Енергетски трансформатори рачунске вежбе

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Енергетски трансформатори рачунске вежбе"

Transcript

1 1. Jеднофазни транформатор примарног напона 4 V, фреквенције 5 Hz има једностепени крстасти попречни пресек магнетског кола чије су димензије a = 55mm и b = 35 mm. а) Израчунати површину пресека чистог гвожђа магнетског кола ако је за његову израду употребљен лим Nippon Steel Hi-B M-H. Колико је повећање искоришћења површине круга према оном које се има при квадратном пресеку језгра? б) Израчунати приближно број навојака примарног намотаја у случају крстастог као и у случају квадратног попречног пресека магнетског кола. 2. Једнофазни енергетски трансформатор снаге 4 kva, примарног напона 4 V, секундарног напона 22 V, 5 Hz ради при максималној вредности густине флукса B m = 1,25 T. Средња дужина путање флукса кроз језгро је 1,4 m, а попречни пресек језгра S Fe = m 2. Половина хистерезисне петље дата је у следећој табели (за 5 Hz): B[T],3,6,8 1 1,1 1,2 1,25 H[A/m] H[A/m] Губици за дату учестаност и густину флукса (сразмерни површини хистерезисне петље) су 1,3 W/kg. Омски отпор примара и флукс расипања се могу занемарити. a) Израчунати број навојака примара и секундара; б) Нацртати временски ток струје празног хода и њених компоненти. Израчунати ефективну вредност еквивалентног хармоничног таласа струје празног хода и њених компоненти (I, I a, I µ ); в) Ако би се на саставцима језгра и јарма формирао ваздушни зазор укупне дужине δ, показати квалитативно како ће се у том случају мењати флукс Φ и струја магнећења I µ, ако прикључени напон U и учестаност f остану непромењени. 3. Једнофазни енергетски трансформатор прикључен је на хармонични напон ефективне вредности U 1 = 38 V, 5 Hz. Максимална вредност индукције у језгру је 1,22 Т, а маса језгра је 1 kg. Магнетске карактеристике (снага побуде и активни губици по килограму масе) дате су таблично за учестаност од 5 Hz: Израчунати: B m [T],8 1 1,2 1,25 1,3 1,35 1,4 p Fe [W/kg],52,86 1,28 1,41 1,56 1,78 2,12 s [VA/kg] 1,59 3,86 12,3 16,3 24, а) снагу губитака у гвожђу [W] и снагу побуде (празног хода) [VA]; б) струју празног хода I као и њене компоненте: струју губитака у гвожђу I a и струју магнећења I µ ; в) Ако прикључени напон остане константан, а учестаност се повећа на 6 Hz, наћи нову снагу побуде усвајајући да је снага побуде сразмерна учестаности при константној густини флукса. Објаснити прерачунавање познате карактеристике снаге побуде за произвољну учестаност. г) Ако би се на примар трансформатора уместо задатог довео напон са правоугаоним таласним обликом основне учестаности 5 Hz, једнаких позитивних 1

2 и негативних полуталаса, амплитуде Е [V], какo би у том случају изгледао временски ток флукса. Одредити Е [V] тако да максимална вредност флукса за оба напона буде иста. 4. Простопериодични напон ефективне вредности 2 V прикључен је на примарни 3 намотај једнофазног трансформатора и даје флукс у језгру: ϕ = 9 1 cosωt [Wb] и струју празног хода i = 2 (sinωt,5sin 3ω t + 5cosωt + 2cos3ωt ) [А]. Уз занемарење омског отпора примара израчунати: а) ефективну вредност струје празног хода (I ); б) губитке у гвожђу (P Fe ); в) примљену реактивну снагу (Q ). 5. Енергетски трансформатор снаге S n = 2 kva, примарног напона U 1n = 1 kv, фреквенције 5 Hz испитиван је у огледу празног хода при чему је измерено: оглед U [kv] f [Hz] P [W] I II 11, а) Уз занемарење омског отпора примара одредити губитке услед хистерезиса и вихорних струја при номиналном напону и учестаности ако је Штајнмицов коефицијент n = 1,7. б) Одредити процентуалну промену губитака услед хистерезиса и вихорних струја ако се простопериодичан напон 1 kv, 5 Hz замени напоном правоугаоног таласног облика исте ефективне вредности и учестаности. 6. На примар једнофазног енергетског трансформатора са N 1 = 5 навојака занемарљивог омског отпора прикључен је наизменичан напон u1 = (15sin ωt + 5 sin3ω t) [ V ], ω = 2π f, f = 5Hz. Штајнмицов коефицијент износи n = 1,7. а) Извести израз за флукс и наћи његову максималну вредност. б) Израчунати процентуалну промену снаге губитака услед хистерезиса и услед вихорних струја ако се напон промени на u = 15sinωt[ ]. 1 V 7. Једнофазни енергетски трансформатор снаге S n = 5 kva, напона U 1 /U 2 = 23/115 V испитиван је у огледима празног хода и кратког споја при чему је измерено: ПХ: U 1 = 23 V, P = 32 W, I 1 = 9,8 A КС: I k = I 1n, U k1 = 9,2 V, P k = 6 W Одредити: а) Параметре еквивалентног заменског кола трансформатора са примарне и секундарне стране. б) Релативне вредности струје празног хода и напона кратког споја. в) Релативне грешке настале занемаривањем губитака у бакру у огледу празног хода и губитака у гвожђу у огледу кратког споја. 2

