσουν ελεύθερη πτώση, από ύψος h 1 η Σ 1 και από ύψος h 2 η Σ 2, πάνω από την επιφάνεια της Γης. Η αντίσταση του αέρα είναι αμελητέα και η επιτάχυνση της βαρύτητας σταθερή. Α) Να επιλέξετε τη σωστή απάντηση. Αν h 1 = 2h 2, τότε: α) Η σφαίρα Σ 1 φθάνει στο έδαφος έχοντας ταχύτητα διπλάσιου μέτρου από την ταχύτητα της σφαίρας Σ 2. β) Οι δύο σφαίρες φτάνουν ταυτόχρονα στο έδαφος. γ) Η σφαίρα Σ 1 φθάνει στο έδαφος έχοντας διπλάσια κινητική ενέργεια από τη σφαίρα Σ 2. Μονάδες 4 Β) Να δικαιολογήσετε την επιλογή σας Μονάδες 9

43 ΘΕΜΑ Δ Ένας γερανός ανυψώνει σε ύψος 80m πάνω από την επιφάνεια εδάφους, ένα κιβώτιο μάζας 1500Kg. Το κιβώτιο ανυψώνεται με σταθερή ταχύτητα μέτρου υ=2m/s. Δίνεται η επιτάχυνση της βαρύτητας g = 10 m/s 2. Θεωρήστε ως επίπεδο αναφοράς για τη δυναμική ενέργεια το έδαφος και την αντίσταση του αέρα αμελητέα. Δ1) Να υπολογίσετε το χρόνο που θα διαρκέσει η ανύψωση Δ2) Να υπολογίσετε τη δύναμη που ασκεί ο γερανός στο κιβώτιο Μονάδες 5 Μονάδες 6 Δ3) Να υπολογίσετε την μέση ισχύ του γερανού στη χρονική διάρκεια της ανύψωσης του κιβωτίου Μονάδες 7 Δ4) Από λάθος του χειριστή του γερανού το κιβώτιο απαγκιστρώνεται τη στιγμή που βρίσκεται ακίνητο σε ύψος 80m απο τη επιφάνεια του εδάφους. Να υπολογίσετε το λόγο της κινητικής ενέργειας Κ προς τη δυναμική ενέργεια U του σώματος δύο (2) δευτερόλεπτα μετά την απαγκίστρωσή του από τον γερανό Μονάδες 7

44

45

46

47

48 Θ ΜΑ Β Β1. Τν κέηξν ηεο ηαρύηεηαο αζιεηή ηωλ 100 m είλαη ίζν κε υ Α = 36 km/h θαη ην κέηξν ηεο ηαρύηεηαο ελόο ζαιηγθαξηνύ είλαη ίζν κε υ Σ = 1 cm/s. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. υα Τν πειίθν ηωλ κέηξωλ ηωλ ηαρπηήηωλ ηνπ αζιεηή θαη ηνπ ζαιηγθαξηνύ, είλαη ίζν κε: υ α) 100 β) 1000 γ) 36 Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8 Σ Β2. Δύν ζώκαηα κε κάδεο m 1 θαη m 2 γηα ηηο νπνίεο ηζρύεη m 1 > m 2 βξίζθνληαη πάλω ζε ιείν νξηδόληην δάπεδν θαη είλαη ζε επαθή κεηαμύ ηνπο. Μπνξνύκε λα κεηαθηλήζνπκε ηα ζώκαηα, εθαξκόζνπκε νξηδόληηα δύλακε ίζνπ κέηξνπ F, είηε ζην ζώκα m 1 κε θνξά πξνο ηα δεμηά, όπωο F m 1 m 2 m 1 m 2 F Σρήκα α Σρήκα β Β(β) (α) θαίλεηαη ζην ζρήκα (α), είηε ζην ζώκα m 2 κε θνξά πξνο ηα αξηζηεξά όπωο θαίλεηαη ζην ζρήκα (β). Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Τν κέηξν ηεο επηηάρπλζεο πνπ απνθηνύλ ηα δύν ζώκαηα: α) είλαη ίδην θαη ζηηο δύν παξαπάλω πεξηπηώζεηο β) είλαη κεγαιύηεξν ζηελ πεξίπηωζε πνπ ε δύλακε αζθείηαη ζην m 1 πξνο ηα δεμηά (ζρήκα α). γ) είλαη κεγαιύηεξν ζηελ πεξίπηωζε πνπ ε δύλακε αζθείηαη ζην m 2 πξνο ηα αξηζηεξά (ζρήκα β). Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 9

49 Θ ΜΑ Έλα ζώκα κάδαο 20 kg θηλείηαη πάλω ζε ιείν νξηδόληην επίπεδν κε ηελ επίδξαζε ζπληζηακέλεο νξηδόληηαο δύλακεο. Τν δηάγξακκα ηεο ηαρύηεηαο ηνπ ζώκαηνο ζε ζπλάξηεζε κε ην ρξόλν γηα ην ρξνληθό δηάζηεκα 0 s 30 s θαίλεηαη ζην ζρήκα. 1) Να ππνινγηζηεί ην ζπλνιηθό δηάζηεκα πνπ δηήλπζε ην ζώκα ζην ρξνληθό δηάζηεκα 0 s 30 s. 2) Να ζπκπιεξωζεί ν παξαθάηω πίλαθαο: Χξνληθό δηάζηεκα (s) Μονάδες 6 Σπληζηακέλε νξηδόληηα δύλακε πνπ αζθείηαη ζην ζώκα (Ν) Μονάδες 6 3) Να ππνινγηζηεί ην έξγν ηεο ζπληζηακέλεο νξηδόληηαο δύλακεο ζηα ρξνληθά δηαζηήκαηα 0 s 10 s θαη 10 s 30 s. Μονάδες 6 4) Να αμηνπνηήζεηε ηα απνηειέζκαηα ηωλ πξνεγνύκελωλ εξωηήηωλ θαη λα επαιεζεύζεηε ην «Θεώξεκα κεηαβνιήο ηεο θηλεηηθήο ελέξγεηαο» θαηά ηελ θίλεζε ηνπ ζώκαηνο ζην ρξνληθό δηάζηεκα 10 s - 30 s u(m/s) t(sec) Μονάδες 7

50

51

52

53 Θ ΜΑ Β Β1. Από ηελ ηαξάηζα κηαο πνιπθαηνηθίαο αθήλνληαη λα πέζνπλ κία μύιηλε ζθαίξα Α κάδαο m θαη κία ζηδεξέληα ζθαίξα Β ηξηπιάζηαο κάδαο. Οη δύν ζθαίξεο εθηεινύλ ειεύζεξε πηώζε θαη ζπλεπώο ε επίδξαζε ηνπ αέξα ζεωξείηαη ακειεηέα. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Αλ Κ A είλαη ε θηλεηηθή ελέξγεηα πνπ αληηζηνηρεί ζηε ζθαίξα Α θαη Κ B ε θηλεηηθή ελέξγεηα πνπ αληηζηνηρεί ζηε ζθαίξα Β, ειάρηζηα πξηλ νη ζθαίξεο αθνπκπήζνπλ ζην έδαθνο, ηόηε ηζρύεη ηζρύεη: α) Κ Α = Κ Β β) Κ Α = 3Κ Β γ) Κ Β = 3Κ Α Β) Να αηηηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 8 Β2. Γπν θηβώηηα Α θαη Β κε ίζεο κάδεο βξίζθνληαη δίπια δίπια θαη αθίλεηα ζε ιείν νξηδόληην επίπεδν. Τε ρξνληθή ζηηγκή t = 0 αζθνύληαη ζηα θηβώηηα Α θαη Β ζηαζεξέο νξηδόληηεο δπλάκεηο F A θαη F B κε κέηξα F A = F θαη F FB αληίζηνηρα, όπωο θαίλεηαη ζην 2 ζρήκα. Τα δπν θηβώηηα αξρίδνπλ λα θηλνύληαη επζύγξακκα ζην νξηδόληην επίπεδν θαη ε επίδξαζε ηνπ αέξα είλαη ακειεηέα. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Αλ κεηά από ίζεο κεηαηνπίζεηο από ην ζεκείν εθθίλεζεο ηνπο, ηα θηβώηηα Α θαη Β έρνπλ ηαρύηεηεο κε κέηξα υ Α θαη υ Β αληίζηνηρα, ηόηε ηζρύεη: α) υ Α = υ Β β) υ υ 2 γ) υ υ 2 Α Β Β Α Β Α F B F Α Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 9

