kroky výpočtu Bouguerovej anomálie (tzv. korekcie/redukcie) Úvodné poznámky:
|
|
- Βηθεσδά Δουρέντης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Úvodné poznámky: Bouguerove anomálie cieľom ich výpočtu je odstrániť z meraného g všetky negeologické prejavy (odstredivé zrýchlenie, vplyv výšky a topografie) jedine vtedy sa môžu prejaviť efekty hustotných nehomogenít (geologické a antropogénne objekty). Inými slovami - merané tiažové zrýchlenie je silne závislé od nadmorských výšok (topografie) a túto závislosť je potrebné odstrániť v čo najväčšej miere ( inak budeme mapovať topografiu a nie geológiu ).
2 Úvodné poznámky: extrémna výšková závislosť v hodnotách g (príklad je pre územie našej republiky)
3 g B = ÚBA= g g n h hρ B + T g namerané tiažové zrýchlenie (opravené o slapy a chod, prepočítané na absolútne hodnoty) g n normálne pole (tiažový účinok elipsoidu) h tzv. Fayeova korekcia (redukcia) = = korekcia (redukcia) vo voľnom vzduchu hρ účinok rovinnej nekonečnej (Bouguerovej) dosky, tzv. Bouguerova korekcia (redukcia) B Bullardov člen: oprava účinku rovinnej dosky na účinok sférickej orezanej dosky (do vzdialenosti km od bodu výpočtu) T terénne korekcie (do vzdialenosti km) ρ tzv. korekčná (redukčná) hustota, často 2.67 g.cm -3 h nadmorská výška výpočtového bodu
4 g B = g g n h hρ B + T normálne pole tiažové pole referenčného elipsoidu - Clairautov teorém, - Helmertov vzťah, - Somigliana-Pizettiho vzťah, Pozor: všetky uvedené vzťahy vypočítavajú tiažový účinok na povrchu elipsoidu (geoidu), t.j. v bode h = 0 m (!)
5 g B = g g n h hρ B + T normálne pole tiažové pole referenčného elipsoidu otázne je, že akú hustotu má elipsoid, ktorého účinok takto odrátame teoretické úvahy ukazujú, že by to mohlo byť v jeho vrchnej časti g.cm -3 (dôležité je si uvedomiť, že odvodené vzťahy pre normálne pole určujú jeho hodnotu pre nulovú nadmorskú výšku)
6 g B = g g n h hρ B + T Fayeova korekcia oprava na voľný vzduch P(h,ϕ,λ) keďže vzťahy pre normálne pole určujú jeho hodnotu v bode h = 0 m, pre potreby výpočtu Bouguerovej anomálie je potrebné toto pole presunúť (prepočítať) z povrchu elipsoidu do bodu výpočtu P(h) h 0 m n.m. tento krok sa nazýva tradične ako Fayeova korekcia (korekcia na voľný vzduch, free air correction)
7 g B = g g n h hρ B + T Fayeova korekcia oprava na voľný vzduch h P 0 P a (polomer Zeme) odvodenie (pomer h/a je veľmi malý)
8 g B = g g n h hρ B + T Fayeova korekcia oprava na voľný vzduch (pri jednoduchej sférickej aproximácii Zeme) rozdiel v zrýchlení medzi bodmi P 0 a P bude: h P 0 P g = 2 a 0 gf h h pre priemerné hodnoty parametrov g 0 g P [mgal], a [m] a (polomer Zeme)
9 g B = g g n h hρ B + T Fayeova korekcia oprava na voľný vzduch pri uvážení ďaľších členov použitého Taylorovho rozvoja a taktiež odstredivého zrýchlenia Zeme (rotujúca guľa) získame namiesto jednoduchého vzťahu (0.3086h) pre Fayeovu korekcie nasledujúci vzorec: g F ( sin 2 ϕ)h ( sin 2 ϕ)h 2 pozn. Pre územie SR dosahuje chyba, spôsobená používaním zjednodušeného vzťahu pre Fayovu korekciu (0.3086h) výškovo závislú chybu, dosahujúcu rozpätie až cca mgal (pre lokálne prieskumy to nevadí, pre regionálne však áno)
10 g B = g g n h hρ B + T 1. koncepcia: rovinná Bougerova (nekonečná) doska Bullardov člen - úprava rovinnej dosky na zakrivenú (ohranič. na km) Bouguerova korekcia oprava o účinok hmôt medzi bodom merania (P) a referenčným telesom P(h,ϕ,λ) terénne korekcie máme 3 koncepcie: 1. tri členy v zmysle Bullarda (1936): (rovinná doska, Bullard. člen, terr. kor.) (tzv. Bullard A, Bullard B, Bullard C term) 2. dva členy: (sférická doska, terénne korekcie) 3. jeden člen: (tzv. masové korekcie, topo-efekt) 0 m n.m.