3 8. Испитивањем трофазног енергетског трансформатора снаге S n = 6 kva, напона U 1 /U 2 = 11/66 V, спреге Yd, измерено је: ПХ: 66 V; 16 A; 4,8 kw (НН страна) КС: 5 V; 3 A; 8,2 kw (ВН страна) а) Одредити параметре еквивалентног електричног кола са примарне стране. б) Одредити Филдов сачинилац ако су отпори намотаја измерени једносмерном струјом R 1 = 3,2 Ω и R 2 = 9,3 mω. Сматрати да је филдов сачинилац исти за оба намотаја. 9. Трофазни енергетски трансформатор снаге S n = 25 kva, напона U 1 /U 2 = 38/22 V, спреге Dyn5, испитиван је у огледима празног хода и кратког споја при чему је добијено P k = 6 W, u k = 4,5 %, j = 4 %, cosφ =,2. Одредити параметре еквивалнтног кола са ВН стране и нацртати га са унетим свим бројним вредностима параметара и електричним величинама. 1. Трофазни уљни трансформатор снаге S n = 25 kva, напона U 1 /U 2 = 2/,42 kv, спреге Yzn5, испитиван је у огледима празног хода и кратког споја при чему је добијено: КС: P k = 325 W, u k = 4 %, I k = I n А ПХ: P = 65 W, j = 2,4 %, U = U n Израчунати параметре еквивалентног заменског кола са НН стране и нацртати га са уписаним свим бројним вредностима параметара и електричним величинама. 11. Енергетски трансформатор за 5 Hz има цилиндричне намотаје примара и секундара висине h =,3 m, пречник средњег навојка примара и секундара D m =,2 m, ширину намотаја примара a = 2 mm, ширину намотаја секундара b = 3 mm, ширину међупростора између намотаја δ = 1 mm и број навојака примара N 1 = 6. Израчунати коефицијент Роговског и реактансу расипања трансформатора са примарне стране. 12. На трансформатору са подацима S n = 16 kva, U 1 /U 2 = 1/,4 kv, спрега Yy u k = 6 %, измерено је у огледу празног хода P n = 3 kw, а у огледу кратког споја са номиналном струјом P k2º = 15 kw и отпори фаза R 1 2º =,3 Ω и R 2 2º =,4 Ω. а) Колики ће бити губици у бакру на референтној температури ϑ = 75 C? б) Одредити степен искоришћења снаге при пуном оптерећењу и 5 % од пуног оптерећења за чисто активно оптерећење и при фактору снаге cosφ =,8 (инд. или кап.). в) Одредити вредност и врсту оптерећења при коме трансформатор има максимални степен искоришћења снаге. г) Наћи процентуалну промену напона секундара и стварни напон секундара за 5 % од пуног оптерећења за чисто активно оптерећење и при фактору снаге cosφ =,8 (инд. или кап.). д) Одредити фактор снаге номинално оптерећеног трансформатора при коме настаје: 1) максимално снижење напона секундара; 2) нема промене напона секундара; 3) максимално повишење напона секундара. 3