54 Θ ΜΑ Έλα ζώκα κάδαο 2 kg θηλείηαη πάλω ζε ιείν νξηδόληην επίπεδν κε ηελ επίδξαζε νξηδόληηαο ζπληζηακέλεο δύλακεο. Τν δηάγξακκα ηεο ηαρύηεηαο ηνπ ζώκαηνο ζε ζπλάξηεζε κε ην ρξόλν γηα ην ρξνληθό δηάζηεκα 0 s 30 s θαίλεηαη ζην ζρήκα. 1) Να ππνινγηζηεί ην ζπλνιηθό δηάζηεκα πνπ δηήλπζε ην ζώκα ην ρξνληθό δηάζηεκα 0 s 30 s. 2) Να ζπκπιεξωζεί ν παξαθάηω πίλαθαο: 60 υ(m/s) t(sec) Μονάδες 6 Χξνληθό Σπληζηακέλε νξηδόληηα δύλακε δηάζηεκα πνπ αζθείηαη ζην ζώκα (s) (Ν) Μονάδες 6 3) Να ππνινγηζηεί ην έξγν ηεο ζπληζηακέλεο νξηδόληηαο δύλακεο ηα ρξνληθά δηαζηήκαηα 0 s 10 s θαη 10 s 30 s. Μονάδες 6 4) Να αμηνπνηήζεηε ηα απνηειέζκαηα ηωλ πξνεγνύκελωλ εξωηεκάηωλ θαη λα επαιεζεύζεηε ην «Θεώξεκα κεηαβνιήο ηεο θηλεηηθήο ελέξγεηαο» θαηά ηελ θίλεζε ηνπ ζώκαηνο ζην ρξνληθό δηάζηεκα 10 s 30 s. Μονάδες 7

55

56

57

58

59 Θ ΜΑ Β B 1. Μηθξή ζθαίξα αθήλεηαη λα πέζεη από κηθξό ύςνο h πάλσ από ην έδαθνο, εθηειώληαο ειεύζεξε πηώζε. Θεσξείζηε όηη ε επηηάρπλζε ηεο βαξύηεηαο g είλαη ζηαζεξή θαη όηη ε επίδξαζε ηνπ αέξα είλαη ακειεηέα. (Ι) (ΙΙ) (ΙΙΙ) U K K U U K 0 h/ 2 h y 0 h/ 2 h y 0 h/ 2 h y Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Οη γξαθηθέο παξαζηάζεηο ηεο θηλεηηθήο (K) θαη ηεο δπλακηθήο ελέξγεηαο (U) ηεο ζθαίξαο ζε ζπλάξηεζε κε ην ύςνο (y) από ην έδαθνο παξηζηάλνληαη ζην ζρήκα: Μονάδες 4 (α) Ι (β) ΙΙ (γ) ΙΙΙ Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8 B 2. Έλα ζώκα είλαη αθίλεην πάλσ ζε νξηδόληην επίπεδν. Σην ζώκα ηε ρξνληθή ζηηγκή t 0 = 0 s αξρίδεη λα αζθείηαη νξηδόληηα F(N) 80 δύλακε F, ηεο νπνίαο ην κέηξν ζε ζπλάξηεζε κε ην ρξόλν θαίλεηαη ζην δηάγξακκα. Τν ζώκα ζηε ρξνληθή δηάξθεηα από 40 0 s 10 s παξακέλεη αθίλεην ελώ ηε ρξνληθή ζηηγκή t = 10 s αξρίδεη λα θηλείηαη Α) Να επηιέμεηε ηε ζσζηή απάληεζε. Η δύλακε ηξηβήο πνπ αζθείηαη ζην ζώκα ηε ρξνληθή ζηηγκή t = 10 s έρεη κέηξν 80 Ν. Ο ζσζηόηεξνο ραξαθηεξηζκόο γηα απηή είλαη: α) Σηαηηθή ηξηβή β) Τξηβή νιίζζεζεο γ) Οξηαθή ηξηβή Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 9 t(s)

60 Θ ΜΑ Έλα ζώκα κάδαο 4 kg θηλείηαη ζε νξηδόληην επίπεδν κε ηαρύηεηα κέηξνπ υ ν = 5 m/s. Τε ρξνληθή ζηηγκή t = 0 s, αζθείηαη ζην ζώκα, δύλακε ίδηαο θαηεύζπλζεο κε ηε ηαρύηεηά ηνπ θαη κέηξνπ 20 Ν, νπόηε ην ζώκα θηλείηαη κε επηηάρπλζε ην κέηξν ηεο νπνίαο είλαη ίζν κε 4 m/s 2. 1) Να ππνινγίζεηε ηε κεηαηόπηζε ηνπ ζώκαηνο, από ηε ρξνληθή ζηηγκή t = 0 s, κέρξη ηε ζηηγκή t 1 = 5 s. Μονάδες 5 2) Να εμεηάζεηε αλ αζθείηαη ζην ζώκα δύλακε ηξηβήο θαη αλ αζθείηαη, ηόηε λα ππνινγίζεηε ην κέηξν ηεο. Μονάδες 6 3) Να ππνινγίζεηε ην κέηξν ηεο ηαρύηεηαο ηνπ ζώκαηνο, ηε ρξνληθή ζηηγκή t 2 πνπ ην ζώκα έρεη κεηαηνπηζηεί θαηά 25 m από ην ζεκείν ζην νπνίν άξρηζε λα αζθείηαη ε δύλακε F. Μονάδες 7 4) Τε ρξνληθή ζηηγκή t 2 παύεη λα αζθείηαη ε δύλακε F, όκσο ην ζώκα ζπλερίδεη ηελ θίλεζε ηνπ ζην νξηδόληην επίπεδν. Να ππνινγίζεηε ην δηάζηεκα πνπ ζα δηαλύζεη ην ζώκα από ηε ρξνληθή ζηηγκή t 2, κέρξη λα ζηακαηήζεη λα θηλείηαη. Μονάδες 7

61

62

63

64 Θ ΜΑ Β Β 1. Έλα θηβώηην είλαη αξρηθά αθίλεην ζε ιείν νξηδόληην δάπεδν. Σην θηβώηην αζθνύληαη δπν ζηαζεξέο νξηδόληηεο αληίξξνπεο δπλάκεηο F 1 θαη F 2 κε απνηέιεζκα ην θηβώηην λα θηλείηαη κε επηηάρπλζε a νκόξξνπε ηεο F 1. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. F 2 F 1 Αλ θαηαξγεζεί ε F 2 ε επηηάρπλζε κε ηελ νπνία θηλείηαη ην θηβώηην έρεη δηπιάζην κέηξν ρωξίο λα αιιάμεη θνξά. Τόηε ηα κέηξα ηωλ δπλάκεωλ F 1 θαη F 2 ζπλδένληαη κε ηε ζρέζε : α) F1 2F2 β) F2 2F1 γ) F1 3F2 Β) Να δηθαηνινγήζεηε ηελ επιλογή ζαο Μονάδες 4 Μονάδες 8 Β2. Η ζέζε ελόο ζώκαηνο, πνπ θηλείηαη επζύγξακκα θαηά κήθνο ελόο πξνζαλαηνιηζκέλνπ άμνλα x x, δίλεηαη ζε θάζε ρξνληθή ζηηγκή από ηελ εμίζωζε x = t ( x ζε m, t ζε s ). Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Πνην από ηα παξαθάηω δηαγξάκκαηα παξηζηάλεη ζωζηά ηελ ηηκή ηεο ηαρύηεηαο ηνπ ζώκαηνο ζε ζπλάξηεζε κε ην ρξόλν; α) β) γ) 15 (m/s) 15 (m/s) 5 (m/s) 0 1 t ( s) 0 1 t ( s) 0 t ( s) Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 9