11 Bouguerova korekcia 1. koncepcia - klasický spôsob : najprv je odpočítaný účinok rovinnej nekonečnej dosky, potom je tento krok upravený pre prípad zakrivenej ohraničenej dosky a napokon sú zavedené topokorekcie a) účinok rovinnej nekonečnej Bouguerovej dosky (Boug. slab): 2πκρh ρh (pre [mgal] a [g cm -3 ]) P h ρ Pozn.: presné odvodenie bude približne v strede semestra počas riešenia tzv. priamych úloh pre jednoduché telesá (vychádza sa gravitačného účinku tzv. horizontálneho pásu a polonekonečnej dosky)
12 Bouguerova korekcia 1. koncepcia - klasický spôsob najprv je odpočítaný účinok rovinnej nekonečnej dosky, potom je tento krok upravený pre prípad zakrivenej ohraničenej dosky a napokon sú zavedené topokorekcie b) zavedenie tzv. Bullardovho člena (B), ktorý je rozdielom účinku sfér. vrstvy (g sp ) s otvorovým uhlom θ 1.5 a rovinnej Bouguerovej dosky (2πκρh) dnes sa počíta B pomocou aproximujúceho vzorca: B = h h 2 [mgal] (platí pre ρ = 2.67 g.cm -3 )
13 tzv. Bullardov člen rozdiel účinku sfér. vrstvy (g sp ) s otvorovým uhlom θ 1.5 a rovinnej Bouguerovej dosky (2πκρh) hodnoty v grafe sú pre hustotu 2.67 g.cm -3
14 Bouguerova korekcia 1. klasický spôsob najprv je odpočítaný účinok rovinnej nekonečnej dosky, potom je tento krok upravený pre prípad zakrivenej ohraničenej dosky a napokon sú zavedené terénne korekcie c) zavedenie terénnych korekcií P(h,ϕ,λ) 0 m n.m. Terénne korekcie ošetrujú dva dôležité prípady: 1. treba doplniť (pripočítať) gravitačný účinok výplní dolín, ktorý bol odrátaný pri odrátaní sférickej Bouguerovej dosky (rovinnej dosky a Bullard člena), 2. treba pripočítať gravitačný účinok kopcov, ktoré vo väčšine prípadov svojimi hmotami nad úrovňou bodu znižujú meranú tiaž (čiže ich vypočítaný účinok by mal mať kladné znamienko); pri zanorených kopcoch pod úroveň výšky meraného bodu ich účinok však bude mať opačné znamienko záporné, takže pre menšie nadmorské výšky výpočtových bodov môžeme získať aj záporné hodnoty terénnych korekcií.
15 2. koncepcia g B = g g n h g sf + T účinok ohraničenej sférickej dosky (do km) terénne korekcie Bouguerova korekcia oprava o účinok hmôt medzi bodom merania (P) a referenčným telesom P(h,ϕ,λ) 0 m n.m.