4 13. За трофазни трансформатор са подацима из задатка 8. (S n = 25 kva, U 1 /U 2 = 38/22 V, спрега Dyn5, P k = 6 W, u k = 4,5 %) израчунати напон секундара при омско-индуктивном и омско-капацитивном преоптерећењу од 25 % ако је фактор снаге оптерећења у оба случаја cosφ =, За трофазни уљни трансформатор са подацима из задатка 9. (S n = 25 kva, U 1 /U 2 = 2/,42 kv, P k = 325 W, u k = 4 %, P = 65 W) израчунати степен искоришћења снаге и потребан напон примара да би се на секундару имао напон номиналне вредности када су прикључени потрошачи: 1) мотор који троши 25 kva при cosφ =,8 и који је везан у троугао паралелно са три групе кондензатора од по C = 278 µf везаних у звезду. 2) само кондензаторске групе. 15. Показати шематски везе намотаја трофазних трансформатора да би се добиле спреге Dy5, Yd1, Yz1. Како треба повезати примаре и секундаре да би ови трансформатори радили паралелно? 16. Трофазни трансформатор снаге S n = 4 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем =14 и максимални степен искоришћења снаге при оптерећењу S m = 32 kva. Напомена: Трансформатор третирати као хомогено тело ( θ θ = θ ) Cu =. a) Одредити средњи пораст температуре после 1 h рада са номиналним оптерећењем ако је трансформатор пре оптерећења имао температуру амбијента ( ϑ = ϑ a ). б) Коју класу изолације има задати трансформатор? в) Ако је трансформатор достигао своју граничну температуру и искључи се са мреже, одредити потребно време да би се охладио. г) Одредити вредност оптерећења којим се постиже гранични номинални средњи пораст температуре намотаја после t = 4 h рада ако је ϑ = ϑ a. 17. Одредити приближно промену граничне температуре трансформатора који има сличну конструкцију као трансформатор из претходног задатка али коме су све линеарне димензије 2 пута веће. Којим параметрима се постиже исти гранични пораст температуре за оба трансформатора? Одредити приближно однос номиналних снага и тежина ова два трансформатора. 18. Трофазни уљни дистрибутивни трансформатор има номиналне губитке: P = 21, P k = 13 W и термичку временску константу као хомогено тело 2h. Трансформатор је достигао температуру устаљеног стања при оптерећењу од,5s n, када му се прикључи додатно оптерећење од,7s n. Колико дуго може радити са оваквим оптерећењем, а да не прекорачи максимални дозвољени пораст температуре? u Fe 4

5 19. Енергетски трансформатор снаге S n = 25 kva, напона U 1 /U 2 = 1/,4 kv, спреге Yy, има губитке празног хода P = 1 kw, губитке кратког споја P k = 4 kw, релативну струју празног хода j = 5 % и релативни напон кратког споја u k = 5 %. Одредити: а) Устаљену струју трофазног кратког споја? б) Критичну вредност струје кратког споја? в) Време и број протеклих периода за које ће једносмерна-апериодична компонента струје кратког споја опасти на 5 % своје почетне вредности. г) Време и број протеклих периода за које ће једносмерна-апериодична компонента струје празног хода при укључењу трансформатора на мрежу опасти на 5 % своје почетне вредности. д) Ако се зависност флукса од струје празног хода може приближно представити преко израза: Φ = 2 Φm 39 ( Φ Φ ) m r i ( i ) + Φ, i r, i >,5,5 одредити највећу тренутну вредност (критичну вредност) струје укључења трансформатора у празан ход ако је заостали флукс Φ =, 1Φ. 2. При пројектовању трофазног енергетског трансформатора за 1 MVA, U 1 = 11 kv, добијени су следећи електрични и конструкцијски параметри: u k = 1,5 %, P Cun = 75 kw, J = 3 A/mm 2, N 1 = 148, пречник језгра D = 48 cm, средњи пречник секундара D 2 = 57 cm, ширина секундара 6,5 cm, средњи пречник примара D 1 = 79 cm, ширина примара 3,2 cm, висина примара и секундара h = 1,28 m, растојање(зазор) између примара и секундара δ = 6 cm, намотаји су у облику колутова. а) Одредити приближно силу кидања која делује на проводник примара и утврдити да ли је напрезање у дозвољеним границама при појави трополног кратког споја у најнеповољнијем тренутку. б) Утврдити да ли се вертикално учвршћење колутова примара и секундара може извести са по 16 одстојника између колутова ширине s = 4 cm ако се за овакав тип трансформатора укупна аксијална сила између унутрашњег и спољашњег намотаја распоређује у односу 1: Колика је максимална вредност напона који се јавља у намотају примара трансформатора спреге Yd5 при наиласку пренапонског таласа амплитуде 2 МV? Висина намотаја је 65 mm, а корен карактеристичне једначине за израчунавање расподеле пренапона је α = 5. Која су критична места у погледу изолације и зашто? 22. Номиналне снаге и релативни напони кратког споја три трансформатора који треба да раде паралелно су: S n1 = 1 kva u k1 = 4% S n2 = 2 kva u k2 = 5% S n3 = 3 kva u k3 = 6% Ако је укупно оптерећење S = ΣS n = 6 kva, одредити појединачне снаге трансформатора. Колико износи укупно дозвољено оптерећење да у трајном раду ниједан трансформатор не буде преоптерећен? r m 5