65 Θ ΜΑ Μηθξό ζώκα κάδαο m = 200 g θηλείηαη ζε νξηδόληην δξόκν, κε ηνλ νπνίν εκθαλίδεη ζπληειεζηή ηξηβήο νιίζζεζεο μ = 0,2. Τε ρξνληθή ζηηγκή πνπ ζεωξνύκε ωο t = 0 s ην ζώκα θηλείηαη κε ηαρύηεηα κέηξνπ υ ν = 72 km/h. Δίλεηαη όηη ε επηηάρπλζε ηεο βαξύηεηαο είλαη g = 10m/s 2 θαη όηη ε επίδξαζε ηνπ αέξα ζεωξείηαη ακειεηέα. Να ππνινγίζεηε: 1) ην κέηξν ηεο ηξηβήο νιίζζεζεο, 2) ηε ρξνληθή ζηηγκή πνπ ζα ζηακαηήζεη ην ζώκα λα θηλείηαη. Μονάδες 6 Μονάδες 6 3) ηελ κεηαηόπηζε ηνπ ζώκαηνο, από ηε ρξνληθή ζηηγκή t = 0 s, κέρξη λα ζηακαηήζεη. Μονάδες 6 4) ην έξγν ηεο ηξηβήο νιίζζεζεο, από ηε ρξνληθή ζηηγκή t = 0 s κέρξη λα ζηακαηήζεη ην ζώκα λα θηλείηαη. Μονάδες 7

66

67

68

69 ΘΔΜΑ Β Β1. Μηθξή ζθαίξα κάδαο m = 2 Κg αθήλεηαη από ύςνο h = 180 m πάλσ από ηελ επηθάλεηα ηνπ εδάθνπο λα πέζεη ειεύζεξα. m Η επηηάρπλζε ηεο βαξύηεηαο είλαη ζηαζεξή θαη ίζε κε g =10. s 2 Η επίδξαζε ηνπ αέξα είλαη ακειεηέα θαη σο επίπεδν κεδεληθήο δπλακηθήο ελέξγεηαο ζεσξνύκε ην έδαθνο. A) Να ζπκπιεξώζεηε ηα θελά ηνπ παξαθάησ πίλαθα. Μονάδες 6 Κινητική Γσναμική Ύυος Τατύτητα ενέργεια ενέργεια h (m) υ (m/s) K (J) U (J) B) Nα δηθαηνινγήζεηε ηηο ηηκέο πνπ ζπκπιεξώζαηε ζηνλ παξαπάλσ πίλαθα. Μονάδες 6 Β2. Έλα απηνθίλεην είλαη αξρηθά αθίλεην. Ο νδεγόο ηνπ απηνθηλήηνπ ηε ρξνληθή ζηηγκή t 0 = 0 s, παηάεη ην γθάδη νπόηε ην απηνθίλεην θηλείηαη κε ζηαζεξή επηηάρπλζε θαη ηε ρξνληθή ζηηγκή t 1 έρεη δηαλύζεη δηάζηεκα S 1. Τε ρξνληθή ζηηγκή t 2 = 2 t 1 έρεη δηαλύζεη δηάζηεκα S 2. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Τα δηαζηήκαηα S 1 θαη S 2 ζπλδένληαη κε ηε ζρέζε: α) S 2 = S 1 β) S 2 = 2 S 1 γ) S 2 = 4 S 1 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 9

70 ΘΔΜΑ Γ Κηβώηην κάδαο m = 10 kg αξρηθά εξεκεί ζε ηξαρύ νξηδόληην δξόκν. Τε ρξνληθή ζηηγκή t = 0, αζθείηαη ζην ζώκα νξηδόληηα δύλακε ην κέηξν ηεο νπνίαο κεηαβάιιεηαη κε ηε ζέζε ηνπ θηβσηίνπ όπσο θαίλεηαη ζην παξαπάλσ δηάγξακκα. Ο ζπληειεζηήο ηξηβήο νιίζζεζεο κεηαμύ ηνπ θηβσηίνπ θαη ηνπ δξόκνπ είλαη ίζνο κε 0,4. m Δίλεηαη ε επηηάρπλζε ηεο βαξύηεηαο g = 10 s 2 Να ππνινγίζεηε : F(N) x(m) θαη όηη ε επίδξαζε ηνπ αέξα είλαη ακειεηέα. Γ1) Τν κέηξν ηεο επηηάρπλζεο ηνπ θηβσηίνπ όηαλ βξίζθεηαη ζηε ζέζε x = 3 m. Μονάδες 6 Γ2) Τε ρξνληθή ζηηγκή πνπ ην θηβώηην βξίζθεηαη ζηε ζέζε x = 8 m. Μονάδες 6 Γ3) Τν κέηξν ηεο ηαρύηεηαο ηνπ θηβσηίνπ όηαλ βξίζθεηαη ζηε ζέζε x = 16 m. Μονάδες 6 Γ4) Τε ζέζε ηνπ θηβσηίνπ κεηαμύ x=0 θαη x=16m ζηελ νπνία ε ζπληζηακέλε ησλ δπλάκεσλ πνπ ηνπ αζθνύληαη είλαη κεδέλ. Μονάδες 7

71

72

73

74

75 Θ ΜΑ Β Β 1. Δύν ζώκαηα κε δηαθνξεηηθέο κάδεο έρνπλ ηελ ίδηα θηλεηηθή ελέξγεηα θαη θηλνύληαη πάλσ ζε ιείν νξηδόληην δάπεδν πξνο ηελ ίδηα θαηεύζπλζε. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Αλ αζθεζεί ζε θαζέλα ζώκα δύλακε ίδηνπ κέηξνπ θαη θαηεύζπλζεο αληίζεηεο κε ηελ ηαρύηεηα ησλ ζσκάησλ ηόηε νη απνζηάζεηο πνπ ζα δηαλύζνπλ ηα ζώκαηα κέρξη λα ζηακαηήζνπλ: α) ζα είλαη ίζεο β) ζα είλαη άληζεο γ) δελ έρσ όια ηα δεδνκέλα γηα λα ζπκπεξάλσ Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8 Β 2. Από ην έδαθνο θαη από ηελ ζέζε y o =0 ηνπ θαηαθόξπθνπ άμνλα y εθηνμεύνπκε θαηαθόξπθα πξνο ηα πάλσ κηα κπίιηα κε ηαρύηεηα κέηξνπ υ θαη θηλεηηθή ελέξγεηα Κ. Σε θάπνην ύςνο y 1 ε κπίιηα έρεη ηαρύηεηα κέηξνπ υ/2. Η αληίζηαζε ηνπ αέξα λα ζεσξεζεί ακειεηέα ε επηηάρπλζε ηεο βαξύηεηαο ζηαζεξή. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Η κεηαβνιή ηεο δπλακηθήο ελέξγεηαο ηνπ ζώκαηνο από ηε ζέζε y o έσο ηε ζέζε y 1 είλαη: α) 5K/4 β) -5K/4 γ) 3K/4 Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 9

76 Θ ΜΑ Μηθξό ζώκα κάδαο m = 2 kg ηε ρξνληθή ζηηγκή t ν = 0 s εθηνμεύεηαη κε νξηδόληηα αξρηθή ηαρύηεηα υ ν = 20 m/s ζε νξηδόληην επίπεδν όπσο θαίλεηαη ζην ζρήκα. Τν ζώκα νιηζζαίλεη ζην νξηδόληην επίπεδν κε ην νπνίν εκθαλίδεη ζπληειεζηή ηξηβήο νιίζζεζεο μ = 0,5. Δίλεηαη όηη ε επίδξαζε ηνπ αέξα είλαη ακειεηέα θαη ε επηηάρπλζε ηεο βαξύηεηαο είλαη g = 10m/ s 2. Να ππνινγίζεηε: 1) ην κέηξν ηεο επηηάρπλζεο κε ηελ νπνία θηλείηαη ην ζώκα, Μονάδες 5 2) ην κέηξν ηεο ηαρύηεηαο ηνπ ζώκαηνο ηε ρξνληθή ζηηγκή t 1 = 2 s, Μονάδες 5 3) ηε κεηαηόπηζε ηνπ ζώκαηνο ζην ηειεπηαίν δεπηεξόιεπην ηεο θίλεζήο ηνπ, Μονάδες 8 4) ην ζπλνιηθό έξγν ηεο ηξηβήο νιίζζεζεο, από ηε ρξνληθή ζηηγκή ηεο εθηόμεπζεο, κέρξη ηε ζηηγκή πνπ ζα ζηακαηήζεη ην ζώκα λα θηλείηαη. Μονάδες 7 u 0 m