16 g kroky výpočtu Bouguerovej anomálie Bouguerova korekcia 2. koncepcia sfér. ohranič. dosky s následnými topokorekciami v súčasnosti asi najviac rozšírené sp ( R) = 2πγσ ( ρ ( 3R ) + ρcosθ ( 3R) + cos θ 2 3) + R R 2 2Rρcosθ + ρ [ ] 2 0 T ( cos θ cosθ ) ln 2 R 2Rρ cosθ + ρ + 2( ρ R cosθ ) 2 kde: θ uhol od vert. osi (doplnok zemep. šírky) (s hranicami θ 1 a θ 2 ) ρ centrálna vzdialenosť časti sfér. vrstvy (s hranicami od R 0 +h B do R 0 +h T ) R 0 polomer sférickej Zeme R centrálna vzdialenosť výpočt. bodu P (R = R 0 + h P ) h P výška bodu P nad sférickou Zemou + θ θ 1 R R 0 + h + h B
17 Bouguerova korekcia 2. koncepcia sfér. ohranič. dosky s následnými topokorekciami v súčasnosti asi najviac rozšírené vzťahy pre účinok sfér. vrstvy bol odvodený viacerými autormi: - Hayford and Bowie (1912), Cassinis et al. (1937), Lejay (1947), Baeschlin (1948), Jung (1961), Hagiwara (1975), Quereshi (1976), Rempel (1981), Talwani (1988), Kühtreiber et al. (1989), LaFehr (1991), Mikuška et al. (2006), a ďalší (možno) taktiež boli odvodené rôzne aproximácie na základe Taylorových radov: - Oliver ed., (1980), Whitman (1990), LaFehr (1991), Militzer and Weber, ed., (1984), a iní
18 g B = g g n h M 3. koncepcia tzv. masové korekcie, topo-efekt (166.7 km) Bouguerova korekcia oprava o účinok hmôt medzi bodom merania (P) a referenčným telesom P(h,ϕ,λ) 0 m n.m. terénne korekcie masové korekcie (topografický efekt)
19 Bouguerova korekcia výhody a nevýhody jedn. prístupov 3. masové korekcie priamočiare, avšak realizácia výpočtu je náročnejšia 2. koncepcia sfér. ohranič. dosky s následnými terénnymi korekciami v súčasnosti asi najviac rozšírená 1. klasický spôsob najprv je odpočítaný účinok rovinnej nekonečnej dosky, potom je tento krok upravený pre prípad zakrivenej ohraničenej dosky a napokon sú zavedené terr. korekcie terénne korekcie masové korekcie
20 úplné Bouguerove anomálie (complete Bouguer anomalies): g B = ÚBA= g g n h hρ B + T neúplné Bouguerove anomálie (simple Bouguer anomalies), používané pri detailnom prieskume a v mikrogravimetrii: g NB = NBA= g g n h hρ Fayeove anomálie, anomálie vo voľnom vzduchu (Faye anomalies, free air anomalies), používané v geodézii a v niektorých geofyzikálnych aplikáciách: g F = Faye = g g n h
21 Ako sa vyvíjajú výškové závislosti pri výpočte ÚBA? závislosť géčka od výšky rozsah vertikálnej osi: 80 mgal lokalita Mikušovce (detailná gravimetria v bradlovom pásme)
22 Ako sa vyvíjajú výškové závislosti pri výpočte ÚBA? závislosť géčka od výšky rozsah vertikálnej osi: 80 mgal lokalita Mikušovce (detailná gravimetria v bradlovom pásme)
23 Ako sa vyvíjajú výškové závislosti pri výpočte ÚBA? Závislosť hodnôt Fayeovej anomálie od výšky rozsah vertikálnej osi: 80 mgal lokalita Mikušovce (detailná gravimetria v bradlovom pásme)
24 Ako sa vyvíjajú výškové závislosti pri výpočte ÚBA? Závislosť hodnôt NBA od výšky rozsah vertikálnej osi: 80 mgal lokalita Mikušovce (detailná gravimetria v bradlovom pásme)
25 Ako sa vyvíjajú výškové závislosti pri výpočte ÚBA? Závislosť hodnôt ÚBA od výšky (aj s terénnymi korekciami) rozsah vertikálnej osi: 80 mgal lokalita Mikušovce (detailná gravimetria v bradlovom pásme)
26 Výškové závislosti - zaujímavosť lokalita Piešťany (detailná gravimetria pre plánovanie geotermálneho vrtu) profily Z V smeru z Podunajskej panvy ku Považskému Inovcu