6 23. Два трансформатора који треба да раде паралелно имају следеће податке: ТРАНСФОРМАТОР I II I 2n номинална струја секундара 2 А 6 А r k јединични омски отпор,2 r.j.,25 r.j. X k јединична реактанса,5 r.j.,6 r.j. U 2 напон празног хода секундара 245 V 24 V Одредити заједнички напон, укупну струју и појединачне струје трансформатора ако прикључени потрошач има импедансу z = (,25 + j,1 ) Ω. Колико је преоптерећење у процентима појединих трансформатора? Шта ће бити са струјама и напоном ако се оптерећење искључи? 24. Два трофазна трансформатора напона U 1 /U 2 = 66/44 V, номиналних снага S n1 = 25 kva и S n2 = 6 kva и напона кратких спојева u k1 = 5 %, cosφ k1 =,23 и u k2 = 4 %, cosφ k2 =,16 раде паралелно. Како ће се расподелити укупно оптерећење од 68 kw при cosφ =,8 инд. и колики ће бити напон секундара? 25. Трансформатор спреге Yd1 има примарне линијске напоне сведене на секундарну страну U AB = 2 V, U BC = 25 V, U CA = 2 V. На секундарне крајеве a b прикључен је потрошач који троши струју I bl = 1 A. Одредити примарне фазне напоне и струје сведене на секундар. 26. Извести изразе за фазне струје трансформатора спреге Dyn11 за општи случај несиметричног трофазног оптерећења. Колики су струје и напони секундара у случају једнофазног кратког споја са земљом на секундарној страни? 27. Израчунати струју секундара и напоне примара трансформатора спреге Yyn при једнофазном кратком споју са земљом на секундарној страни. Нацртати и одговарајући векторски дијагам напона. 28. На трофазни трансформатор снаге S n = 1 kva, напона U 1 /U 2 = 6/4 V, спреге Yyn, прикључена је једнофазна електрична пећ снаге P = 3 kw (cosφ = 1). Колике ће бити струје појединих фаза примара? 29. Трансформатор спојен у Скотовој спрези напона 3x11V/2x1V оптерећен је на двофазној страни снагама P a = P b = 2 kw при cosφ a = 1 и cosφ b =,8. Ако је број навојака на примарној трофазној страни N 1 = 32, одредити уз занемарење струје празног хода: а) број навојака намотаја на двофазној страни и место где треба евентуално извући нулти проводник; б) струје на примарној страни; г) Како се може добити четворофазни уравнотежени систем напона? 3. Једнофазни енергетски трансформатор снаге S n = 5 kva, напона U 1 /U 2 = 24/24 V везан је као аутотрансформатор за мрежу U 1a = 264 V, а напаја мрежу напона 24 V. Испитан као двонамотајни трансформатор имао је губитке P Fe = 186 W и P Cun = 617 W. Потребно је одредити: а) Номиналну снагу аутотрансформатора; б) Струје трансформатора и аутотрансформатора; 6

7 в) Степен искоришћења трансформатора и аутотрансформатора при номиналном оптерећењу и cosφ =,8 инд; г) Промену напона аутотрнсформатора за пуно оптерећење и cosφ =,8 инд. ако је напон кратког споја аутотрансформатора u kа =,4 %; д) Колики је однос напона кратког споја трансформатора и аутотрансформатора? ђ) Ако аутотрансформатор напона 264/24 V заменимо обичним двонамотајним трансформатором са галвански одвојеним намотајима истих напона и снаге и сличне конструкције одредити однос њихових тежина ако је B m и J остало константно и ако је тежина задатог једнофазног трансформатора,4t. 31. За које снаге и напоне се може формирати аутотрансформатор спреге Yy превезивањем намотаја обичног трофазног трансформатора снаге S n = 6 kva, напона U 1 /U 2 = 11/66 V, спреге Yd. Која је варијанта повољнија и због чега? Колико износи степен искоришћења снаге повољније варијанте ако обични трансформатор има максимални степен искоришћења снаге при 5% номиналне снаге? 32. Потрошач једносмерне струје се напаја преко једнофазне мостне спреге (Греца) при чему дозвољена валовитост струје износи β =,25. Ако је струја потрошача I d = 4 A, а напон U d = 3 V, одредити приближно потребну вредност L d редно везане пригушнице, број навојака, укупан зазор δ и пресек магнетског кола. Прорачун извести уз занемарење омских отпора и засићења (B m < 1,7 T) и сматрајући да је пермеабилност гвожђа бесконачна. 7