77

78

79

80 Θ ΜΑ Β B 1. Γύν κηθξά ζώκαηα Α, Β κε ίζε κάδα, βξίζθνληαη πάλσ ζε ιείν νξηδόληην δάπεδν. Τν ζώκα Α είλαη αθίλεην, ελώ ην ζώκα Β θηλείηαη επζύγξακκα κε ζηαζεξή ηαρύηεηα κέηξνπ υ Β. Τε ρξνληθή ζηηγκή t = 0 αζθνύκε ζε θαζέλα από ηα ζώκαηα Α θαη Β νξηδόληηεο δπλάκεηο κε κέηξα F A θαη F B αληίζηνηρα, νη νπνίεο ελεξγνύλ γηα ην ίδην ρξνληθό δηάζηεκα 0 t1, θαη έρνπλ θαηεύζπλζε ίδηα κε ηελ θαηεύζπλζε ηεο ηαρύηεηαο ηνπ ζώκαηνο Β. Τε ρξνληθή ζηηγκή t 1 ηα ζώκαηα θηλνύληαη κε ηαρύηεηεο ίζνπ κέηξνπ. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε: Γηα ηα κέηξα F A θαη F B ησλ δπλάκεσλ ηζρύεη: α) F A = F B β) F A < F B γ) F A > F B Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 4 Μονάδες 8 B 2. Μαζεηήο ηεο Α Λπθείνπ παξαηεξεί ζην ζρήκα ηε γξαθηθή παξάζηαζε ηαρύηεηαο ρξόλνπ ελόο απηνθηλήηνπ, πνπ θηλείηαη ζε επζύγξακκν δξόκν. Ο καζεηήο θάλεη ηνλ παξαθάησ ζπιινγηζκό, εξκελεύνληαο ηε κνξθή ηνπ δηαγξάκκαηνο: u(m/sec) t(sec) «Η επηηαρπλόκελε θίλεζε δηαξθεί 5 s (από 0 s έσο 5 s), ελώ ε επηβξαδπλόκελε δηαξθεί 10 s (από 10 s έσο 20 s). Αθνύ ινηπόλ ην ρξνληθό δηάζηεκα πνπ απαηηείηαη γηα λα απμεζεί ε ηαρύηεηά ηνπ ζηα 20 m/s, είλαη κηθξόηεξν από ην ρξνληθό δηάζηεκα πνπ απαηηείηαη γηα λα κεδεληζηεί ε ηαρύηεηα ηνπ, μεθηλώληαο από ηα 20 m/s, ζπκπεξαίλσ όηη ε επηηάρπλζε έρεη κεγαιύηεξν κέηξν από ηελ επηβξάδπλζε» Να επηβεβαηώζεηε ή λα δηαςεύζεηε ηνλ παξαπάλσ ζπιινγηζκό, δηθαηνινγώληαο ηελ απάληεζή ζαο. Μονάδες 13

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Άρης Ασλανίδης ΘΕΜΑΤΑ (9654-10108) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση

Διαβάστε περισσότερα

ΘΔΜΑ B Β1. Γύν πέηξεο Α, θαη Β αθήλνληαη αληίζηνηρα από ηα ύςε h A, h B πάλσ από ην έδαθνο λα

ΘΔΜΑ B Β1. Γύν πέηξεο Α, θαη Β αθήλνληαη αληίζηνηρα από ηα ύςε h A, h B πάλσ από ην έδαθνο λα 1.10079 B 2 Γπν όκνηεο κηθξέο ζθαίξεο, αθήλνληαη ηαπηόρξνλα ηε ρξνληθή ζηηγκή t=0, λα εθηειέζνπλ ειεύζεξε πηώζε, από δπν δηαθνξεηηθά ύςε πάλσ από ην έδαθνο Η πξώηε ζθαίξα θηάλεη ζην έδαθνο ηε ρξνληθή ζηηγκή

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Αντώνης Σαρηγιάννης ΘΕΜΑΤΑ (5052-5216) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

ΘΔΜΑ Β Β1. Τν κέηξν ηεο επηηάρπλζεο ηεο βαξύηεηαο ζηελ επηθάλεηα ηεο Σειήλεο, ε νπνία δελ έρεη

ΘΔΜΑ Β Β1. Τν κέηξν ηεο επηηάρπλζεο ηεο βαξύηεηαο ζηελ επηθάλεηα ηεο Σειήλεο, ε νπνία δελ έρεη ΘΔΜΑ Β Β1. Τν κέηξν ηεο επηηάρπλζεο ηεο βαξύηεηαο ζηελ επηθάλεηα ηεο Σειήλεο, ε νπνία δελ έρεη αηκόζθαηξα, είλαη έμη θνξέο κηθξόηεξν από απηό ζηελ επηθάλεηα ηεο Γεο Α) Να επηιέμεηε ηελ ζσζηή απάληεζε.

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Άρης Ασλανίδης ΘΕΜΑΤΑ (10794-10844) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

ΜΕΣΑΣΟΠΙΗ ΕΤΘΤΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΗ

ΜΕΣΑΣΟΠΙΗ ΕΤΘΤΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΗ ΜΕΣΑΣΟΠΙΗ ΕΤΘΤΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΗ 1. 10078, 9136, 10821 Β 1. Η ζέζε ελόο ζώκαηνο, πνπ θηλείηαη επζύγξακκα θαηά κήθνο ελόο πξνζαλαηνιηζκέλνπ άμνλα x'x, δίλεηαη ζε θάζε ρξνληθή ζηηγκή από ηελ εμίζσζε x =

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Άρης Ασλανίδης ΘΕΜΑΤΑ (10850-10969) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

Ασκήσειρ μησανικών ταλαντώσεων. 1. Σώκα κάδαο m = 4 kg εθηειεί α.α.η. κε εμίζωζε απνκάθξπλζεο:

Ασκήσειρ μησανικών ταλαντώσεων. 1. Σώκα κάδαο m = 4 kg εθηειεί α.α.η. κε εμίζωζε απνκάθξπλζεο: Ασκήσειρ μησανικών ταλαντώσεων 1. Σώκα κάδαο m = 4 kg εθηειεί α.α.η. κε εμίζωζε απνκάθξπλζεο: x = 8ημ(πt+π/6) 1. Να ππνινγίζεηε ηε ζηαζεξά επαλαθνξάο ηνπ. 2. Να παξαζηήζεηε γξαθηθά ηελ απνκάθξπλζή ηνπ

Διαβάστε περισσότερα

ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ

ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ 1. 10077, 10793 Β 2. Έλα απηνθίλεην θηλείηαη επζύγξακκα νκαιά. Έλα αθίλεην πεξηπνιηθό, κόιηο πεξλά ην απηνθίλεην από κπξνζηά ηνπ, αξρίδεη λα ην θαηαδηώθεη κε ζηαζεξή επηηάρπλζε. Α)

Διαβάστε περισσότερα

Ερωτήςεισ Γ. Γ. A. 8J B. 32J Γ. 16J Γ. 4J. 3. Τν έξγν κηαο δύλακεο: Α. είλαη δηαλπζκαηηθό θπζηθό κέγεζνο. Β. είλαη πάληα ζεηηθό.

Ερωτήςεισ Γ. Γ. A. 8J B. 32J Γ. 16J Γ. 4J. 3. Τν έξγν κηαο δύλακεο: Α. είλαη δηαλπζκαηηθό θπζηθό κέγεζνο. Β. είλαη πάληα ζεηηθό. 18 Ερωτήςεισ 1. Η γξαθηθή παξάζηαζε ηνπ έξγνπ ηεο ζηαζεξήο ζπληζηακέλεο δύλακεο πνπ δέρεηαη ζεκεηαθό αληηθείκελν ζε ζπλάξηεζε κε ηελ αιγεβξηθή ηηκή ηεο κεηαηόπηζήο ηνπ είλαη: W W A. B. Γx Γx W W Γ. Γ.