27 Výškové závislosti - zaujímavosť nadmorské výšky: Z V merané g: lokalita Piešťany (detailná gravimetria)
28 trošku z histórie: Kto zaviedol pojem Bouguerove anomálie? Určite ich používa Bullard (1936), pred ním Lambert (1930) a dopátrali sme sa ku nim aj v práci od Putnama (1895). Hayford and Bowie (1912) použvajú výpočet v zmysle dnešnej ÚBA, aj keď ju tak nenazývajú. Pojem Bouguerova redukcia však uvádzajú už Thomas Young (1819) a nezávisle od neho aj Simon Denis Poisson (1833) - ten účinok nekonečnej dosky matematicky odvádza (v samotnej práci La figure de la terre, 1749 to však sám Bouguer neodvádza!). Pierre Bouguer ( )
29 trošku z histórie: Kto zaviedol pojem Bouguerove anomálie? Určite ich používa Bullard (1936), pred ním Lambert (1930) a dopátrali sme sa ku nim aj v práci od Putnama (1895). Hayford and Bowie (1912) použvajú výpočet v zmysle dnešnej ÚBA, aj keď ju tak nenazývajú. Pojem Bouguerova redukcia však uvádzajú už Thomas Young (1819) a nezávisle od neho aj Simon Denis Poisson (1833) - ten účinok nekonečnej dosky matematicky odvádza (v samotnej práci La figure de la terre, 1749 to však sám Bouguer neodvádza!). Pierre Bouguer ( ) Dôležitý je odkaz v práci Helmerta (1884) na str :
30 Pierre Bouguer ( )
31 Bouguerova korekcia Prečo je volený otvorový uhol sférickej dosky θ 1.5 (presne θ =1 o )? (zodpovedá vzdialenosti po povrchu Zeme cca km) 1. uvedený uhol je hranicou tzv. Hayford-Bowieho zóny O 2 a zodpovedá skoro presne 100 americkým mílam (t.j km) (?) - nesedí to, 2. Lambert (1930) a Bullard (1936) tvrdia, že v rámci tohto otvorového uhla je viditeľný zemský reliéf asi mali na mysli, že by bolo ešte vidieť nezanorené kopce, 3. Schleusener (1953) tvrdí, že tento uhol dáva účinok sfér. dosky, ktorý sa najviac podobá na účinok rovinnej nekonečnej Boug. dosky (pravdivé tvrdenie). θ 1.5 o v podstate to presne nevieme - ale vieme, že to bolo určené dobre
32 Prečo je volený otvorový uhol sférickej dosky θ 1.5 (presne θ =1 o )? (zodpovedá vzdialenosti po povrchu Zeme cca km)
33 rovinná Bouguerova korekcia ako je to v prírode? (nebolo by vhodnejšie odpočítať účinok kompletnej sférickej vrstvy?) porovnanie 2 lineárnych závislostí: 2πκρh (rovinná nekonečná doska) a 4πκρh (kompletná sférická doska - okolo celej Zemi)
Základy aplikovanej geofyziky. gravimetria magnetometria geoelektrika seizmika karotáž rádiometria seizmológia
Základy aplikovanej geofyziky gravimetria magnetometria geoelektrika seizmika karotáž rádiometria seizmológia GRAVIMETRIA Obsah prednášky: ujasnene si základných pojmov trošku z histórie jednotky meranie
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Gravimetria. - na Prif UK v rámci magisterského študijného programu Aplikovaná a environmentálna geofyzika sú v prípade gravimetrie 2 nosné predmety:
Gravimetria - na Prif UK v rámci magisterského študijného programu Aplikovaná a environmentálna geofyzika sú v prípade gravimetrie 2 nosné predmety: Gravimetria (1) (Pašteka), 1. roč., povinný predmet,
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov
Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov zaťaženia Prostý nosník Konzola 31 Príklad č.14.1 Vypočítajte a vykreslite priebehy vnútorných síl na nosníku s previslými koncami,
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...
(TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
AerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
6 Gravitačné pole. 6.1 Keplerove zákony
89 6 Gravitačné pole Pojem pole patrí k najzákladnejším pojmom fyziky. Predstavuje formu interakcie (tzv. silového pôsobenia) v prostredí medzi materiálnymi objektmi ako sú častice, atómy, molekuly a zložitejšie
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Úloha č.:...viii... Název: Meranie momentu zotrvačnosti kolesa Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne...
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Modul pružnosti betónu
f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie
URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA
54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.
Východ a západ Slnka
Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že
Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.
Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým
Numerické metódy Zbierka úloh
Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Analýza údajov. W bozóny.
Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke
Matematický model robota s diferenciálnym kolesovým podvozkom
Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom
22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte
Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál
5. VÝŠKOVÉ URČOVANIE BODOV
5. VÝŠKOVÉ URČOVANIE ODOV 5. Druhy výšok Nadmorská výška bodu P je súradnica určená v smere siločiary tiažového poľa. Podľa toho, aká je referenčná (nulová) plocha nad ktorou sa definuje výška, rozlišujeme
SLOVENSKO maloobchodný cenník (bez DPH)
Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Obvod a obsah nepravidelného a pravidelného mnohouholníka
Obvod a obsah nepravidelného a pravidelného mnohouholníka Ak máme nepravidelný mnohouholník, tak skúsime ho rozdeliť na útvary, ktorým vieme vypočítať obsah z daných údajov najvšeobecnejší spôsob: rozdeliť
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin
2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi
Príkladové štúdie použitia metód archeo-geofyzikálneho výskumu. Úvod
Príkladové štúdie použitia metód archeo-geofyzikálneho výskumu Úvod Motivácia: Príkladové štúdie použitia metód archeo-geofyzikálneho výskumu - úvod v prvom ročníku bakalárskeho štúdia archeológie podľa
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
Odťahy spalín - všeobecne
Poznámky - všeobecne Príslušenstvo na spaliny je súčasťou osvedčenia CE. Z tohto dôvodu môže byť použité len originálne príslušenstvo na spaliny. Povrchová teplota na potrubí spalín sa nachádza pod 85
Ján Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
Povrch a objem zrezaného ihlana
Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený
Metódy archeogeofyzikálneho výskumu. Úvod do predmetu o metódach, ktoré merajú a vyhodnocujú fyzikálne polia Zeme a tak pozerajú pod jej povrch
Metódy archeogeofyzikálneho výskumu Úvod do predmetu o metódach, ktoré merajú a vyhodnocujú fyzikálne polia Zeme a tak pozerajú pod jej povrch Metódy archeogeofyzikálneho výskumu - Úvod Obsah: - geofyzikálne
A MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
JKPo10-T List 1. Nekonečné rady. Mgr. Jana Králiková
JKPo0-T List Nekonečné rady Mgr. Jana Králiková U: Ernest Hemingway povedal: Najľahší spôsob ako stratiť dôveru a úctu mladých je dávať im nekonečné rady. Ž: Poskytnete mi nekonečné rady o nekonečných
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
18. kapitola. Ako navariť z vody
18. kapitola Ako navariť z vody Slovným spojením navariť z vody sa zvyknú myslieť dve rôzne veci. Buď to, že niekto niečo tvrdí, ale nevie to poriadne vyargumentovať, alebo to, že niekto začal s málom