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) јануар 2017

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) јануар 2017 ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (1Е1ЕНТ) јануар 17 Трофазни уљни дистрибутивни трансформатор има следеће номиналне податке: S = kv, U 1 /U = 1 x%/.4 kv, 5 Hz, спрега Dy5, P k =.6 kw, u k = 5 %, P = 4 W, j =

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2

R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2 I област. Реални напонски генератор електромоторне силе = 0 V и унутрашње отпорности = Ω и реални напонски генератор непознате електромоторне силе и унутрашње отпорности = 0, 5 Ω везани су у коло као на

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 2 ТРОФАЗНИ ПУНОУПРАВЉИВИ МОСТНИ ИСПРАВЉАЧ СА ТИРИСТОРИМА 1. ТЕОРИЈСКИ УВОД

Διαβάστε περισσότερα

3. 5. ИЗРАЧУНАВАЊЕ РЕАКТАНСИ РАСИПАЊА

3. 5. ИЗРАЧУНАВАЊЕ РЕАКТАНСИ РАСИПАЊА Школска година 2014 / 2015 Припремио: Проф. Зоран Радаковић октобар 2014., материјал за део градива из поглавља 3. и 4. из књиге Ђ. Калић, Р. Радосављевић: Трансформатори, Завод за уџбенике и наставна

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Електротехнички факултет Универзитета у Београду Енергетски одсек Катедра за енергетске претвараче и погоне УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Име и презиме:

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕХНИКЕ

ОСНОВА ЕЛЕКТРОТЕХНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

. Одредити количник ако је U12 U34

. Одредити количник ако је U12 U34 област. У колу сталне струје са слике познато је = 3 = и =. Одредити количник λ = E/ E ако је U U34 =. Решење: а) λ = b) λ = c) λ = 3 / d) λ = g E 4 g 3 3 E Слика. област. Дата је жичана мрежа у облику

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА Електротехнички факултет Универзитета у Београду Енергетски одсек Катедра за енергетске претвараче и погоне УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ СИНХРОНИХ МАШИНА Име и презиме: Број индекса: Вежба број

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR INFOTEH-JAHORINA Vol. 10, Ref. F-36, p. 1061-1065, March 2011. САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR Глуховић Владимир, Електротехнички факултет Источно Сарајево Садржај-У

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Утицај дистрибуираних извора електричне енергије на мрежу

Утицај дистрибуираних извора електричне енергије на мрежу INFOTEH-JAHORINA Vol. 13, March 2014. Утицај дистрибуираних извора електричне енергије на мрежу Младен Бањанин, Јована Тушевљак Електротехнички факултет Источно Сарајево, Босна и Херцеговина banjanin@ymail.com,

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), ПРАВИЛНИК

На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), ПРАВИЛНИК 4463 На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), Министар привреде доноси ПРАВИЛНИК о мерним трансформаторима који се користе

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

брзина којом наелектрисања пролазе кроз попречни пресек проводника

брзина којом наелектрисања пролазе кроз попречни пресек проводника Струја 1 Електрична струја Кад год се наелектрисања крећу, јавља се електрична струја Струја је брзина којом наелектрисања пролазе кроз попречни пресек проводника ΔQ I Δtt Јединица за струју у SI систему

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Р Ц4-07. Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 10 kv / 0.4 kv без и са магнетним екраном

Р Ц4-07. Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 10 kv / 0.4 kv без и са магнетним екраном Р Ц4-7 Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 1 kv /.4 kv без и са магнетним екраном Марко Шоргић, Зоран Радаковић, Милан Савић, Ратко Ковачић Електротехнички

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Лабораторијске вежбе из електричних машина

Лабораторијске вежбе из електричних машина Лабораторијске вежбе из електричних машина Први циклус вежби Магнетска левитација Демонстрација ефеката обртног магнетског поља Машина за једносмерну струју са независном побудом (за ову вежбу постоји

Διαβάστε περισσότερα

Машина за једносмерну струју са независном побудом

Машина за једносмерну струју са независном побудом Машина за једносмерну струју са независном побудом Садржај Садржај... 1 Увод... 1 Опрема која се користи у оквиру лабораторијске поставке... 2 Константе... 4 Ток вежбе... 4 Почетно стање... 4 Припрема