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Αντώνης Σαρηγιάννης ΘΕΜΑΤΑ (3761-5050) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη ΛΤΜΔΝΔ ΑΚΖΔΗ ΣΖΝ ΔΤΡΔΖ ΑΡΥΗΚΖ ΦΑΖ 1. Η αιή αξκνληθή ηαιάλησζε ν εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη ιάηνο Α = cm θαη ζρλόηεηα f = 5 Hz. Τε ρξνληθή ζηηγκή = ην κηθξό ζώκα δηέξρεηαη αό ηε ζέζε ανκάθξλζεο

Διαβάστε περισσότερα

Τράπεζα θεμάηων Θεηικού Προζαναηολιζμού. Συνδυαζηικά θέμαηα με : Κυκλική κίνηζη και ορμή

Τράπεζα θεμάηων Θεηικού Προζαναηολιζμού. Συνδυαζηικά θέμαηα με : Κυκλική κίνηζη και ορμή Τράπεζα θεμάηων Θεηικού Προζαναηολιζμού Κεθ. 2 Θέμα Δ Συνδυαζηικά θέμαηα με : Κυκλική κίνηζη και ορμή 1. Μηα ξάβδνο κήθνπο R = 1 m θαη ακειεηέαο κάδαο βξίζθεηαη πάλσ ζε ιείν νξηδόληην επίπεδν (θάηνςε ηνπ

Διαβάστε περισσότερα

ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ

ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ Σε όια ηα πξνβιήκαηα πνπ ζα αληηκεηωπίζνπκε, ην ειαηήξην ζα είλαη αβαξέο θαη ζα ηθαλνπνηεί ην λόκν ηνπ Hooke (ηδαληθό ειαηήξην), δειαδή ε δύλακε πνπ αζθεί έλα ηδαληθό ειαηήξην έρεη

Διαβάστε περισσότερα

1.1. Κινημαηική Ομάδα Γ.

1.1. Κινημαηική Ομάδα Γ. 1.1.21. Δςο παιδιά πεππαηούν.. 1.1. Κινημαηική Ομάδα Γ. Γπν παηδηά Α θαη Β, ζηέθνληαη ζε απόζηαζε d=(κλ)=190m, ζε επζύγξακκν δξόκν. Σε κηα ζηηγκή ην πξώην παηδί Α αξρίδεη λα θηλείηαη κε ζηαζεξή ηαρύηεηα

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε

Διαβάστε περισσότερα

ΔΗΑΓΩΓΖ ΣΗ ΣΑΛΑΝΣΩΔΗ

ΔΗΑΓΩΓΖ ΣΗ ΣΑΛΑΝΣΩΔΗ ΔΗΑΓΩΓΖ ΣΗ ΣΑΛΑΝΣΩΔΗ ΠΔΡΗΟΓΗΚΑ ΦΑΗΝΟΜΔΝΑ Πεξηνδηθά θαηλόκελα, ιέγνληαη ηα θαηλόκελα πνπ επαλαιακβάλνληαη κε ηνλ ίδην ηξόπν ζε ίζα ρξνληθά δηαζηήκαηα. Υαξαθηεξηζηηθά κεγέζε πεξηνδηθώλ θαηλνκέλωλ Πεξίνδνο

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1. ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ

Διαβάστε περισσότερα

Β. Η θακππιόγξακκε θίλεζε πιηθνύ ζεκείνπ

Β. Η θακππιόγξακκε θίλεζε πιηθνύ ζεκείνπ Β. Η θακππιόγξακκε θίλεζε πιηθνύ ζεκείνπ Β.1 Γεληθά γηα ηελ θακππιόγξακκε θίλεζε 1. Πνηα θίλεζε ιέγεηαη θακππιόγξακκε; Κακππιόγξακκε είλαη ε θίλεζε ζηελ νπνία ε ηξνρηά είλαη θακπύιε. 2. Πώο νξίδεηαη θαη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ. Οξκή

ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ. Οξκή ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ Οξκή 2 Περιεχόμενα Νξκή πιηθνύ ζεκείνπ.... 3 Ζ δύλακε θαη ε κεηαβνιή ηεο νξκήο... 8 Ρν ζύζηεκα ζσκάησλ... 9 Νξκή ζπζηήκαηνο.... 9 Δζσηεξηθέο θαη εμσηεξηθέο δπλάκεηο.... 10 Κνλσκέλν ζύζηεκα

Διαβάστε περισσότερα

ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) v t. αθνύ ζύκθσλα κε ηα πεηξάκαηα Mickelson-Morley είλαη c =c.

ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) v t. αθνύ ζύκθσλα κε ηα πεηξάκαηα Mickelson-Morley είλαη c =c. ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) y y z z t t Σν νπνίν νδεγεί ζην όηη = - π.(άηνπν), αθνύ ζύκθσλα κε ηα πεηξάκαηα Mikelson-Morley είλαη =. Δπίζεο y = y, z = z, t = t Σν νπνίν ( t

Διαβάστε περισσότερα

ΣΤΠΟΛΟΓΙΟ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΏΣΕΙΣ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ (Α.Α.Σ.)

ΣΤΠΟΛΟΓΙΟ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΏΣΕΙΣ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ (Α.Α.Σ.) ΣΤΠΟΛΟΓΙΟ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΏΣΕΙΣ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ (Α.Α.Σ.) x t t Δμηζώζεηο Α.Α.Σ. (ρωξίο αξρηθ θάζε) Δμηζώζεηο Α.Α.Σ. (κε αξρηθ θάζε) Γύλακε ζηελ Α.Α.Σ. a a t α ρέζε επηηάρπλζεο απνκάθξπλζεο

Διαβάστε περισσότερα

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000. ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε

Διαβάστε περισσότερα

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

Θέκα 1 ν. 0,3kg είλαη θξεκαζκέλν ζην άθξν θαηαθόξπθνπ. 0,45kg βάιιεηαη θαηαθόξπθα πξνο ηα πάλσ κε ηαρύηεηα 0. 10 m / s.

Θέκα 1 ν. 0,3kg είλαη θξεκαζκέλν ζην άθξν θαηαθόξπθνπ. 0,45kg βάιιεηαη θαηαθόξπθα πξνο ηα πάλσ κε ηαρύηεηα 0. 10 m / s. Θέκα 1 ν Σώκα Σ κάδαο m1 0,3kg είλαη θξεκαζκέλν ζην άθξν θαηαθόξπθνπ ειαηεξίνπ ζηαζεξάο k 1N / m, όπσο ζην ζρήκα. Γεύηεξν ζώκα κάδαο m 0,45kg βάιιεηαη θαηαθόξπθα πξνο ηα πάλσ κε ηαρύηεηα 0 θαη ζθελώλεηαη

Διαβάστε περισσότερα

ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2

ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2 ΛΙΜΝΗ ΤΣΑΝΤ Τν Σρήκα 1 δείρλεη ηελ αιιαγή ηεο ζηάζκεο ηεο Λίκλεο Τζαλη, ζηε Σαράξα ηεο Βόξεηαο Αθξηθήο. Η Λίκλε Τζαλη εμαθαλίζηεθε ηειείσο γύξσ ζην 20.000 π.χ., θαηά ηε δηάξθεηα ηεο ηειεπηαίαο επνρήο ησλ

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

ΘΔΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΔΙΟΥ ΘΔΤΙΚΗΣ & ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ TΔΛΙΚΟ ΓΙΑΓΩΝΙΣΜΑ

ΘΔΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΔΙΟΥ ΘΔΤΙΚΗΣ & ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ TΔΛΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΘΔΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΔΙΟΥ ΘΔΤΙΚΗΣ & ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ TΔΛΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΘΔΜΑ A Σηηο εξσηήζεηο 1-5 λα γξάςεηε ζην θύιιν απαληήζεσλ ηνλ αξηζκό ηεο εξώηεζεο θαη δίπια ην γξάκκα πνπ αληηζηνηρεί ζηε

Διαβάστε περισσότερα

ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ

ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΝΚΑΓΑ Α ΔΡΩΣΖΔΗ ΩΣΟΤ- ΙΑΘΟΤ 1. Γηα έλα αγαζό όηαλ ε ζηαζεξά γ είλαη ίζε κε ην κεδέλ ηόηε ε θακπύιε πξνζθνξάο δηέξρεηαη από ηελ αξρή ηωλ αμόλωλ.

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΩΝ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 10 ε : ΜΗΥΑΝΙΚΗ ΜΔΡΟ Β ΠΙΔΗ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Καξέθια θαθίξε Όξγαλα Τιηθά Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ.

Διαβάστε περισσότερα

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12 Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;

Διαβάστε περισσότερα

Τ Μ Η Μ Α ΟΧΗΜΑΤΩΝ. Ιμαντοκίνηςη

Τ Μ Η Μ Α ΟΧΗΜΑΤΩΝ. Ιμαντοκίνηςη Ιμαντοκίνηςη Μεηάδνζε θίλεζεο θαη κεηαθνξά ηζρύνο κεηαμύ αηξάθησλ ζε κεγάιε απόζηαζε Μεηαθνξά ηζρύνο κέζσ ηξηβήο ζην ζύζηεκα ηκάληα ηξνραιία Είδε ηκάλησλ: επίπεδνη (γηα κεγάιεο απνζηάζεηο αηξάθησλ θαη

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

ΘΕΜΑ Δ Δ1) Μονάδες 6 Δ2) Μονάδες 6 Δ3) Μονάδες 6 Δ4) Μονάδες 7

ΘΕΜΑ Δ Δ1) Μονάδες 6 Δ2) Μονάδες 6 Δ3) Μονάδες 6 Δ4) Μονάδες 7 Σώκα κάδαο M = 5 kg βξίζθεηαη ζηελ άθξε ελόο επίπινπ ύςνπο H = 1,8 m όπσο θαίλεηαη ζην ζρήκα πνπ αθνινπζεί. Έλα βιήκα κάδαο m = 200 g θηλείηαη κε νξηδόληηα ηαρύηεηα V = 200 m/s θαη δηαπεξλά ην ζώκα M αθαξηαία,

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

Β) Να υπολογίσετε τα μέτρα των δυνάμεων που σχεδιάσατε, σε συνάρτηση με τα βάρη Β 1 και Β 2 των δύο σφαιρών. Μονάδες 7

Β) Να υπολογίσετε τα μέτρα των δυνάμεων που σχεδιάσατε, σε συνάρτηση με τα βάρη Β 1 και Β 2 των δύο σφαιρών. Μονάδες 7 Β ΘΕΜΑ Β 1. Δύο μεταλλικές σφαίρες Σ 1, Σ 2 έχουν βάρη Β 1 και Β 2 αντίστοιχα και κρέμονται ακίνητες με τη βοήθεια λεπτών νημάτων αμελητέας μάζας από την οροφή, όπως παριστάνεται στο σχήμα. Α) Να μεταφέρετε

Διαβάστε περισσότερα

ηροθική ηαλάνηωζη-μέηρηζη μέηροσ διάημηζης

ηροθική ηαλάνηωζη-μέηρηζη μέηροσ διάημηζης Μ ηροθική ηαλάνηωζη-μέηρηζη μέηροσ διάημηζης 1. κοπός ηελ άζθεζε γίλεηαη κέηξεζε ηνπ κέηξνπ δηάηκεζεο ελόο κεηαιιηθνύ ζύξκαηνο από ηελ πεηξακαηηθά κεηξεκέλε πεξίνδν ηαιάλησζεο ελόο ζηξνθηθνύ ηαιαλησηή.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1 A' ΛΥΚΕΙΥ ΖΗΤΗΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1. Το µέτρο της µετατόπισης

Διαβάστε περισσότερα

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα

Διαβάστε περισσότερα

Το φαινόμενο Doppler

Το φαινόμενο Doppler - Τη είλαη ην θαηλόκελν Doppler; Το φαινόμενο Doppler Δίλαη ε αιιαγή ζηελ παξαηεξνύκελε ζπρλόηεηα ελόο θύκαηνο, ιόγσ ηεο ζρεηηθήο θίλεζεο παξαηεξεηή πεγήο. Τν θαηλόκελν κειέηεζε θαη εμήγεζε ν Απζηξηαθόο

Διαβάστε περισσότερα

Μεθοδολογία επίλςζηρ αζκήζεων θςζικήρ

Μεθοδολογία επίλςζηρ αζκήζεων θςζικήρ Μεθοδολογία επίλςζηρ αζκήζεων θςζικήρ ΚΑΣΑΝΟΖΖ ΣΟΤ ΠΡΟΒΛΖΜΑΣΟ ΠΑΡΑΣΑΖ-ΑΠΔΗΚΟΝΗΖ ΣΟΤ ΠΡΟΒΛΖΜΑΣΟ ΚΑΣΑΓΡΑΦΖ ΓΔΓΟΜΔΝΩΝ ΥΑΡΑΚΣΖΡΗΣΗΚΑ ΓΝΩΡΗΜΑΣΑ ΣΩΝ ΣΡΑΣΖΓΗΚΩΝ ΛΤΖ ΠΡΟΒΛΖΜΑΣΩΝ ΦΤΗΚΖ ΚΑΣΑΓΡΑΦΖ ΕΖΣΟΤΜΔΝΩΝ ΚΑΣΑΓΡΑΦΖ

Διαβάστε περισσότερα

ΤΓΥΡΟΝΗ ΦΤΙΚΗ Ι ΠΡΟΟΔΟ I

ΤΓΥΡΟΝΗ ΦΤΙΚΗ Ι ΠΡΟΟΔΟ I Ιωάννινα 16.10.2008 ΠΡΟΟΔΟ I Έλαο παξαηεξεηήο ζηέθεηαη ζηελ πιαηθόξκα ελόο ζηαζκνύ ηεο νπνίαο ην κήθνο κεηξά λα είλαη 60m, όηαλ βιέπεη λα πεξλά κπξνζηά ηνπ έλα ηξαίλν κε ηαρύηεηα u=0.80c. Τόηε παξαηεξεί

Διαβάστε περισσότερα

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου. ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ - ΕΜΔ ΝΩΣΕΙΣ ΘΕΩΡΙΣ Ι ΤΗΝ ΛΥΣΗ ΣΚΗΣΕΩΝ ΕΜΔ Πρόηζε Ίζ πολυγωνικά χωρί έχουν ίζ εμβδά Το νηίζηροθο δεν ιζχύει ηλδή δύο ιζοεμβδικά χωρί δεν είνι κηά νάγκη ίζ Εκβδόλ ηεηργώλοσ πιεσράς Εκβδόλ

Διαβάστε περισσότερα

ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ

ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά

Διαβάστε περισσότερα

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2 ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.

Διαβάστε περισσότερα

ΘΕΜΑ Δ Δ1) Μονάδες 6 Δ2) Μονάδες 6 Δ3) Μονάδες 6 Δ4) Μονάδες 7

ΘΕΜΑ Δ Δ1) Μονάδες 6 Δ2) Μονάδες 6 Δ3) Μονάδες 6 Δ4) Μονάδες 7 15967 Τε ρξνληθή ζηηγκή t o = 0 ζώκα κάδαο 1 = 0,4 kg βάιιεηαη νξηδόληηα κε ηαρύηεηα κέηξνπ υ 1 = 30 /s από ύςνο 160 από ην έδαθνο. Ταπηόρξνλα από ην έδαθνο βάιιεηαη θαηαθόξπθα πξνο ηα επάλσ έλα δεύηεξν

Διαβάστε περισσότερα

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ

Διαβάστε περισσότερα

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας.

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας. ΘΕΜΑ Β Β 1. Μικρή σφαίρα αφήνεται να πέσει από αρχικό μικρό ύψος H, πάνω από το έδαφος και εκτελώντας ελεύθερη πτώση πέφτει στο έδαφος. K (Ι) K (ΙΙ) K (ΙΙΙ) 0 Η y 0 H y 0 H y Α) Να επιλέξετε την σωστή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΣΑ ΦΩΣΟΓΡΑΦΙΑ. Εισαγωγή στη Φωτογραυία. Χριζηάκης Σαζεΐδης - EFIAP

ΜΑΘΗΜΑΣΑ ΦΩΣΟΓΡΑΦΙΑ. Εισαγωγή στη Φωτογραυία. Χριζηάκης Σαζεΐδης - EFIAP ΜΑΘΗΜΑΣΑ ΦΩΣΟΓΡΑΦΙΑ Εισαγωγή στη Φωτογραυία Χριζηάκης Σαζεΐδης - EFIAP 1 ΜΑΘΗΜΑ 3 ο ΚΛΕΙΣΡΟ ΣΑΥΤΣΗΣΑ ΚΛΕΙΣΡΟΤ-ΕΠΙΛΟΓΗ ΚΑΣΑΛΛΗΛΗ ΣΑΥΤΣΗΣΑ Σι είναι υωτογραυική μητανή; Από πνηα κέξε απνηειείηαη: 1. Φαθό

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots)

Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots) Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots) 1.1 Σςνοπτική Πεπιγπαυή Hot Spots Σα ζεκεία αζύξκαηεο πξόζβαζεο πνπ επηιέρζεθαλ αλαθέξνληαη ζηνλ επόκελν πίλαθα θαη παξνπζηάδνληαη αλαιπηηθά ζηηο επόκελεο παξαγξάθνπο.