Διαβάστε περισσότερα

Анализа тачности мерења електричне енергије и максималне снаге у систему директног и полуиндиректног мерења

Анализа тачности мерења електричне енергије и максималне снаге у систему директног и полуиндиректног мерења Анализа тачности мерења електричне енергије и максималне снаге у систему директног и полуиндиректног мерења Славиша Пузовић Факултет техничких наука, Чачак Електротехничко и рачунарско инжењерство, Eлектроенергетика,

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

Кондензатор је уређај који се користи

Кондензатор је уређај који се користи Kондензатори 1 Кондензатор Кондензатор је уређај који се користи у великом броју електричних кола Капацитет, C, кондензатора се дефинише као количник интензитета наелектрисања на његовим плочама и интернзитета

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

Софтвер за одређивање степена искоришћења и класе енергетске ефикасности трофазних асинхроних мотора снага до 7,5 kw

Софтвер за одређивање степена искоришћења и класе енергетске ефикасности трофазних асинхроних мотора снага до 7,5 kw Техничко решење Софтвер за одређивање степена искоришћења и класе енергетске ефикасности трофазних асинхроних мотора снага до 7,5 kw Чачак, 2012 године - 1 - С a држај ОСНОВНИ ПОДАЦИ О ТЕХНИЧКОМ РЕШЕЊУ...

Διαβάστε περισσότερα

ЈП ЕПС - ДИРЕКЦИЈА ЗА ДИСТРИБУЦИЈУ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ Београд, Војводе Степе 412. ТЕХНИЧКА ПРЕПОРУКА бр.1 - ДОДАТАК 1-

ЈП ЕПС - ДИРЕКЦИЈА ЗА ДИСТРИБУЦИЈУ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ Београд, Војводе Степе 412. ТЕХНИЧКА ПРЕПОРУКА бр.1 - ДОДАТАК 1- ЈП ЕПС - ДИРЕКЦИЈА ЗА ДИСТРИБУЦИЈУ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ Београд, Војводе Степе 412 ТЕХНИЧКА ПРЕПОРУКА бр.1 - ДОДАТАК 1- ОСНОВНИ ЗАХТЕВИ ЗА ПОНУДУ И НАРУЏБИНУ УЉНИХ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА 10/0,42 KV,

Διαβάστε περισσότερα

ОГЛЕДНИ СЕТ ЗА ДЕМОНСТРАЦИЈУ РАДА

ОГЛЕДНИ СЕТ ЗА ДЕМОНСТРАЦИЈУ РАДА ОГЛЕДНИ СЕТ ЗА ДЕМОНСТРАЦИЈУ РАДА ФОТОНАПОНСКОГ СИСТЕМА НАПАЈАЊА www.netinvest.rs САДРЖАЈ Опис система Упутство за припрему и реализацију вежби Упутство за одржавање и безбедно руковање Преглед теоретског

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

ЕЛЕКТРИЧНЕ МРЕЖЕ за четврти разред

ЕЛЕКТРИЧНЕ МРЕЖЕ за четврти разред ТЕХНИЧКА ШКОЛА ИВАН САРИЋ С У Б О Т И Ц А Драган Товаришић, дипл.инж.ел. СКРИПТА ЗА ПРЕДАВАЊА ИЗ ПРЕДМЕТА ЕЛЕКТРИЧНЕ МРЕЖЕ за четврти разред Суботица, 0/4.год. УВОД У ПРОРАЧУН.. СВРХА ПРОРАЧУНА ЕЛЕКТРИЧНИХ

Διαβάστε περισσότερα

ЕЛЕКТРИЧНИ УРЕЂАЈИ за други разред

ЕЛЕКТРИЧНИ УРЕЂАЈИ за други разред Драган Товаришић, дипл.инж.ел. Скрипта за предавања из наставног предмета ЕЛЕКТРИЧНИ УРЕЂАЈИ за други разред Образовни профил: Техничар вуче Суботица, 2012/2013. год. I ИСТОРИЈСКИ РАЗВОЈ И ДАЉЕ ТЕНДЕНЦИЈЕ

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

26. Мај 2015 Регионални центар ИКС у Краљеву, предавања приредио: Др Слободан Бјелић, редовни професор

26. Мај 2015 Регионални центар ИКС у Краљеву, предавања приредио: Др Слободан Бјелић, редовни професор 6. Мај 015 Регионални центар ИКС у Краљеву, предавања приредио: Др Слободан Бјелић, редовни професор slobodanbjelic49@yahoo.com, slobodan.bjelic@pr.ac.rs ТЕМА "Вредновање сопствених импеданси електричних

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ

КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ Машински факултет Универзитета у Београду/ Машински елементи / Предавање 3 КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ Критична стања машинских делова У критичном стањеу машински делови не могу да извршавају своју

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА 110/X kv

НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА 110/X kv НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА /X kv М. ГРБИЋ, Електротехнички институт Никола Тесла 1, Београд, Република Србија Д. ХРВИЋ, Електротехнички институт Никола Тесла, Београд,

Διαβάστε περισσότερα

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени

Διαβάστε περισσότερα

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница. 91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина

Διαβάστε περισσότερα

Стања материје. Чврсто Течно Гас Плазма

Стања материје. Чврсто Течно Гас Плазма Флуиди 1 Стања материје Чврсто Течно Гас Плазма 2 Чврсто тело Има дефинисану запремину Има дефинисан облик Молекули се налазе на специфичним локацијама интерагују електричним силама Вибрирају око положаја

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

ЕЛЕКТРИЧНИ ПОГОН И ОПРЕМА У МЕХАТРОНИЦИ

ЕЛЕКТРИЧНИ ПОГОН И ОПРЕМА У МЕХАТРОНИЦИ ЕЛЕКТРИЧНИ ПОГОН И ОПРЕМА У МЕХАТРОНИЦИ У следећим задацима заокружите број испред траженог одговора 46. Ако на једном трансформатору U представља напон на примару, U напон на секундару, N број навојака

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

ТЕХНИЧКА ПРЕПОРУКА БР. 16 ОСНОВНИ ТЕХНИЧКИ ЗАХТЕВИ ЗА ПРИКЉУЧЕЊЕ МАЛИХ ЕЛЕКТРАНА НА ДИСТРИБУТИВНИ СИСТЕМ

ТЕХНИЧКА ПРЕПОРУКА БР. 16 ОСНОВНИ ТЕХНИЧКИ ЗАХТЕВИ ЗА ПРИКЉУЧЕЊЕ МАЛИХ ЕЛЕКТРАНА НА ДИСТРИБУТИВНИ СИСТЕМ ТЕХНИЧКА ПРЕПОРУКА БР. 16 ОСНОВНИ ТЕХНИЧКИ ЗАХТЕВИ ЗА ПРИКЉУЧЕЊЕ МАЛИХ ЕЛЕКТРАНА НА ДИСТРИБУТИВНИ СИСТЕМ ИЗДАВАЧ: Техничко уређење: Коректура: Рачунарска обрада цртежа: ЈП ЕПС ДИРЕКЦИЈА ЗА ДИСТРИБУЦИЈУ

Διαβάστε περισσότερα

Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv

Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv Стручни рад UDK:621.317.42:621.317.32:621.311.42 BIBLID: 0350-8528(2016),26 p.151-163 doi:10.5937/zeint26-12319 Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv Маја

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака.

Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака. Основе механике флуида и струјне машине 1/11 Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака 1задатак Познате су следеће величине једнe

Διαβάστε περισσότερα

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ 3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ Подсетимо се. Шта је сила еластичности? У ком смеру она делује? Од свих еластичних тела која смо до сада помињали, за нас је посебно интересантна опруга. Постоје разне опруге,

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

Вежба 19 Транзистор као прекидач

Вежба 19 Транзистор као прекидач Вежба 19 Транзистор као прекидач Увод Једна од примена транзистора у екектроници јесте да се он користи као прекидач. Довођењем напона на базу транзистора, транзистор прелази из једног у други режима рада,

Διαβάστε περισσότερα

Вежба 18 Транзистор као појачавач

Вежба 18 Транзистор као појачавач Вежба 18 Транзистор као појачавач Увод Jедна од најчешћих примена транзистора јесте у појачавачким колима. Најчешће се користи веза транзистора са заједничким емитором. Да би транзистор радио као појачавач

Διαβάστε περισσότερα

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра Одређивање специфичне тежине и густине чврстих и течних тела Густина : V Специфична запремина : V s Q g Специфична тежина : σ V V V g Одређивање специфичне тежине и густине чврстих и течних тела помоћу

Διαβάστε περισσότερα

"ЕЛЕКТРИЧНО ПОКРЕТАЊЕ"

ЕЛЕКТРИЧНО ПОКРЕТАЊЕ Драган Товаришић, дипл.инж.ел. Скрипта за предавања из предмета "ЕЛЕКТРИЧНО ПОКРЕТАЊЕ" Суботица, 2010.год. I.ТЕОРИЈА ВУЧЕ 1.1.Увод-Развој електричне вуче 1.2.Техничко-економске карактеристике електричне

Διαβάστε περισσότερα

Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности

Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности Стручни рад UDK:621.317.42:621.316.97 BIBLID:0350-8528(2012),22.p.173-184 doi:10.5937/zeint22-2341 Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013.

МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013. МИЋО М МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 1 ПРАКТИКУМ ФИЗИКА 7 Збирка задатака и експерименталних вежби из физике

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ЧАЧАК МОДЕЛОВАЊЕ ГЛАВНЕ ХИСТЕРЕЗИСНЕ ПЕТЉЕ И ПРЕЛАЗНИХ ПРОЦЕСА МАГНЕЋЕЊА ФЕРОМАГНЕТСКИХ ЛИМОВА

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ЧАЧАК МОДЕЛОВАЊЕ ГЛАВНЕ ХИСТЕРЕЗИСНЕ ПЕТЉЕ И ПРЕЛАЗНИХ ПРОЦЕСА МАГНЕЋЕЊА ФЕРОМАГНЕТСКИХ ЛИМОВА УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ЧАЧАК Мр Бранко Копривица, дипл. инж. ел. МОДЕЛОВАЊЕ ГЛАВНЕ ХИСТЕРЕЗИСНЕ ПЕТЉЕ И ПРЕЛАЗНИХ ПРОЦЕСА МАГНЕЋЕЊА ФЕРОМАГНЕТСКИХ ЛИМОВА Докторска дисертација

Διαβάστε περισσότερα

Еластичне и пластичне деформације рекристализација

Еластичне и пластичне деформације рекристализација Машински материјали Предавање број 4 Понашање метала при деловању спољних силаеластична деформација, пластична деформација, рекристализација, обрада деформисањем у хладном и топлом стању. Својства метала

Διαβάστε περισσότερα

ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010

ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010 ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010 Магнетне појаве 1 16.1.2010. у 09.00 2. колоквијум 21. 1.2010. у 17.00 поправни колоквијум 25.01.2010. у... испит 2 1 Магнети Откриће магнета-магнезија (Мала

Διαβάστε περισσότερα

Систем за мерење протока течности заснован на губитку топлоте дебелослојних NTC термистора

Систем за мерење протока течности заснован на губитку топлоте дебелослојних NTC термистора Систем за мерење протока течности заснован на губитку топлоте дебелослојних NTC термистора МИЛОЉУБ Д. ЛУКОВИЋ, Универзитет у Београду, Стручни рад Институт за мултидисциплинарна UDC: 532.57.083:681.586

Διαβάστε περισσότερα

ПРИРУЧНИК ЗА УПОТРЕБУ СОФТВЕРСКОГ АЛАТА LtSpice СА ПРИМЕРИМА

ПРИРУЧНИК ЗА УПОТРЕБУ СОФТВЕРСКОГ АЛАТА LtSpice СА ПРИМЕРИМА ПРИРУЧНИК ЗА УПОТРЕБУ СОФТВЕРСКОГ АЛАТА LtSpice СА ПРИМЕРИМА Aлександар Пеулић Ђорђе Дамњановић Чачак, Август 2015 Building Network of Remote Labs for strenghthening university- secondary vocational schools

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 2016. Суботица, СРБИЈА УПОРЕДНА АНАЛИЗА ЕЛАСТИЧНЕ И ЕЛАСТО- ПЛАСТИЧНЕ НОСИВОСТИ ПОПРЕЧНОГ ПРЕСЕКА Аљоша Филиповић 1 Љубо Дивац

Διαβάστε περισσότερα

ФИЗИКА Час број 12 Понедељак, 27. децембар 2010

ФИЗИКА Час број 12 Понедељак, 27. децембар 2010 Магнетне појаве ФИЗИКА Час број 12 Понедељак, 27. децембар 2010 1 10.1. (понедељак) 2011., 2. колоквијум 21. 1.2011. ухх.хх поправни колоквијум 24.01.2011. у 09.00, испит 2 Магнети Откриће магнета-магнезија

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства Антене и простирање Показна лабораторијска вежба - мерење карактеристика антена 1. Антене - намена и својства Антена је склоп који претвара вођени електромагнетски талас у електромагнетски талас у слободном

Διαβάστε περισσότερα