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N.

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. ΘΕΜΑ Β Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. Α) Να επιλέξετε τη σωστή πρόταση. Ο ρυθμός με τον οποίο

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ιήμεο 11.00 Κάπνηνο άξρηζε λα δηαβάδεη έλα βηβιίν ηελ 1 ε Δεθεκβξίνπ. Κάζε κέξα δηάβαδε ηνλ ίδην αξηζκό ζειίδσλ

Διαβάστε περισσότερα

ΒΑΙΚΟΙ ΤΠΟΛΟΓΙΜΟΙ ΜΗΥΑΝΙΚΗ ΓΙΑ ΣΑ ΣΡΟΥΑΙΑ ΑΣΤΥΗΜΑΣΑ

ΒΑΙΚΟΙ ΤΠΟΛΟΓΙΜΟΙ ΜΗΥΑΝΙΚΗ ΓΙΑ ΣΑ ΣΡΟΥΑΙΑ ΑΣΤΥΗΜΑΣΑ ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΚΑΒΑΛΑ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΚΩΝ ΔΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΥΑΝΟΛΟΓΙΑ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΒΑΙΚΟΙ ΤΠΟΛΟΓΙΜΟΙ ΜΗΥΑΝΙΚΗ ΓΙΑ ΣΑ ΣΡΟΥΑΙΑ ΑΣΤΥΗΜΑΣΑ ΦΟΙΣΗΣΔ : ΜΗΣΗ ΟΛΤΜΠΙΑ ΑΔΜ 4471 ΣΙΡΙΚΑ ΘΩΜΑ ΑΔΜ

Διαβάστε περισσότερα

ΠΑΝΔΛΛΖΝΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΠΑΡΑΚΔΤΖ 25 ΜΑÏΟΤ 2012 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΦΤΗΚΖ ΘΔΣΗΚΖ ΚΑΗ ΣΔΥΝΟΛΟΓΗΚΖ

ΠΑΝΔΛΛΖΝΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΠΑΡΑΚΔΤΖ 25 ΜΑÏΟΤ 2012 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΦΤΗΚΖ ΘΔΣΗΚΖ ΚΑΗ ΣΔΥΝΟΛΟΓΗΚΖ ΠΑΝΔΛΛΖΝΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΠΑΡΑΚΔΤΖ 5 ΜΑÏΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΦΤΗΚΖ ΘΔΣΗΚΖ ΚΑΗ ΣΔΥΝΟΛΟΓΗΚΖ ΚΑΣΔΤΘΤΝΖ (ΚΑΗ ΣΩΝ ΓΤΟ ΚΤΚΛΩΝ) ΤΝΟΛΟ ΔΛΗΓΩΝ: ΔΠΣΑ (7) ΘΔΜΑ Α Σηιρ

Διαβάστε περισσότερα

Ζ ύιε εκθαλίδεηαη ζε ηξεηο θαηαζηάζεηο: ζηελ ζηεξεή, ζηελ πγξή θαη ζηελ αέξηα.

Ζ ύιε εκθαλίδεηαη ζε ηξεηο θαηαζηάζεηο: ζηελ ζηεξεή, ζηελ πγξή θαη ζηελ αέξηα. Καηαζηάζεηο ηεο ύιεο 1 ΔΚΦΔ ΥΑΝΗΧΝ ΠΡΧΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ ΟΗ ΦΤΗΚΔ ΔΠΗΣΖΜΔ ΣΖΝ ΠΡΟΥΟΛΗΚΖ ΑΓΧΓΖ ΔΝΟΣΖΣΑ 1: ΔΗΑΓΧΓΖ ΚΔΦΑΛΑΗΟ 4: ΚΑΣΑΣΑΔΗ ΣΖ ΤΛΖ ΚΑΣΑΣΑΔΗ ΣΖ ΤΛΖ Ζ ύιε εκθαλίδεηαη ζε ηξεηο θαηαζηάζεηο: ζηελ

Διαβάστε περισσότερα

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) = ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage

Διαβάστε περισσότερα

Φυσική Προσανατολισμού

Φυσική Προσανατολισμού Φυσική Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου «Θέμα Β» Τα Διαγωνίσματα έχουν δύο ερωτήματα (πολλαπλής επιλογής με αιτιολόγηση). Σε αρκετά από τα διαγωνίσματα το ένα ερώτημα είναι από τα Κεφάλαια της

Διαβάστε περισσότερα

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε

Διαβάστε περισσότερα

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα. Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α Π Ρ Ο Ο Π Τ Ι Κ Η - Π Α Π Α Ν Α Σ Τ Α Σ Ι Ο Υ 1 0 1 Σελίδα 1

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α Π Ρ Ο Ο Π Τ Ι Κ Η - Π Α Π Α Ν Α Σ Τ Α Σ Ι Ο Υ 1 0 1 Σελίδα 1 1 ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ-ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ-Κ.Β.ΦΙΡΦΙΡΗΣ ΘΕΜΑ Β1. Μικρή σφαίρα αφήνεται να πέσει από αρχικό μικρό ύψος H, πάνω από το έδαφος και εκτελώντας ελεύθερη πτώση πέφτει στο έδαφος. Η γραφική παράσταση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου

Φυσική Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Φυσική Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Κεφάλαιο 1 ο : (Θέματα Δ στο 1 ο Κεφάλαιο) Καμπυλόγραμμες Κινήσεις Οριζόντια Βολή Ομαλή κυκλική κίνηση Κεντρομόλος επιτάχυνση Αεροπιάλο θηλείηαη ορηδόληηα

Διαβάστε περισσότερα

Μέζνδνη ραξαθηεξηζκνύ πιηθώλ Δξγαζηεξηαθή άζθεζε 8: Μαγλεηηθέο Μεηξήζεηο Ηκεξνκελία δηεμαγσγήο: 26/5/2010

Μέζνδνη ραξαθηεξηζκνύ πιηθώλ Δξγαζηεξηαθή άζθεζε 8: Μαγλεηηθέο Μεηξήζεηο Ηκεξνκελία δηεμαγσγήο: 26/5/2010 Μέζνδνη ραξαθηεξηζκνύ πιηθώλ Δξγαζηεξηαθή άζθεζε 8: Μαγλεηηθέο Μεηξήζεηο Ηκεξνκελία δηεμαγσγήο: 26/5/2010 ΕΙΑΓΩΓΗ: Τα δηάθνξα πιηθά, αλάινγα κε ηε ζπκπεξηθνξά ηνπο εληόο καγλεηηθνύ πεδίνπ δηαθξίλνληαη

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά:

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά: ΑΝΤΗΛΙΑΚΑ Η Μηκή θαη ν Νηίλνο αλαξσηήζεθαλ πνην αληειηαθό πξντόλ παξέρεη ηελ θαιύηεξε πξνζηαζία ζην δέξκα ηνπο. Τα αληειηαθά πξντόληα έρνπλ έλα δείθηε αληειηαθήο πξνζηαζίαο (SPF), ν νπνίνο δείρλεη πόζν

Διαβάστε περισσότερα

Πως να δημιουργήσετε ένα Cross-Over καλώδιο

Πως να δημιουργήσετε ένα Cross-Over καλώδιο Πως να δημιουργήσετε ένα Cross-Over καλώδιο Τν crossover καλώδιο ρξεζηκνπνηείηαη γηα λα ζπλδεζνύλ δπν ππνινγηζηέο κεηαμύ ηνπο θαη αλ θηηάμνπλ έλα κηθξό ηνπηθό δίθηπν(lan). Έλα LAN κπνξεί λα είλαη ηόζν

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

Δξγαζηεξηαθή άζθεζε 2: Μέηξεζε ηεο επηηάρπλζεο ηεο βαξύηεηαο κε ηε κέζνδν ηνπ θπζηθνύ εθθξεκνύο Ζκεξνκελία δηεμαγσγήο: 12/5/2005

Δξγαζηεξηαθή άζθεζε 2: Μέηξεζε ηεο επηηάρπλζεο ηεο βαξύηεηαο κε ηε κέζνδν ηνπ θπζηθνύ εθθξεκνύο Ζκεξνκελία δηεμαγσγήο: 12/5/2005 Δξγαζηεξηαθή άζθεζε : Μέηξεζε ηεο επηηάρπλζεο ηεο βαξύηεηαο κε ηε κέζνδν ηνπ θπζηθνύ εθθξεκνύο Ζκεξνκελία δηεμαγσγήο: /5/005 ΕΙΑΓΩΓΗ Ζ εξγαζηεξηαθή άζθεζε πεξηιακβάλεη έλα πείξακα θαη ζθνπόο ηεο είλαη

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 50. Σε ένα σώμα μάζας m=2kg που ηρεμεί σε λείο επίπεδο ενεργεί οριζόντια δύναμη F=10Ν για χρόνο t=20s. Να βρεθεί πόσο διάστημα διανύει το σώμα σε χρόνο 25s και να γίνει γραφική παράσταση

Διαβάστε περισσότερα

Ποηο είδος ποδειάηοσ είλαη θαηάιιειο γηα ζέλα;

Ποηο είδος ποδειάηοσ είλαη θαηάιιειο γηα ζέλα; Ποηο είδος ποδειάηοσ είλαη θαηάιιειο γηα ζέλα; Έλα από ηα κσζηηθά γηα λα εσταρηζηεζείς ηελ ποδειαζία είλαη λα έτεης ηο θαηάιιειο ποδήιαηο γηα ζέλα. Ασηό ποσ ηαηρηάδεη ζηολ ηρόπο δωή ζας θαη ηελ ζωκαηηθή

Διαβάστε περισσότερα

Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67)

Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67) Hellas online Προεπιλεγμένες ρσθμίσεις για FritzBox Fon WLAN 7140 (Annex B) 30.04.67 FritzBox Fon WLAN 7140 - Annex B (30.04.67) Γηα λα επαλαθέξεηε ην FritzBox Fon WLAN 7140 ζηηο πξνεπηιεγκέλεο ηνπ ξπζκίζεηο

Διαβάστε περισσότερα

Γιπθόδε + Ομπγόλν Δηνμείδην ηνπ άλζξαθα + Νεξό + Ελέξγεηα

Γιπθόδε + Ομπγόλν Δηνμείδην ηνπ άλζξαθα + Νεξό + Ελέξγεηα 4. ΑΝΑΠΝΟΗ Η δηάζπαζε ηεο γιπθόδεο γίλεηαη κέζα ζηα θύηηαξα, νλνκάδεηαη θπηηαξηθή αλαπλνή θαη εμαζθαιίδεη ηελ ελέξγεηα πνπ είλαη απαξαίηεηε ζην θύηηαξν. Η δηάζπαζε γίλεηαη κε ηελ παξνπζία νμπγόλνπ θαη

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ ΜΑΘΗΜΑ : ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ Α/Α : 0_1382/153 1. Καη όηαλ έγηλε ε ππνρώξεζε αξγά ην απόγεπκα, επεηδή θνβήζεθαλ νη νιηγαξρηθνί κήπσο νη δεκνθξαηηθνί, αθνύ θάλνπλ επίζεζε, θαηαιάβνπλ

Διαβάστε περισσότερα

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε. ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. ΔΙΑΓΩΝΙΣΜΑ 1 Wilhelm Conrad Röntgen 1845-1923 Nobel Prize in Physics 1901 ΘΕΤΙΚΗΣ - TEΦΝΟΛΟΓΙΚΗΣ ΚΑTEΥΘΥΝΣΗΣ ΘΔΜΑ Α

ΦΥΣΙΚΗ. ΔΙΑΓΩΝΙΣΜΑ 1 Wilhelm Conrad Röntgen 1845-1923 Nobel Prize in Physics 1901 ΘΕΤΙΚΗΣ - TEΦΝΟΛΟΓΙΚΗΣ ΚΑTEΥΘΥΝΣΗΣ ΘΔΜΑ Α ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - TEΦΝΟΛΟΓΙΚΗΣ ΚΑTEΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ 1 Wilhelm Conrad Röntgen 1845-193 Nobel Prize in Physics 1901 ΘΔΜΑ Α Σηηο εκηηειείο πξνηάζεηο Α1-Α4 λα γξάςεηε ζην ηεηξάδηό ζαο ηνλ αξηζκό ηεο πξόηαζεο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ ΒΑΓΓΔΛΖ ΦΤΥΑ 011 1 ΒΑΗΚΟΗ ΟΡΗΜΟΗ 11 ΓΤΝΑΜΖ ΖΜΔΗΟΤ Έζησ P ηπρόλ ζεκείν ηνπ επηπέδνπ θύθινπ C (O,R ) (πνπ βξίζθεηαη εθηόο ηνπ θπθιηθνύ δίζθνπ C (O,R ) ) θαη PT ε εθαπηνκέλε από ην P (T ην ζεκείν επαθήο )

Διαβάστε περισσότερα

Πνηα λνκίδεηο όηη ζα είλαη ε ζπλνιηθή αληίζηαζε κηαο ζπλδεζκνινγίαο δύν αληηζηαηώλ ζπλδεδεκέλεο ζε ζεηξά; Γηαηί;...

Πνηα λνκίδεηο όηη ζα είλαη ε ζπλνιηθή αληίζηαζε κηαο ζπλδεζκνινγίαο δύν αληηζηαηώλ ζπλδεδεκέλεο ζε ζεηξά; Γηαηί;... ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Ιζοδύναμη ανηίζηαζη ζύνδεζηρ ανηιζηαηών Η δηδαζθαιία ηεο ηζνδύλακεο αληίζηαζεο γηα ζύλδεζε αληηζηαηώλ ζε ζεηξά θαη παξάιιεια ππάξρεη ζην Αλαιπηηθό Πξόγξακκα Σπνπδώλ ζηα καζήκαηα Φπζηθήο

Διαβάστε περισσότερα

Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84

Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Οη Διαηιμήζεις για Αιολικά Πάρκα εθαξκόδνληαη γηα ηελ απνξξνθνύκελε ελέξγεηα από Αηνιηθά Πάξθα πνπ είλαη ζπλδεδεκέλα ζην

Διαβάστε περισσότερα

ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΓΙΔΤΘΤΝΗ ΑΝΩΣΔΡΗ ΚΑΙ ΑΝΩΣΑΣΗ ΔΚΠΑΙΓΔΤΗ ΤΠΗΡΔΙΑ ΔΞΔΣΑΔΩΝ ΠΑΓΚΤΠΡΙΔ ΔΞΔΣΑΔΙ 2010

ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΓΙΔΤΘΤΝΗ ΑΝΩΣΔΡΗ ΚΑΙ ΑΝΩΣΑΣΗ ΔΚΠΑΙΓΔΤΗ ΤΠΗΡΔΙΑ ΔΞΔΣΑΔΩΝ ΠΑΓΚΤΠΡΙΔ ΔΞΔΣΑΔΙ 2010 ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΓΙΔΤΘΤΝΗ ΑΝΩΣΔΡΗ ΚΑΙ ΑΝΩΣΑΣΗ ΔΚΠΑΙΓΔΤΗ ΤΠΗΡΔΙΑ ΔΞΔΣΑΔΩΝ ΠΑΓΚΤΠΡΙΔ ΔΞΔΣΑΔΙ 2010 Μάθημα: ΦΤΙΚΗ 4ωπο Σ.. Ημεπομηνία και ώπα εξέηαζηρ: Πέμπηη, 3 Ιοςνίος 2010 07:30 π.μ. 10:30

Διαβάστε περισσότερα